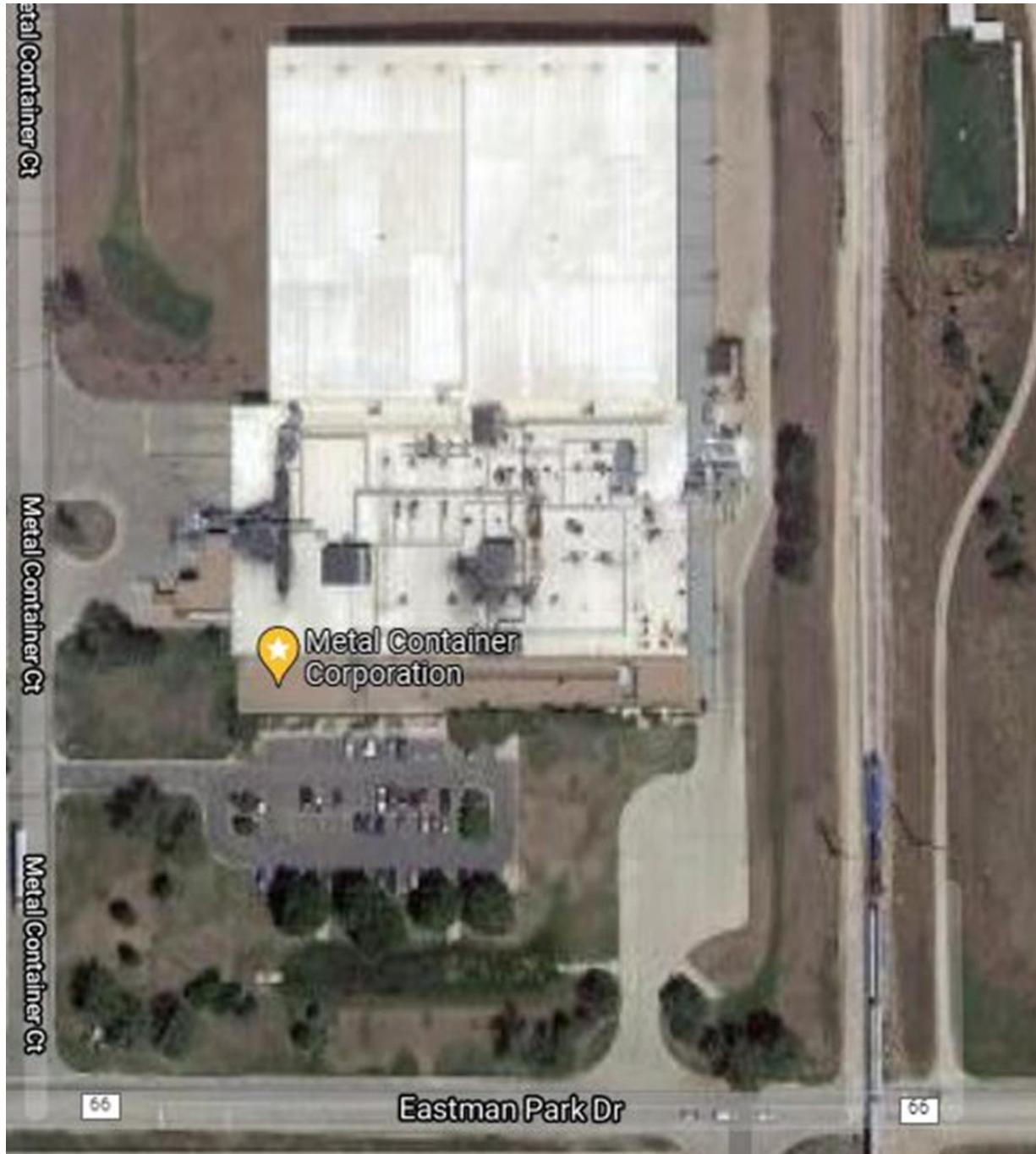


UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 8

1595 Wynkoop Street
DENVER, CO 80202
Phone 800-227-8917
<http://www.epa.gov/region08>

Enclosure 2


Metal Container Corporation-Windsor Can Plant Fact Sheet

Pretreatment ICIS Number:	CO-PF00102
Facility Name and Address:	Metal Container Corporation-Windsor Can Plant 1201 Metal Container Court Windsor, CO 80550
Authorized Representative Contact:	Maurice Cashman Plant Manager 1201 Metal Container Court Windsor, CO 80550 970-686-1599/maurice.cashman@anheuser-busch.com
Facility Contact:	Tasha Greene Environmental, Health and Safety Manager 1201 Metal Container Court Windsor, CO 80550 970-686-1516/tasha.greene@anheuser-busch.com
Applicable Pretreatment Regulations:	General Pretreatment Regulations, 40 CFR 403 Coil Coating Point Source Category, Subpart D- Canmaking Subcategory, New Source, (Canmaking New Source Date = 02/10/1983, the facility began operations in 1987)
Categorical Reference:	40 C.F.R. Part 465 (Pretreatment Standards for New Sources at 40 C.F.R. § 465.45)
Receiving POTW/Collection System:	Town of Windsor POTW CDPS Permit No. CO-0020320 301 Walnut Street Windsor, CO 80550
POTW Contact:	Dennis Markham, WWTF Manager Town of Windsor Windsor, CO 80550 970-686-2144/dmarkham@windsorgov.com

Metal Container Corporation-Windsor Can Plant Fact Sheet
CO-PF00102

Section 1 Metal Container Corporation-Windsor Can Plant – Process Description

The Metal Container Corporation-Windsor Can Plant (facility) is a manufacturer of aluminum beverage containers. The facility is located at 1201 Metal Container Court, Windsor, CO 80550. The facility operates 24 hours a day, seven days/week (112 employees working two 12-hour shifts) and schedules three no-production days/year of annual maintenance and cleaning. Figure 1 provides a Google Earth view of the facility and Figure 2 provides a site layout of the Metal Container Corporation building.

