NPDES Permit No NM0031226

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Clean Water Act, as amended, (33 U.S.C. 1251 et. seq; the "Act"),

Mineral Acquisitions, LLC P.O. Box 25201 Albuquerque, NM 87125

is authorized to discharge from the Billali Mine, located in Grant County, NM to receiving water named Bitter Creek (Segment No. 20.6.4.98)

the discharge from the facility is located at the following coordinates:

Outfall 001: Latitude 32° 53' 00.23" N, Longitude 108° 59' 00.74" W

in accordance with this cover page and the effluent limitations, monitoring requirements, and other conditions set forth in Part I, Part II, and Part III hereof.

This permit shall become effective on August 1, 2021

This permit and the authorization to discharge shall expire at midnight, July 31, 2026

Issued on June 29, 2021

Charles W. Maguire

Director

Water Division

(This Page intentionally left blank)

DOCUMENT ABBREVIATIONS

In the document that follows, various abbreviations are used. They are as follows:

4Q3 lowest four-day average flow rate expected once every three years

BAT best available technology economically achievable BCT best conventional pollutant control technology

BPT best practicable control technology currently available

BMP best management plan

BOD5 five-day biochemical oxygen demand

BPJ best professional judgment

CBOD5 Five-day Carbonaceous Biochemical Oxygen Demand

CD critical dilution

CFR Code of Federal Regulations cfs cubic feet per second cfu colony forming units

COD chemical oxygen demand COE United States Corp of Engineers

CWA Clean Water Act

DMR discharge monitoring report EA environmental assessment ELG effluent limitation guidelines

EPA United States Environmental Protection Agency

ESA Endangered Species Act
FCB Fecal coliform bacteria
ft. feet (measurement of distance)

FWS United States Fish and Wildlife Service

lbs pounds

ug/L micrograms per litter (one part per billion)
mg/L milligrams per liter (one part per million)

MGD million gallons per day

NMAC New Mexico Administrative Code NMED New Mexico Environment Department

NMIP New Mexico NPDES permit implementation procedures

NMWQS New Mexico state standards for interstate and intrastate surface waters

NPDES national pollutant discharge elimination system

MQL minimum quantification level

O&G oil and grease

PLC programmable logic controller POTW publicly owned treatment works

RP reasonable potential
SBR sequencing batch reactor
SIC standard industrial classification
s.u. standard units (for parameter pH)
SWQB Surface Water Quality Bureau

TDS total dissolved solids
TMDL total maximum daily load
TRC total residual chlorine
TSS total suspended solids
UAA use attainability analysis
USGS United States Geological Service

WET whole effluent toxicity

WQCC New Mexico Water Quality Control Commission

WQMP water quality management plan WWTP wastewater treatment plant

PART I – REQUIREMENTS FOR NPDES PERMITS

A. LIMITATIONS AND MONITORING REQUIREMENTS

FINAL Effluent Limits – Average Flow .0288 MGD– Outfall 001

During the period beginning the effective date of the permit and lasting through the expiration date of the permit (unless otherwise noted), the permittee is authorized to discharge effluent that results from the mine-dewatering process from Outfall 001 to Bitter Creek (20.6.4.98 NMAC). This permit does not authorize industrial stormwater or any discharge through hydrologic connection (e.g., leachate from waste rock site or seepage of mine water settling pond or tailing pond that may reach surface water through hydrologic connection). The designated uses for this segment, 20.6.4.98, include: livestock watering, wildlife habitat, marginal warmwater aquatic life, and primary contact. Such discharges for the pollutants shown shall be limited and monitored from Outfall 001, by the permittee as specified below:

