Reasonable Potential Analyzer

Facility Name City of Ruidoso Downs/Village of Ruidoso WWTP

NPDES Permit Number NM0029165 Outfall Number 001
Proposed Critical Dilution* 53 %

*Critical Dilution in draft permit, do not use % sign.

Enter data in yellow shaded cells only. Fifty percent should be entered as 50, not 50%.

est Data	Enter data in yellow shaded cells only. Fifty percent should be entered as 50, not 50%.								
	INVERTEBRATE				VERTEBRATE				
Date (mm/yyyy)	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	Lethal NOEC	Sublethal NOEC	Lethal TU	Sublethal TU	
12/09/17	81	81	1.23	1.23	81	81	1.23	1.23	
03/17/18	81	81	1.23	1.23	81	81	1.23	1.23	
06/16/18	81		1.23	1.23	81	81	1.23	1.23	
09/15/18	81		1.23	1.23	81	81	1.23	1.23	
12/06/18	81		1.23	1.23	81	81	1.23	1.23	
03/02/19	71		1.41	1.41	71	71	1.41	1.41	
08/31/19	71		1.41	1.41	71	71	1.41	1.41	
02/29/20	71		1.41	1.41	71	71	1.41	1.41	
08/29/20	71		1.41	1.41					
03/04/21	71		1.41	1.41	71	71	1.41	1.41	
08/28/21	40		2.50	2.50					
10/30/21	71		1.41	1.41					
11/20/21	71		1.41	1.41					
12/18/21	71		1.41	1.41	7.1	7.1	1.41	1.41	
01/25/22	71	71	1.41	1.41	71	71	1.41	1.41	
			-						
			-						
			-						
	40	40	2.50	2.50	71	71	1.41	1.41	
ount			15	15			10	10	
Iean			1.423	1.423			1.322	1.322	
td. Dev.			0.309	0.309			0.092	0.092	
CV			0.2	0.2			0.1	0.1	
			-						
PMF			1.2	1.2			1.1	1.1	
		1.887	Reasonable	Potential A	cceptance Ci	riteria			
ertebrate Le	thal	1.590			_		WFT moni	toring, but no W	/FT 1
Cricorate Le	uiai	1.390	TTO Reason	naoie i otelli	au Caists. I	Jimit requires	11 LI IIIOIII	wing, but no w	LLI
		F	i						
/ertebrate Su	blethal	1.590	No Reason	nable Potent	ial exists. Po	ermit requires	WET moni	toring, but no W	ET 1
		-	•			_			
nriantalenata T	athal	0.021	No Page	nobla Data	ial avieta D	amait na anima -	WET	toring but no W	<i>ከ</i> ርጥ 1
nvertebrate L	emai	0.821	no Keaso	nable Potent	iai exists. Po	erinit requires	wei moni	toring, but no W	EI I
			-						

Reasonable Potential Analyzer

Determining "Reasonable Potential" for Excursions Above Ambient Criteria Using Effluent Data Only

EPA recommends finding that a permittee has "reasonable potential" to exceed a receiving water quality standard if it cannot be demonstrated with a high confidence level that the upper bound of the lognormal distribution of effluent concentrations is below the receiving water criteria at specified low-flow conditions.

- **Step 1** Determine the number of total observations ("n") for a particular set of effluent data (concentration or toxic units [TUs]), and determine the highest value from that data set.
- Step 2 Determine the coefficient of variation for the data set. For a data set where n<10, the coefficient of variation (CV) is estimated to equal 0.6, or the CV is calculated from data obtained from a discharger. For a data set where n>0, the CV is calculate as standard deviation/mean. For less than 10 items of data, the uncertainty in the CV is too large to calculate a standard deviation or mean with sufficient confidence.
- Step 3 Determine the appropriate ratio from the table below.
- **Step 4** Multiply the highest value from a data set by the value from the table below. Use this value with the appropriate dilution to project a maximum receiving water concentration (RWC).
- Step 5 Compare the projected maximum RWC to the applicable standard (criteria maximum concentration, criteria continuous concentration [CCC], or reference ambient concentration). EPA recommends that permitting authorities find reasonable potential when the projected RWC is greater than an ambient criterion.