Figure 1 - Metal Container Corporation-Google Earth View

Metal Container Corporation-Windsor Can Plant Fact Sheet
CO-PF00102

Metal Container Windsor

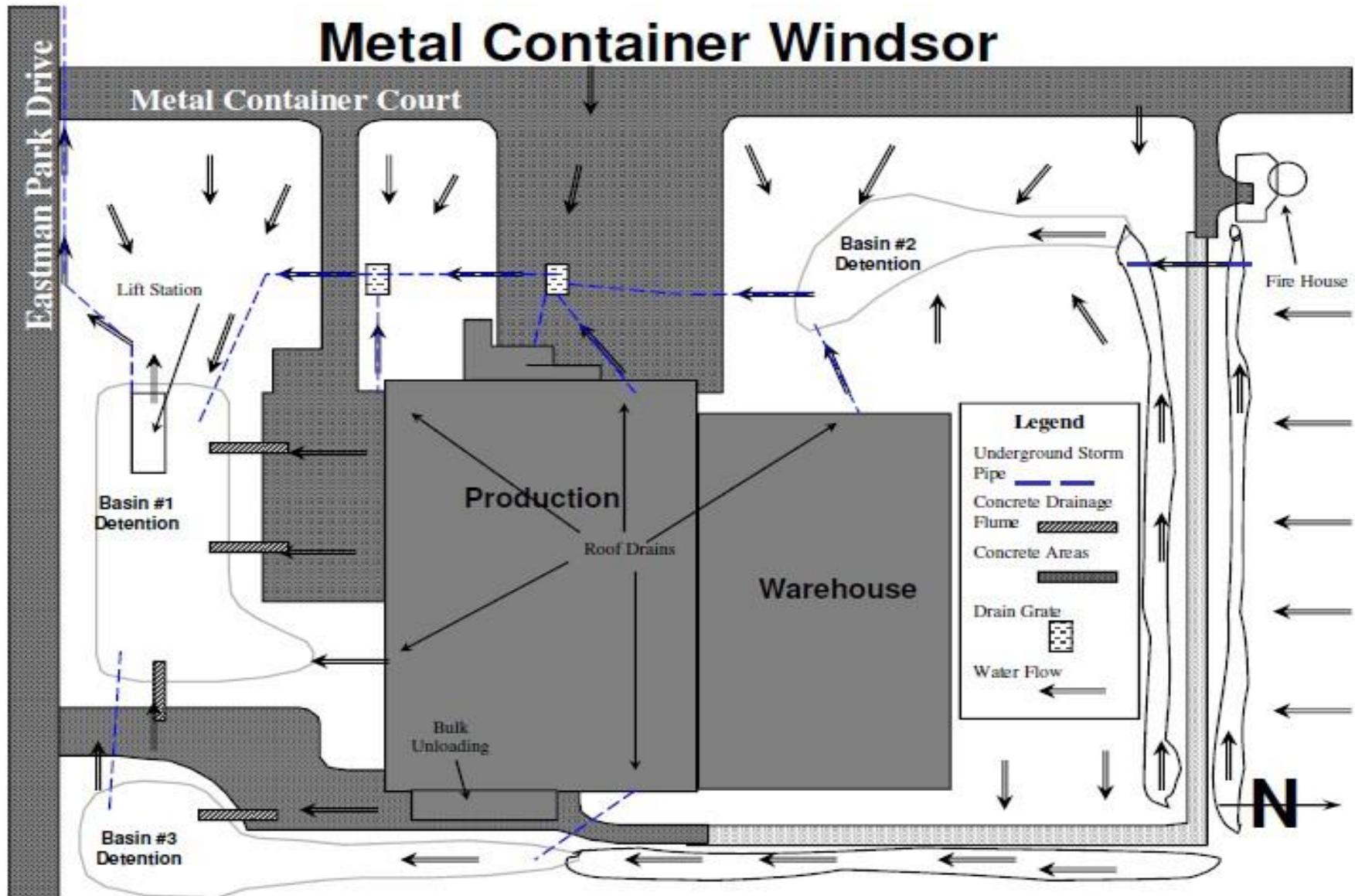


Figure 2 – Metal Container Site Layout

Metal Container Corporation-Windsor Can Plant Fact Sheet
CO-PF00102

1.1 Raw Materials and Chemicals Storage and Spill Potential

Table 1 lists the chemicals the facility uses in its canmaking process:

Table 1 – Raw Materials and Chemicals Overview

Chemical	Volume/Mass	Storage Location	Process/Equipment Use
Bonderite L-FM 340B Bodymaker Coolant	10,000-gallon tank pumped into a 60-gallon day tank (about 18 gallons used /shift)	Tank farm Day tank on process floor	Bodymaker process line
Mobilgear 600 XP 220 Bodymaker Lube	10,000-gallon tank	Tank Farm	Bodymaker process line
DTI SNL 2 Copper Lubricant	Six 330-gallon totes transferred to a 650-gallon bulk tank. The bulk tank is pumped to a 400-gallon day tank for process use.	Bulk tank - Tank Farm Day tank - process floor	Copper process line
Lubrication and Hydraulic Oil	55-gallon and 75-gallon drums contained in a dispensing rack system	Oil drum storage room	Process machinery
Inside Spray	10,000-gallon tank	Tank Farm	Inside Spray Process lines
Metal deco ink	Ink containers	Ink storage rack room	printers
Sulfuric Acid (surfactant)	10,000-gallon tank pumped to a 500-gallon day tank	Tank farm and day tank in wastewater treatment	Washer
Sulfuric acid (H ₂ SO ₄)	Six 55-gal drums transferred to a day tank weekly	Wastewater treatment area	Wastewater treatment
Hydrochloric Acid (HCl)	55-gallon drums (about 1 drum used/6 days)	Chemical Storage	Regen acid for DI column maintenance
Hydrofluoric acid (HF)	330-gallon totes pumped to a day tank (about 20-gallons used per shift)	Chemical storage Day tank on process floor	Washer
Overvarnish	10,000-gallon tank pumped to printer reservoirs	Tank farm	Printers
Mobility Enhancer-ME50	Drums pumped into 15-gallon day tank	Chemical storage Day tank on process floor	Washer
Calcium hydroxide (lime)	Lime silo (powder form)	Mix tank in waste treatment	Wastewater treatment

The bulk chemicals used at the facility are stored in either 10,000-gallon bulk tanks or 330-gallon totes and are transferred to day tanks of various sizes for daily production use or in the case of coolant or lubricants, pumped by demand into reservoirs of machinery throughout the facility.