	DISCHARGI	Ξ					
EFFLUENT	LIMITATIO	NS	DISCHARGELIMITATIONS MONITORING		MONITORING	NG	
CHARACTERISTICS	Lbs/day, unle	ess noted (*1)	mg/l, unless noted (*1)		REQUIREMENTS		
POLLUTANT	DAILY	30-DAY	DAILY MAX	30-DAY AVG	MEASUREMENT FREQUENCY	SAMPLE TYPE	
	MAX	AVG					
Flow	N/A	N/A	Report	Report	1/Day	Estimate (*4)	
Copper, total	0.0014	0.0014	0.006	0.006	3/Week	Grab	
Zinc, total	0.02	0.02	0.088	0.088	3/Week	Grab	
Lead, total	0.0005	0.0005	0.002	0.002	3/Week	Grab	
Mercury, total	N/A	N/A	0.002	0.001	3/Week	Grab	
Cadmium, total	0.00003	0.00003	0.00014	0.00014	3/Week	Grab	
Aluminum,	0.036	0.036	0.151	0.151	3/Week	Grab	
total recoverable *5							
Nickel, dissolved	0.007	0.007	0.013	0.013	3/Week	Grab	
Silver, dissolved	0.00016	0.00016	0.0002	0.0002	3/Week	Grab	
Manganese, dissolved	0.23	0.23	0.970	0.970	3/Week	Grab	
Chromium, dissolved	N/A	N/A	Report	Report	3/Week	Grab	
TSS	N/A	N/A	30.0	20.0	3/Week	Grab	
Hardness, dissolved	N/A	N/A	Report	N/A	1/Week *6	Grab	

EFFLUENT				
CHARACTERISTICS	DISCHARGE LIM	IITATIONS (Standard Units)	MONITORING RE	QUIREMENTS
			MEASUREMENT	
POLLUTANT	MINIMUM	MAXIMUM	FREQUENCY	SAMPLE TYPE
рН	6.6	9.0	1/Day	Instantaneous Grab
				(*2)

WHOLE EFFLUENT LETHALITY			
(7-Day Chronic Static Renewal/ NOEC)(*3)	VALUE	FREQUENCY	SAMPLE TYPE
Ceriodaphnia dubia	Report	Once/5 years	24- Hr Composite
Pimephales Promelas	Report	Once/5 years	24-Hr Composite

Footnotes:

- *1 See Appendix A of Part II_of the permit for minimum quantification limits.
- *2 Regulations at 40 CFR Part 136 define "grab" as instantaneous grab, analyzed within 15 minutes of collection.
- *3 WET Monitoring, reporting requirements, and limitations begin on the effective date of this permit. The test shall take place between November I and April 30, if possible. This permit does not establish requirements to automatically increase the WET testing frequency after a test failure, or to begin a toxicity reduction evaluation (TRE) in the event of multiple failures. However, upon failure of any WET test, the permittee must report the results to EPA and NMED, Surface Water Quality Bureau, in writing, within 5 business days of notification of the test failure. EPA and NMED will review the test results and determine the appropriate action necessary, if any.
- *4 "Estimate" flow measurements shall not be subject to the accuracy provisions established at Part II.C.6. The daily flow value may be estimated using best engineering judgement.
- *5 The analysis of total recoverable aluminum is a sample that is filtered to minimize mineral phases as specified by the NMED.
- *6 Samples shall be taken concurrently with metals.

Human Health Testing Requirements and One time effluent Characteristic testing

Discharges from industrial facilities for permits issued to protect NMWQS human health pollutants are required to be analyzed. In addition all pollutants listed on application 2D (Tables A-C) are required to be analyzed. The following pollutants need to be sampled ONE-TIME during the first discharge, analyzed and reported with the DMR on a separate form. Copies shall be sent to both EPA and NMED.