Spills and other non-routine episodic slug discharges, such as inadequately treated/profiled wastewater, have the potential to pass through the treatment system and reach the Town of Windsor's sanitary sewer. The facility has developed a slug discharge control plan (SDCP) that addresses management of potential spills and slug discharges.

1.2 Water Supply Treatment

Based on information provided in the application, the facility uses 79,530 gallons/day of water supplied by the Town of Windsor. The average daily water use in the facility is shown in Table 2 and a qualitative water balance and schematic is provided in Figure 3.

Table 2 - Water Supply Usage in Facility

Type	Average Water Use (gpd)	Estimated (E) or Measured (M)
Non-contact cooling water	5,298	M
Boiler Feeding	20	E
Process	67,204	M
Domestic/Sanitary	3,733	E
Plant and Equipment Washdown	1,500	E
Irrigation/Lawn Watering	1,775	M

The facility treats incoming water supplied from the Town of Windsor for use in stages five and six of the can-washing process lines. The water supply is first treated through a carbon filter tank. The water is then sent through anion/cation tanks in series. The treated deionized (DI) water is collected in a supply tank and plumbed to the can-washer process lines, as needed.

The anion/cation resin tanks are backwashed every five to seven days using hydrochloric acid (HCl) and sodium hydroxide (NaOH). The backwash cycle for the cation tank is 2,000 gallons of water, followed by 50 gallons of HCl solution and rinse cycles. The backwash cycle for the anion tank is similar except that 50 gallons of NaOH is used instead of HCl. The wastewater from the backwash cycle is collected in the demin backwash tank (10,000-gallon capacity) and is sent to waste treatment, averaging 1,500 gallons twice to four times per month in calendar year 2020.

The resins are regenerated about six times per month and the regeneration cycle generates an average of 6,208 gallons of wastewater per regeneration event, according to a review of the 2020 flow records. The regeneration wastewater is also collected in the demin backwash tank and sent to waste treatment. The resin columns are replaced about every three years and are profiled and shipped offsite to Waste Management.

1.3 Canmaking Process Overview

The facility makes aluminum beverage cans (70% beer and 30% soda) with an average daily production rate of 5.6 million cans per day. The facility receives 25,000-lb. coils of aluminum that are stored on pallets. There are approximately 12 coils in the facility and about four coils in process during an average production day. The coils are laid on their side and loaded into the uncoiler machine that uncoils the aluminum and an applicator roll lubricates the straightened aluminum prior to stamping. The facility maintains a 400-gallon day tank of copper lubricant that is gravity fed to the uncoiler machine, as needed. Figure 4 shows a layout of the canmaking manufacturing process.

The facility operates two production lines in parallel, beginning with a hydraulic press that stamps out blanks from the uncoiled aluminum and a die to form cups out of the blanks. The clean scrap metal from the cupping process is collected through a vacuum and put through a cyclone to remove excess oils. The scrap metal is baled into 40-lb. bricks and shipped to the supplier for recycling. The cups are conveyed overhead to two parallel drawing and ironing process lines, each process lines consists of seven individual bodymaker machines. The bodymaker machines perform the drawing and ironing (forming straight walls) on the cups to form a can.

The bodymaker machines are supplied with coolant contained in an 8,000-gallon sump. The coolant is supplied to the bodymaker machines and returned to the Schneider oil filtration system where it passes through a series of 12 to 16 paper filters for reclamation prior to entering the 8,000-gallon sump for reuse. The paper filters from the oil filtration system are changed every five days and disposed in the trash. The oil sump associated with the Schneider oil filtration system is cleaned annually during production shut down days. The tramp oil is skimmed from the sump and is sent to waste treatment.

The formed, straight-wall cans from the bodymaker process lines are trimmed to a finished height. The scrap metal is collected and baled with other scrap metal. The trimmed cans enter a large conveyance trench that runs underneath both drawing and ironing lines. The trench conveys the cans to the washing process. The conveyance trench for the cans running underneath the bodymaker machines also act to contain any oil leaked from the machines. The trench connects to a pit for collection and treatment.

The cans in the conveyance trench are loaded into the two parallel can spray washing process lines with identical configurations and tanks. The cans are inverted as they enter the process lines to aid in draining the solutions and spray rinses in the process lines. The inverted cans are prewashed using a low-pressure spray and water contained in the trench to provide an initial rinse of oil and coolants. The trench is located below each can-washing line and collects wastewater from the cleaning process.

The can-washing process lines consist of the following stages, with each stage containing 50 psi spray nozzles to clean the interior of the cans:

1. H_2SO_4 , pH of 1.8, heated spray, cleaning/etch tank

The H_2SO_4 solution is contained in a 500-gallon day tank for each line. The day tank supplies spray nozzles for application; the H_2SO_4 solution drips back into the day tank following use. Stage one is a closed loop equipped with a weir and oil skimmer to manage contaminant levels of coolant and oils. The skimmed waste from the weir and skimmer is directed to the trench. Makeup water due to evaporation loss is added from stage three of the process line. This process tank is cleaned every 16 weeks.