PERMIT NO. NM0031226

EFFLUENT CHARACTER	ISTICS *1			
Conventional and Non-	Lead, Total	1,1,1-trichloroethane	Dibenzo (a,h) anthracene	Beta-endosulfan
Conventional Pollutants	Lead, Total	1,1,1 tremoroculaile		Betti Chaosarran
Bromide	Mercury, Total	Trichloroethylene	1,2-dichlorobenzene	Endosulfan sulfate
Chlorine, total residual	Nickel, Total	Vinyl chloride	1,3-dichlorobenzene	Endrin
Fecal coliform	Selenium, Total	Organic Pollutants Acid	1,4-dichlorobenzene	Endrin aldehyde
		Compounds		
Fluoride	Silver, Total	2-chlorophenol	3,3-dichlorobenzidine	Heptachlor
Nitrate-nitrite	Thallium, Total	2,4-dichlorophenol	Diethyl phthalate	Heptachlor epoxide
Nitrogen, total	Zinc, Total	2,4-dimethylphenol	Dimethyl phthalate	PCB-1242
Oil and grease	Cyanide, Total	4,6-dinitro-o-cresol	Di-n-butyl phthalate	PCB-1248
Phosphorus (as P), total	Phenols, Total	2,4-dinitrophenol	2,4-dinitrotoluene	PCB-1260
Sulfate (as SO4)	Volatile Compounds	2-nitrophenol	2,6-dinitrotoluene	PCB-1016
Sulfide (as S)	Acrolein	4-nitrophenol	Di-n-octyl phthalate	Toxaphene
Surfactants	Acrylonitrile	p-chloro-m-cresol	1,2-diphenylhydrazine	Human Health
Aluminum, total	Benzene	Pentachlorophenol	Fluoranthene	Antimony (dissolved)
Barium, total	Bromoform	Phenol	Fluorene	Arsenic (dissolved)
Boron, total	Carbon tetrachloride	2,4,6-trichlorophenol	Hexachlorobenzene	Nickel (dissolves)
Cobalt, total	Chlorobenzene	Base/Neutral Compounds	Hexachlorobutadiene	Selenium (dissolved)
Iron, total	Chlorodibromomethane	Acenaphthene	Hexachlorocyclopentadiene	Thallium (dissolves)
Magnesium, total	Chloroethane	Acenaphthylene	Hexachloroethane	Zinc (dissolved)
Molybdenum, total	2-chloroethylvinyl ether	Anthracene	Indeno (1,2,3-cd) pyrene	Cyanide, weak acid dissociable
Manganese, total	Chloroform	Benzidine	Isophorone	2,3,7,8-TCDD (Dioxin)
Tin, total	Dichlorobromomethane	Benzo (a) anthracene	Naphthalene	Acrolein
Titanium, total	1,1-dichloroethane	Benzo (a) pyrene	Nitrobenzene	Acrylonitrile
Radioactivity	1,2-dichloroethane	3,4-benzofluoranthene	N-nitrosodimethylamine	Benzene
Alpha, total	1,1-dichloroethylene	Benzo (ghi) perylene	Aldrin	Bromoform
Beta, total	1,2-dichloropropane	Benzo (k) fluoranthene	Alpha, BHC	Carbon Tetrachloride
Radium, total	1,3-dichloropropylene	Bis (2-chloroethoxy) methane	Beta, BHC	1,2-Dichloroethane
Radium 226, total	Ethylbenzene	Bis (2-chloroethyl) ether	Gamma, BHC	1,1-Dichloroethylene
Toxic Metals Total Cyanide and	Methyl bromide	Bis (2-chloroisopropyl) ether	Delta, BHC	1,2-Dichloropropane
Phenols				
Antimony, Total	Methyl chloride	Bis (2-ethylhexyl) phthalate	Chlordane	1,3-Dichloropropene
Arsenic, Total	Methylene chloride	4-bromophenyl phenyl ether	4,4'-DDT	Ethylbenzene
Beryllium, Total	1,1,2,2-tetrachloroethane	Butyl benzyl phthalate	4,4'-DDE	Methyl Bromide
Cadmium, Total	Tetrachloroethylene	2-chloronaphthalene	4,4'-DDD	Methylene Chloride
Chromium, Total	Toluene	4-chlorophenyl phenyl ether	Dieldrin	1,1,2,2-Tetrachloroethane
Copper, Total	1,2-trans-dichloroethylene	Chrysene	Alpha-endosulfan	Tetrachloroethylene

EFFLUENT CHARACTERISTICS *1				
Human Health Continued	Endrin	Hexachlorocyclopentadiene		
Toluene	Benzo(a)pyrene	Hexachloroethane		
1,1,2-Trichloroethane	Benzo(b)fluoranthene	Indeno (1,2,3-cd)Pyrene		
Trichloroethylene	Benzo(k)fluoranthene	Isophorone		
Vinyl Chloride	Bis (2-chloroethyl) Ether	Nitrobenzene		
Endrin Aldehyde	Bis (2-chloroisopropyl) Ether	n-Nitrodimethylamine		
Heptachlor 90	Bis (2-ethylhexyl) Phthalate	n-Nitrosodi-n-Propylamine		
Heptachlor epoxide	Butyl Benzyl Phthalate	n-Nitrosodiphenylamine		
PCB's	Chrysene	Pyrene		
Toxaphene	Dibenzo(a,h)anthracene	1,2,4-Trichlorobenzene		
2-Chlorophenol	Dichlorobromomethane	Aldrin		
2,4-Dichlorophenol	1,2-Dichlorobenzene	Alpha-BHC		
2,4 Dimethylphenol	1,3-Dichlorobenzene	Beta-BHC		
2-Methyl-4-6-Dinitrophenol	1,4-Dichlorobenzene	Gamma-BHC		
1,2trans-Dichloroethylene	3,3-Dichlorobenzidine	Chlordane		
2,4-Dinitrophenol	Diethyl Phthalate	4, 4'-DDT and derivatives		
Pentachlorophenol	Dimethyl Phthalate	Dieldrin		
Phenol	Dibutyl Phthalate	Alpha-Endosulfan		
2,4,6-Trichlorophenol	2,4-Dinitrotoluene	Beta-Endosulfan		
Acenaphthene	1,2-Diphenylhydrazine	Endosulfan sulfate		
Anthracene	Fluoranthene			
Benzidine	Fluorene			
2-Chloronapthalene	Hexachlorobenzene			
Benzo(a)anthracene	Hexachlorobutadiene			

Single Grab Sample, ug/l (*1)

NARRATIVE CONDITITONS

Surface waters shall be maintained so that oil, grease, or related residue will not produce a visible film of oil or globules of grease on the surface or coat the banks or bottoms of the watercourse; or cause toxicity to man, aquatic life, or terrestrial life.

BOTTOM DEPOSITS AND TURBIDITY

Surface waters of the state shall be free of water contaminants including fine sediment particles (less than two millimeters in diameter), precipitates, or organic or inorganic solids from other than natural causes that have settled to form layers on or fill the interstices of the natural or dominant substrate in quantities that damage or impair the normal growth, function, or reproduction of aquatic life or significantly alter the physical or chemical properties of the bottom.

Turbidity attributable to other than natural causes shall not reduce light transmission to the point that the normal growth, function, or reproduction of aquatic life is impaired or that will cause substantial visible contrast with the natural appearance of the water.

SAMPLING LOCATIONS

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): At Outfall 001 prior to discharge to Bitter Creek.

B. SCHEDULE OF COMPLIANCE

NONE

C. MONITORING AND REPORTING (MINOR DISCHARGERS)

- 1. The permittee shall effectively monitor the operation and efficiency of all treatment and control facilities and the quantity and quality of the treated discharge.
- 2. Discharge Monitoring Report (DMR) results shall be electronically reported to EPA per 40 CFR 127.16. To submit electronically, access the NetDMR website at https://netdmr.epa.gov. Until approved for Net DMR, the permittee shall request temporary or emergency waivers from electronic reporting. To obtain the waiver, please contact: U.S. EPA Region 6, Water Enforcement Branch, New Mexico State Coordinator (6EN-WC), (214) 665-7179. If paper reporting is granted temporarily, the permittee shall submit the original DMR signed and certified as required by Part III.D.11 and all other reports required by Part III.D. to the EPA and copies to NMED as required (See Part III.D.IV of the permit).
- a. Reporting periods shall end on the last day of the months March, June, September, and December.
- b. The permittee is required to submit regular <u>quarterly</u> reports as described above postmarked no later than the <u>28th</u> day of the <u>month</u> following each reporting period.
- c. If any 30 day average, monthly average, 7 average, weekly average, or daily maximum exceeds the effluent limitations specified in

Part I.A, the permittee shall report the excursion in accordance with the requirements of Part III.D.

d. Any 30 day average, monthly average, 7 day average, weekly average, or daily maximum value reported in the required Discharge Monitoring Report which is in excess of the effluent limitation specified in Part I.A shall constitute evidence of violation of such effluent limitation and of this permit.