2. HF (30%) in solution with H₂SO₄ surfactant cleaner, heated spray, cleaning/etching tank

The HF- H₂SO₄ solution is contained in a 1,000-gallon tank that supplies spray nozzles. Stage two is a closed loop equipped with a weir and oil skimmer to manage contaminant levels of coolant and oils. The skimmed waste from the weir and skimmer is directed to the trench. Makeup water due to evaporation loss is added from stage three. This process tank is cleaned out about once or twice per year.

3. Bromine water supply, spray, rinse tank

The brominated water supply is contained in a 500-gallon tank that supplies spray nozzles. This is the dirtiest rinse on the line because in this stage, the goal is to reduce the amount of residual contamination carryover from the cans as much as possible before they move into the clean water rinses of stages four and five. This stage is a single pass-through and flows directly to the trench after cleaning the cans. The makeup water due to evaporation loss is sourced from stage five countercurrent flow. Because the water in this stage is brominated, it is checked four times/shift.

4. H₂SO₄ in solution with the water supply, pH of 4.5, spray, rinse tank

The H₂SO₄ solution is contained in a 500-gallon tank that supplies spray nozzles. Stage two is a closed loop system and makeup tap water supply is first used as seal water for the stage one and stage two pumps before being plumbed to stage four as supply rinse water.

5. DI water, spray, rinse tank

The DI water in stage five is contained in a 500-gallon tank that supplies spray nozzles. The DI water generated by the in-house DI system is used in this stage. This stage is single pass-through. After one rinse, the DI water flows countercurrent to stage three.

6. DI water with mobility enhancer (ME50), spray, rinse and lubrication

The solution of DI water and ME50 is contained in a 300-gallon tank that supplies spray nozzles. Mobility Enhancer is added to DI water for use. The wastewater from this stage continuously overflows directly to the trench after single cleaning cycle of the cans. Volume is maintained by the drag-out water on cans from stage five.

7. The washed cans are dried in a natural gas oven.

The can-washing process lines discharges waste rinsewaters from stages three and six, as well as skimmed oils and coolants from stages one and two. The generated wastewater from each can-washing line is collected in trenches surrounding the washing lines. The wastewater in the conveyance trench drains to a 10,000-gallon below-grade sump. The wastewater in the sump is pumped to tank CE2 located in the wastewater treatment area.

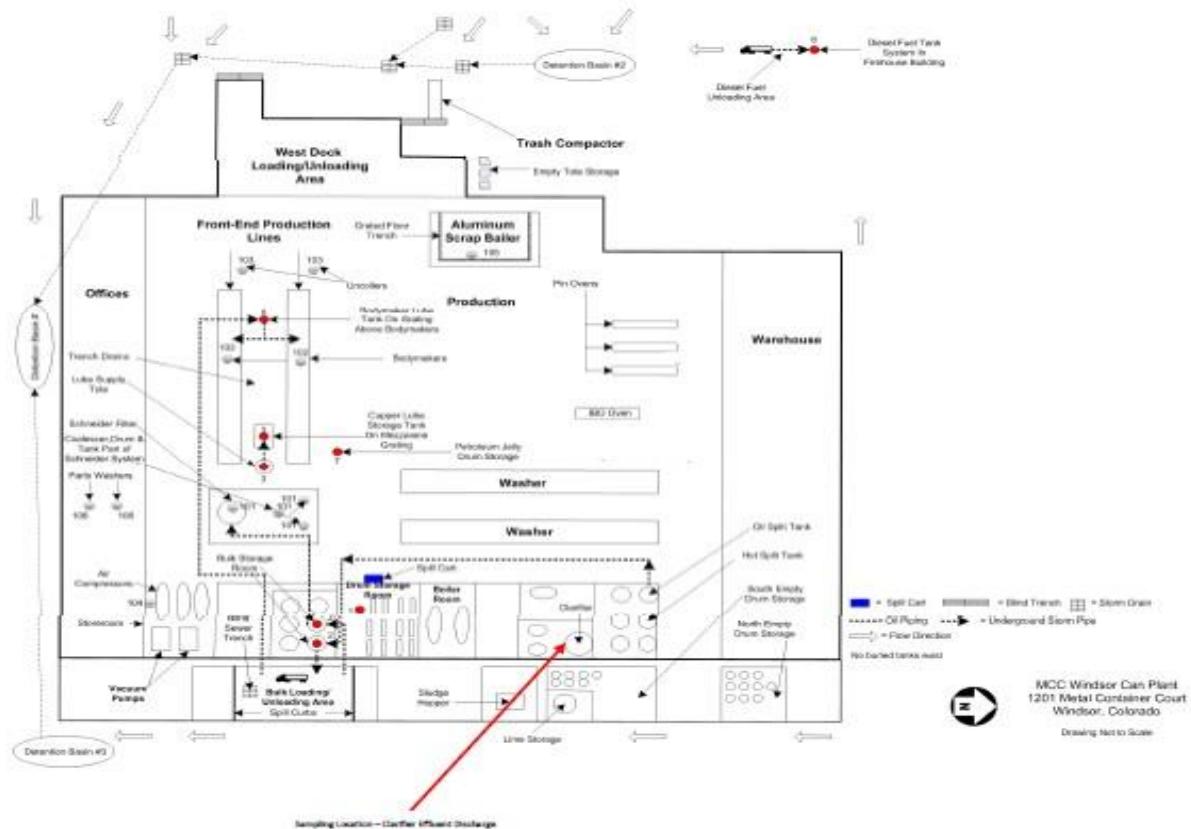
The washed cans are air conveyed to the two printer lines. The printers have a capability of applying six runs of ink colors, but a typical run consists of three to four colors. The colors are applied on the can from light to dark. The ink is supplied with pots located next to the printers and is applied to the cans through ink plates loaded onto the printer. The change-over from the ink production run is engineered logically to minimize the need to waste ink and clean ink lines. Manual cleanup is performed with isopropyl alcohol and rags. The waste ink generated is captured in satellite accumulation waste containers and collected in drums as a characteristic flammable hazardous waste. About one drum/three months is removed by Veolia.

After the printer ink application, an over-varnish is applied to the top and bottom of the cans before the coatings are cured in an oven. The cured cans are conveyed to the inside spray process to apply an epoxy spray on the inside of the cans to provide separation from the beverage product and the aluminum. The facility has thirteen inside spray machines on two lines to provide the inside spray application. For each machine, two application spray guns at different depths for the cans apply even coverage throughout the interior of the can. After the inside spray process, the cans are sent to an oven to cure the epoxy spray. The waste epoxy spray is captured as non-hazardous regulated waste.

A necker wax is applied on the top cut edge of the cans, which are then conveyed to the necker process line. The necker wax is heated in an 8-gallon tank, that needs to be resupplied every two days. The facility has two parallel necker process lines that each consists of ten stages to draw out the neck of the can and about 20,000 cans per minute are run through the necker process lines. The cans are flanged, and the base is reformed in the inside base profile reformer to add strength during the filling of the can. A date/time code is applied on the cans.

The quality control/quality assurance process consists of inspection through a light tester to identify defects in the can and a Mixed Label Detector where cans are checked for label inconsistencies. The cans that fail these tests are kicked out of the process line and collected as scrap metal. A vision system/Auto Enamel quality control step is performed to detect imperfections such as creases or dents in the cans. Sodium peroxide is also used to detect exposed metal in the cans. The finished cans are sent through a conveyor line to the warehouse for palletizing and storage.

1.4 Non-regulated Wastestreams


The custodial staff cleans and mops the floors five days a week during the first shift. The wastewater from floor cleaning is discharged to the process wastewater treatment system through the sump located near the can-washing process lines. The flow contributed by mop water is less than 50 gpd. In addition, hand sinks are installed in the process floor; the wastewater is discharged to the process wastewater treatment system with a volume of less than 50 gpd. The cooling tower for the facility contains corrosion inhibitors. The return on the cooling system throughout the facility is returned to a tank that is blown down based on a certain level of conductivity; the cooling tower blowdown is discharged to the process wastewater treatment system. Based on a review of the flow records, the blowdown from the cooling tower occurs at a rate of about 1,092 gpd from 2019 to 2020 (Figure 5). In 2020, the facility discharged DI backwash wastewater about two to four times per month with an average volume of 1,500 gallons per event and DI regeneration wastewater about six times per month with an average volume of 6,208 gallons per event from the water supply treatment.

Summary of non-regulated wastestreams from the facility:

• Mop Water	<50 gpd
• Process Floor Hand Sinks	<50 gpd
• Cooling Tower Blowdown	1,092 gpd
• Water Supply Treatment (DI backwash)	2 to 4 times/month, 1,500 gallons per event
• Water Supply Treatment (DI regeneration)	6 times/month, 6,208 gallons per event

Figure 3 - Metal Container-Qualitative Water Balance and Schematic

Figure 4 - Metal Container Corporation - Canmaking Manufacturing Process Layout

1.5 Waste Treatment

The facility's wastewater treatment system consists of six collection tanks, a five-stage reactor batch treatment system, and a clarifier. The facility has three processes wastewater collection tanks (CE1, CE2, and CE3), two oil collection tanks (Oil Split A and Split B), Used Oil Tank, and a Waste Solids tank. The schematic of the facility's wastewater treatment is shown in Figure 5 and the type of media pathways within the facility's wastewater treatment system is shown in Figure 6.

The capacities of the wastewater treatment tanks are the following:

• Split A	Wastewater Treatment – 1st floor	10,000 gallons
• Split B	Wastewater Treatment – 1st floor	10,000 gallons
• Used Oil Tank	Bulk Tank Area	10,000 gallons
• Waste Solids Tank	Wastewater Treatment – 1st floor	13,000 gallons
• CE1	Wastewater Treatment – 1st floor	13,000 gallons
• CE2	Wastewater Treatment – 1st floor	13,000 gallons
• CE3	Wastewater Treatment – 1st floor	13,000 gallons
• Reactor Stage 1	Wastewater Treatment – 2nd floor	2,500 gallons
• Reactor Stage 2	Wastewater Treatment – 2nd floor	2,500 gallons
• Reactor Stage 3	Wastewater Treatment – 2nd floor	2,500 gallons
• Reactor Stage 4	Wastewater Treatment – 2nd floor	2,500 gallons

The CE tanks act as wastewater collection and equalization. Tank CE2 is the primary wastewater collection tank with CE1 used for overflow. CE3 tank is rarely used but can act as extra storage. The wastewater in the CE tanks are sent to the four-baffled, four-stage reactor batch treatment tank. The stages of the reactor batch tank are as follows:

1. Acid break stage (H_2SO_4 , pH of 1.8) – acid added to crack/break the oil, contents are mixed
2. Oil skimming stage with a rope mop – skimmed oil is collected in a pan and sent to the Oil Split A tank – waste oil treatment/management described in section 4.1
3. Retention stage.
4. Lime addition stage (pH of 8.8 to 9.0) – solids precipitation, bulk lime is stored in a lime storage tank.
5. Retention stage – mixing and contact time, additional lime addition if needed.

The wastewater from the final reactor batch tank is sent to the clarifier. Polymer stored in a 600-gallon day tank is metered into the clarifier to aid in solids formation/precipitation. The solids accumulate on the bottom and are collected in a sump that is pumped to a 13,000-gallon waste solids tank. The scum that accumulates on the top of the clarifier is raked, collected in a sump, and sent to the first stage of the reactor batch tank. A continuous pH monitoring meter is installed in the weir overflow to the effluent trough leading to the discharge pipe from the clarifier to the POTW. The discharge pipe from the clarifier is identified as Outfall 001. The facility has installed an audible alarm that is triggered at a high pH set point of 9.4 and a low pH setpoint of 6.5. The wastewater treatment operator will manually shut off flow and investigate the cause of the high or low pH. The facility continuously measures flow at the clarifier outfall. Based on a review of discharge monitoring reports from 2019 to 2020, the facility averages 37,723 gallons per day from Outfall 001, as shown in Figure 5.