PART II - OTHER CONDITIONS

A. MINIMUM QUANTIFICATION LEVEL (MQL)

EPA-approved test procedures (methods) for the analysis and quantification of pollutants or pollutant parameters, including for the purposes of compliance monitoring/DMR reporting, permit renewal applications, or any other reporting that may be required as a condition of this permit, shall be sufficiently sensitive. A method is "sufficiently sensitive" when (1) the method minimum level (ML) of quantification is at or below the level of the applicable effluent limit for the measured pollutant or pollutant parameter; or (2) if there is no EPA-approved analytical method with a published ML at or below the effluent limit (see table below), then the method has the lowest published ML (is the most sensitive) of the analytical methods approved under 40 CFR Part 136 or required under 40 CFR Chapter I, Subchapters N or 0, for the measured pollutant or pollutant parameter; or (3) the method is specified in this permit or has been otherwise approved in writing by the permitting authority (EPA Region 6) for the measured pollutant or pollutant parameter. The Permittee has the option of developing and submitting a report to justify the use of matrix or sample-specific MLs rather than the published levels. Upon written approval by EPA Region 6 the matrix or sample-specific MLs may be utilized by the Permittee for all future Discharge Monitoring Report (DMR) reporting requirements.

Current EPA Region 6 minimum quantification levels (MQLs) for reporting and compliance are provided in Appendix A of Part II of this permit. The following pollutants may not have EPA approved methods with a published ML at or below the effluent limit, if specified:

POLLUTANT	CAS Number	STORET
		Code
Total Residual Chlorine	7782-50-5	50060
Cadmium	7440-43-9	01027
Silver	7440-22-4	01077
Thallium	7440-28-0	01059
Cyanide	57-12-5	78248
Dioxin (2,3,7,8-TCDD)	1764-01-6	34675
4, 6-Dinitro-0-Cresol	534-52-1	34657
Pentachlorophenol	87-86-5	39032
Benzidine	92-87-5	39120
Chrysene	218-01-9	34320
Hexachlorobenzene	118-74-1	39700
N-Nitrosodimethylamine	62-75-9	34438
Aldrin	309-00-2	39330
Chlordane	57-74-9	39350
Dieldrin	60-57-1	39380
Heptachlor	76-44-8	39410
Heptachlor epoxide	1024-57-3	39420
Toxaphene	8001-35-2	39400

Unless otherwise indicated in this permit, if the EPA Region 6 MQL for a pollutant or pollutant parameter is sufficiently sensitive (as defined above) and the analytical test result is less than the MQL, then a value of zero (0) may be used for reporting purposes on DMRs. Furthermore, if the EPA Region 6 MQL for a pollutant or parameter is not sufficiently sensitive, but the analytical test result is less than the published

ML from a sufficiently sensitive method, then a value of zero (0) may be used for reporting purposes on DMRs.

B. AUTHORIZED DISCHARGES

Discharges authorized in this individual permit are limited to effluent that results from the minedewatering process. There shall be no discharge of domestic sewage into waters of the United States. Discharges of storm water runoff shall be covered under the NPDES Multi-Sector General Storm Water Permit. Runoffs from active mine areas and ponds are not authorized. A permit modification is required if the permittee decides to discharge from any location other than Outfall 001.

C. 24-HOUR ORAL REPORTING: DAILY MAXIMUM LIMITATION VIOLATIONS

Under the provisions of Part III.D.7.b.(3) of this permit, violations of daily maximum limitations for the following pollutants shall be reported orally to EPA Region 6, Compliance and Assurance Division, Water Enforcement Branch (6ECDWA), Dallas, Texas and NMED within <u>24 hours</u> from the time the permittee becomes aware of the violation followed by a written report in five days.

Aluminum, Chromium III, Nickel, Silver, Manganese, Copper, Zinc, Lead, Mercury and Cadmium

D. PERMIT MODIFICATION AND REOPENER

In accordance with [40 CFR Part 122.44(d)], the permit may be reopened and modified during the life of the permit if relevant portions of New Mexico's Water Quality Standards for Interstate and Intrastate Streams are revised, or new State water quality standards are established and/or remanded by the New Mexico Water Quality Control Commission and/or downstream tribal nations establish and/or remand water quality standards.

In accordance with [40 CFR Part 122.62(s)(2)], the permit may be reopened and modified if new information is received that was not available at the time of permit issuance that would have justified the application of different permit conditions at the time of permit issuance. Permit modifications shall reflect the results of any of these actions and shall follow regulations listed at 40 CFR Part 124.5.

E. WHOLE EFFLUENT TOXICITY (7-DAY CHRONIC NOEC FRESHWATER)

1.SCOPE AND METHODOLOGY

a. The permittee shall test the effluent for toxicity in accordance with the provisions in this section.