The solids in the Waste Solids tank are pumped to the 44-plate filter press. The filtrate from the filter press is sent back to the clarifier. The solids are pressed, collected, and hauled off site by Waste

Management as non-hazardous landfill cover. According to a review of records from a March 5, 2021 Pretreatment inspection, the facility generates about a 20-cubic yard dumpster of sludge per week.

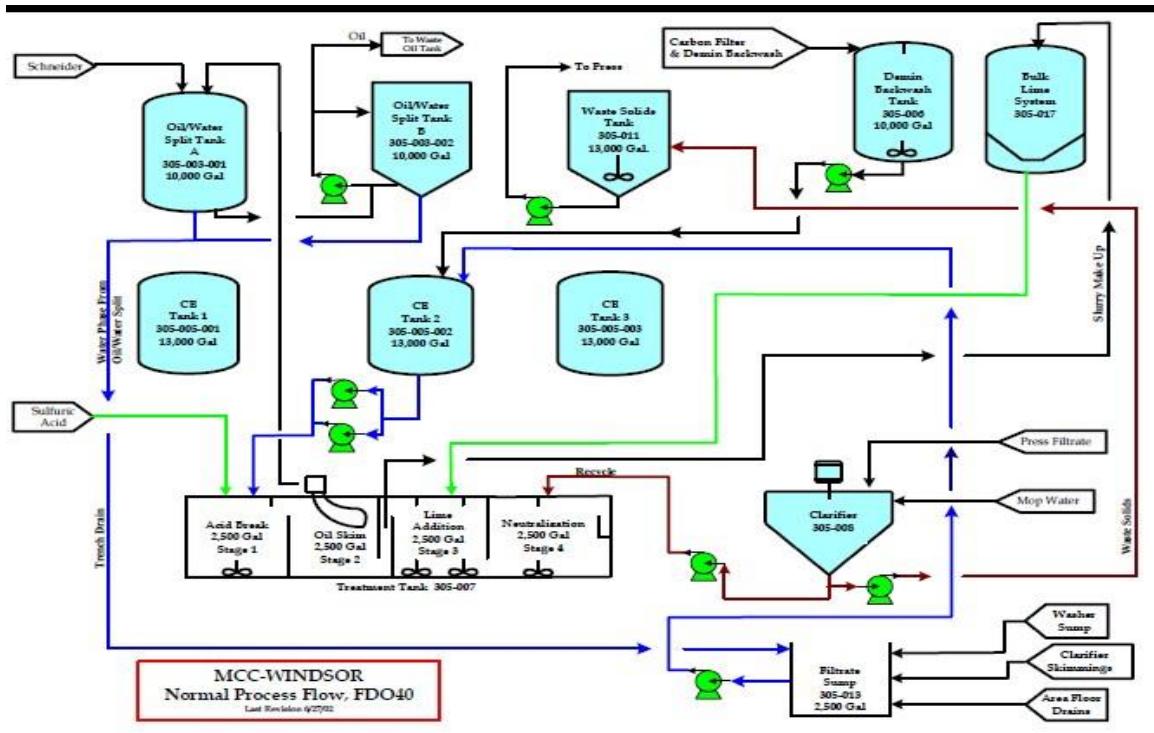
1.6 Waste Oil Treatment/Management

The skimmed oil from the reactor batch tank two and tramp or skimmed oil from the Schneider oil filter system are collected in Oil Split A tank. H_2SO_4 is added to the contents of the tank to a pH of 1.8 with an air sparge to crack the oil. The contents of the Oil Split A tank are allowed to quiesce for three to four hours to allow for oil separation. The tank is dewatered by using a sight glass to determine the oil/water fraction. The water fraction is pumped to the CE2 tank and the oily fraction is sent to the Oil Split B tank.

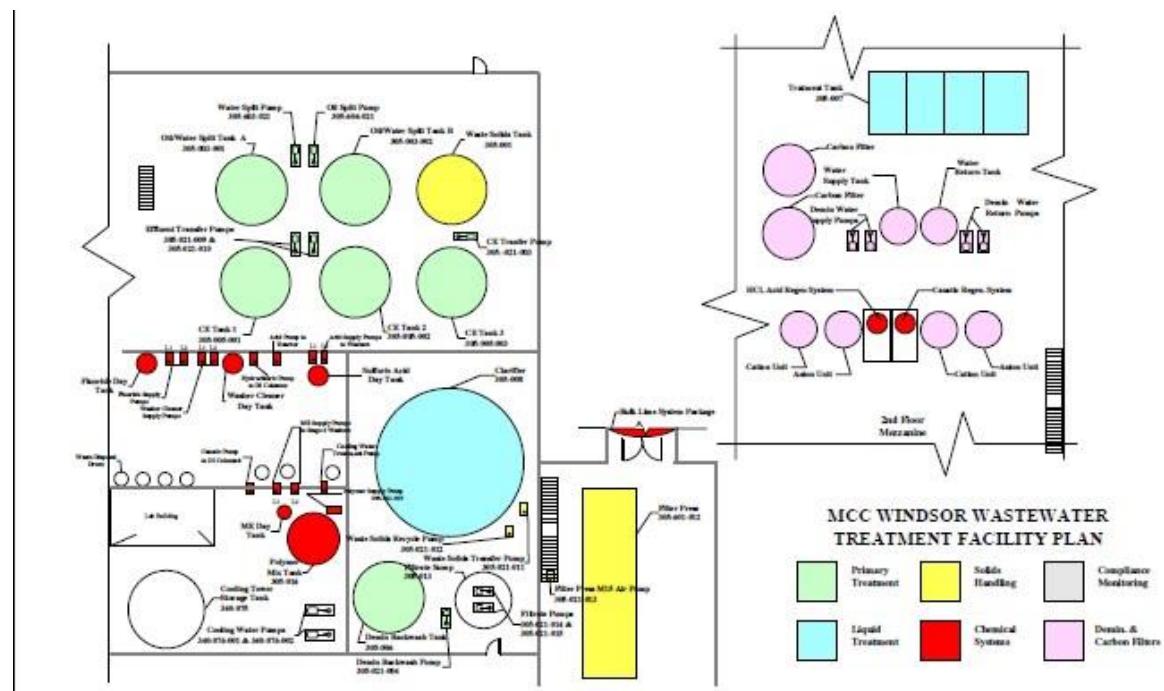
The Oil Split B tank is heated to 140°F and provides further separation of the oil/water fraction. Oil Split B tank is dewatered using a similar process for Oil Split A; the water fraction is pumped to the CE2 tank and the oil fraction is sent to the waste oil tank. A final dewatering occurs in the waste oil tank; however, the water is sent to Oil Split A tank for reprocessing through the oil separation treatment. The contents of the waste oil are hauled offsite by Waste Management. The facility's management of the waste oil in its waste treatment system is shown in Figure 7.

1.6.1 Metal Container Flow and Production Data

The discharge monitoring reports for Metal Container were evaluated to determine representative flow and production data, as shown in Figure 5.


Month-Year	Regulated Flow Data (gallons)		Production Data (# of cans)		Unregulated Wastestream Flow (gallons) - Daily
	Daily Avg	Monthly Total	Daily Avg	Monthly Total	
Jan-19	37,472	1,214,892	5885677.419	182,456,000	388
Feb-19	39,835	1,115,381	5142483.871	159,417,000	646
Mar-19	38,495	1,193,351	5824032.258	180,545,000	498
Apr-19	37,843	1,135,475	5699000	170,970,000	673
May-19	37,981	1,179,129	5558258.065	172,306,000	789
Jun-19	34,846	1,045,386	5578166.667	167,345,000	1,753
Jul-19	25,151	779,666	5631903.226	174,589,000	2,323
Aug-19	31,303	970,407	5673419.355	175,876,000	1,939
Sep-19	33,415	1,002,453	5639133.333	169,174,000	2,041
Oct-19	33,213	1,029,600	5558322.581	172,308,000	835
Nov-19	34,242	1,027,263	5716900	171,507,000	492
Dec-19	37,360	1,158,145	5374612.903	166,613,000	439
Jan-20	37,252	1,191,983	5642290.323	174,911,000	1,096
Feb-20	38,802	1,125,252	5112709.677	158,494,000	666
Mar-20	40,276	1,248,552	5430838.71	168,356,000	1,941
Apr-20	39,368	1,181,032	5693666.667	170,810,000	1,683
May-20	40,559	1,268,365	5360548.387	166,177,000	723
Jun-20	47,497	1,424,895	5684366.667	170,531,000	523
Jul-20	45,081	1,397,522	5004903.226	155,152,000	538
Aug-20	40,422	1,253,095	5520935.484	171,149,000	772
Sep-20	36,690	1,100,706	5610033.333	168,301,000	1,844
Oct-20	35,739	1,107,921	5369838.71	166,465,000	1,478
Nov-20	39,142	1,174,264	5,210,567	156,317,000	1,529
Dec-20	43,367	1,352,744	5,242,194	162,508,000	602

Note: Unregulated wastestreams average is from daily cooling tower blowdown. LVI Backwash and regeneration discharged in batches (LVI Backwash-2 to 4 times/month, 1,500 gallons per event and LVI Regeneration-6 times per month, 6,200 gallons per event)


2019-2020 Avg

	Regulated Flow Data		Production Data (# of cans)		Unregulated Wastestream Flow (gallons) -
	Daily Avg	Monthly Total	Daily Avg	Monthly Total	
Average	37,723	1,153,228	5506866.744	168,844,975	1092.125
Maximum	47,497	1,424,895	5,885,677	182,456,000	2,323
Minimum	25,151	779,666	5,004,903	155,152,000	388
					26211 Total