APPLICABLE TO FINAL OUTFALL(S) 001	
REPORTED AS FINAL OUTFALL	001
CRITICAL DILUTION (%)	100%
EFFLUENT DILTION SERIES (%)	32%,42%,56%,75%, 100%
TEST SPECIES AND METHODS	Ceriodaphnia dubia / Method 1002.0 (EPA-821-R-02-
	013 or latest version)Ceriodaphnia dubia / Method
	1002.0 (EPA-821-R-02-013 or latest version)
	Pimephales promelas/ Method 1000.0 (EPA/821/R-02-
	013 or latest version)Pimephales promelas/ Method
	1000.0 (EPA/821/R-02-013 or latest version)
SAMPLE TYPE	Defined in PART I

- b. The NOEC (No Observed Lethal Effect Concentration) is herein defined as the greatest effluent dilution at and below which lethality that is statistically different from the control (0% effluent) at the 95% confidence level does not occur. Chronic lethal test failure is defined as a demonstration of a statistically significant lethal effect at test completion to a test species at or below the critical dilution. Chronic sub-lethal test failure is defined as a demonstration of a statistically significant sub-lethal effect (i.e., growth or reproduction) at test completion to a test species at or below the critical dilution.
- c. This permit may be reopened to require chemical specific effluent limits, additional testing, a Toxicity Reduction Evaluation, and/or other appropriate actions to address toxicity.

3. REQUIRED TOXICITY TESTING CONDITIONS

a. Test Acceptance

The permittee shall repeat a test, including the control and all effluent dilutions, if the procedures and quality assurance requirements defined in the test methods or in this permit are not satisfied, including the following additional criteria:

- i. The toxicity test control (0% effluent) must have survival equal to or greater than 80%.
- ii. The mean number of Ceriodaphnia dubia neonates produced per surviving female in the control (0% effluent) must be 15 or more.
- iii. 60% of the surviving control females must produce three broods.
- iv. The mean dry weight of surviving Fathead minnow larvae at the end of the 7 days in the control (0% effluent) must be 0.25 mg per larva or greater.
- v. The percent coefficient of variation between replicates shall be 40% or less in the control (0% effluent) for: the young of surviving females in the Ceriodaphnia dubia reproduction test; the growth and survival endpoints of the Fathead minnow test.
- vi. The percent coefficient of variation between replicates shall be 40% or less in the critical dilution, unless significant lethal or nonlethal effects are exhibited for: the young of surviving females in the Ceriodaphnia dubia reproduction test; the growth and survival endpoints of the Fathead minnow test.
- vii. A Percent Minimum Significant Difference (PMSD) range of 13 47 for Ceriodaphnia dubia reproduction;
- viii. A PMSD range of 12 30 for Fathead minnow growth.

Test failure may not be construed or reported as invalid due to a coefficient of variation value of greater than 40%. A repeat test shall be conducted within the required reporting period of any test determined to be invalid.

b. Statistical Interpretation

i. For the Ceriodaphnia dubia survival test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be Fisher's Exact Test as described

in EPA/821/R-02-013 or the most recent update thereof.

- ii. For the Ceriodaphnia dubia reproduction test and the Fathead minnow larval survival and growth test, the statistical analyses used to determine if there is a significant difference between the control and the critical dilution shall be in accordance with the methods for determining the No Observed Effect Concentration (NOEC) as described in EPA/821/R-02-013 or the most recent update thereof.
- iii. If the conditions of Test Acceptability are met in Item 3.a above and the percent survival of the test organism is equal to or greater than 80% in the critical dilution concentration and all lower dilution concentrations, the test shall be considered to be a passing test, and the permittee shall report a survival NOEC of not less than the critical dilution for the DMR reporting requirements found in Item 4 below.

c. Dilution Water

- i. Dilution water used in the toxicity tests will be receiving water collected as close to the point of discharge as possible but unaffected by the discharge. The permittee shall substitute synthetic dilution water of similar pH, hardness, and alkalinity to the closest downstream perennial water for;
- (A) toxicity tests conducted on effluent discharges to receiving water classified as intermittent streams; and
- (B) toxicity tests conducted on effluent discharges where no receiving water is available due to zero flow conditions.
- ii. If the receiving water is unsatisfactory as a result of instream toxicity (fails to fulfill the test acceptance criteria of Item 3.a), the permittee may substitute synthetic dilution water for the receiving water in all subsequent tests provided the unacceptable receiving water test met the following stipulations:
- (A) a synthetic dilution water control which fulfills the test acceptance requirements of Item 3.a was run concurrently with the receiving water control;
- (B) the test indicating receiving water toxicity has been carried out to completion (i.e., 7 days);
- (C) the permittee includes all test results indicating receiving water toxicity with the full report and information required by Item 4 below; and
- (D) the synthetic dilution water shall have a pH, hardness, and alkalinity similar to that of the receiving water or closest downstream perennial water not adversely affected by the discharge, provided the magnitude of these parameters will not cause toxicity in the synthetic dilution water.
 - d. Samples and Composites
- i. The permittee shall collect a minimum of three flow-weighted composite samples from the outfall(s)

listed at Item 1.a above.

- ii. The permittee shall collect second and third composite samples for use during 24-hour renewals of each dilution concentration for each test. The permittee must collect the composite samples such that the effluent samples are representative of any periodic episode of chlorination, biocide usage or other potentially toxic substance discharged on an intermittent basis.
- iii. The permittee must collect the composite samples so that the maximum holding time for any effluent

sample shall not exceed 72 hours. The permittee must have initiated the toxicity test within 36 hours after the collection of the last portion of the first composite sample. Samples shall be chilled to 6 degrees Centigrade during collection, shipping, and/or storage.

- iv. If the flow from the outfall(s) being tested ceases during the collection of effluent samples, the requirements for the minimum number of effluent samples, the minimum number of effluent portions and the sample holding time are waived during that sampling period. However, the permittee must collect an effluent composite sample volume during the period of discharge that is sufficient to complete the required toxicity tests with daily renewal of effluent. When possible, the effluent samples used for the toxicity tests shall be collected on separate days if the discharge occurs over multiple days. The effluent composite sample collection duration and the static renewal protocol associated with the abbreviated sample collection must be documented in the full report required in Item 4 of this section.
- v. MULTIPLE OUTFALLS: If the provisions of this section are applicable to multiple outfalls, the permittee shall combine the composite effluent samples in proportion to the average flow from the outfalls listed in item 1.a. above for the day the sample was collected. The permittee shall perform the toxicity test on the flow-weighted composite of the outfall samples.

4. REPORTING

- a. The permittee shall prepare a full report of the results of all tests conducted pursuant to this part in accordance with the Report Preparation Section of the most current publication of the method manual, for every valid or invalid toxicity test initiated, whether carried to completion or not. The permittee shall retain each full report and submit them upon the specific request of the Agency. For any test which fails, is considered invalid, or which is terminated early for any reason, the full report must be submitted for agency review.
- b. A valid test for each species must be reported during each reporting period specified in PART I of this permit. One set of biomonitoring data for each species is to be recorded on the DMR for each reporting period. Additional results are reported under the retest codes below.
- c. The permittee shall submit the results of each valid toxicity test on the DMR for that reporting period in accordance with PART I of this permit, as follows below. Submit retest information clearly marked as such with the following month's DMR. Only results of valid tests are to be reported on the DMR.

Reporting Requirement	Parameter STORET CODE	
	Ceriodaphnia dubia	Pimephales promelas
Enter a "1" if the No Observed Effect	TLP3B	TLP6C
Concentration (NOEC) for survival is less than the		
critical dilution, otherwise enter a "0".		
Report the NOEC value for survival	TOP3B	TOP6C
Report the LOEC value for survival	TXP3B	TXP6C
Enter a "1" if the NOEC for growth or	TGP3B	TGP6C
reproduction is less than the critical dilution,		
otherwise enter a "0".		

Report the NOEC value for growth or	TPP3B	TPP6C
reproduction		
Report the LOEC value for growth	TYP3B	TYP6C
Report the highest (critical dilution or control)	TQP3B	TQP6C
Coefficient of Variation		
(If required) Retest 1 – Enter a "1" if the NOEC	22418	22415
for survival, growth or reproduction is less than the		
critical dilution, otherwise enter "0".		
(If required) Retest 2- Enter a "1" if the NOEC for	22419	22416
survival, growth or reproduction is less than the		
critical dilution, otherwise enter "0".		
(If required) Retest 3- Enter a "1" if the NOEC for	51444	51443
survival, growth or reproduction is less than the		
critical dilution, otherwise enter "0".		