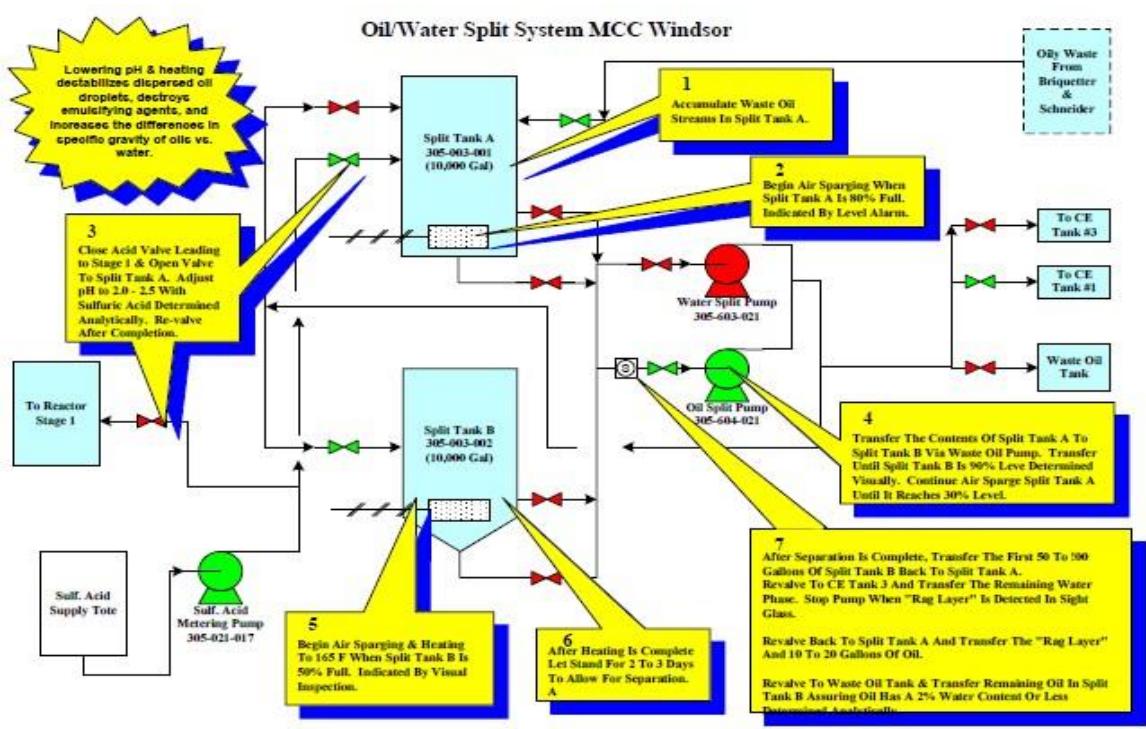

Figure 5 - Metal Container - 2019-2020 Flow and Production Data

Figure 6 - Metal Container Wastewater Treatment Schematic

Figure 7 - Metal Container Waste Treatment Media Pathways

Figure 8 - Metal Container Oil-Water Split Treatment Schematic

Section 2 Applicable Pretreatment Regulations

The Canmaking Pretreatment Standards found in Subpart D of the Coil Coating Point Source Category found at 40 C.F.R. 465 are applicable to discharges resulting from the manufacturing of seamless can bodies, which are washed. Manufacturing operations may include forming, cleaning, chemically treating, and applying an organic coating to metal cans. The processing operations for making certain types of cans such as draw and iron (D&I) are similar to operations covered by the Coil Coating Point Source Category.

The facility is subject to the Coil Coating Point Source Category, Canmaking Subpart D found in 40 C.F.R. Part 465, based on their manufacturing operations described in Section 1 of this fact sheet. The facility began operation in 1987 and the facility is determined to be a new source to the Canmaking regulations (new source date is 02/10/1983). "New source" is defined in 40 C.F.R. § 403.3(m)(1).

2.1 Canmaking Regulations

The applicable Categorical Pretreatment Standards for New Sources (PSNS) applicable to this facility are found in 40 C.F.R. Part 465.45 and are listed below in Table 3:

Table 3 - PSNS - Canmaking Subcategory D, 40 C.F.R. § 465.45

Pollutant or pollutant property	Maximum for any 1 day	Monthly Average
	g(lbs)/1,000,000 cans manufactured	
Chromium (Cr)	27.98 (0.0617)	11.45 (0.025)
Copper (Cu)	120.84 (0.267)	63.60 (0.140)
Zinc (Zn)	92.86 (0.205)	38.80 (0.086)
Fluoride (F)	3784.20 (8.345)	1679.04 (3.702)
Phosphorus (P)	1062.12 (2.342)	434.39 (0.958)
Manganese (Mn)	43.25 (0.095)	18.44 (0.041)
Total Toxic Organics (TTO)	20.35 (0.045)	9.54 (0.0210)
Oil and Grease (for alternate monitoring)	1272.00 (2.804)	763.20 (1.683)

2.2 Definitions and Monitoring Requirements Specific to the Canmaking Subpart

The following are definitions and monitoring requirements specific to the Canmaking Subpart D Category:

2.2.1 40 C.F.R. § 465.02 General definitions.

In addition to the definitions set forth in 40 CFR part 401, the following definitions apply to this part (*Note: the definitions applicable to the Coil Coating Point Source Category, Subparts A-C and not applicable to the facility are not included.*):

(h) The term “can” means a container formed from sheet metal and consisting of a body and two ends or a body and a top.

(i) The term “canmaking” means the manufacturing process or processes used to manufacture a can from a basic metal.

(j) The term “Total Toxic Organics (TTO)” shall mean the sum of the mass of each of the following toxic organic compounds which are found at a concentration greater than 0.010 mg/1.

1,1,1-Trichloroethane

1,1-Dichloroethane

1,1,2,2-Tetrachloroethane

Bis (2-chloroethyl) ether

Chloroform
1,1-Dichloroethylene
Methylene chloride (dichloromethane)
Pentachlorophenol
Bis (2-ethylhexyl) phthalate
Butyl benzyl-phthalate
Di-N-butyl phthalate
Phenanthrene
Tetrachloroethylene
Toluene

2.2.2 40 C.F.R. § 465.03 Monitoring and Reporting Requirements

The following special monitoring requirements apply to all facilities controlled by this regulation. (**Note:** *the special monitoring requirements applicable to the Coil Coating Point Source Category, Subparts A-C and not applicable to the facility are not included.*)

(b) The “monthly average” regulatory values shall be the basis for the monthly average discharge limits in direct discharge permits and for pretreatment standards. Compliance with the monthly discharge limit is required regardless of the number of samples analyzed and averaged.

(c) The analytical method required for determination of petroleum hydrocarbons (non-polar material) is given under the listing for “oil and grease” at 40 C.F.R. 136.3(a), Table IB and must be used after December 31, 2005.

(d) The owner or operator of any canmaking facility subject to the provisions of this regulation shall advise the permit issuing authority or POTW authority [*in this case, EPA Region 8*] and the EPA Office of Water Regulations and Standards, Washington, DC 20460 whenever it has been decided that the plant will manufacture cans from an aluminum alloy containing less than 1.0 percent manganese. Such notification shall be made in writing, not less than 30 days in advance of the scheduled production and shall provide the chemical analysis of the alloy and the expected period of use.

2.3 pH, standard units

The specific discharge prohibition found at 40 C.F.R. Part 403.5(b)(2) of the Pretreatment Regulations state the following: “Pollutants which will cause corrosive structural damage to the POTW, but in no case Discharges with pH lower than 5.0, unless the works is specifically designed to accommodate such Discharges.”

Section 3 Pretreatment Requirements

The Pretreatment Regulations found in 40 C.F.R. Part 403 impose Pretreatment Requirements on the facility and its process wastewater discharge to the POTW. These Pretreatment Requirements include monitoring, reporting, and notification requirements found in 40 C.F.R. Sections 403.12, 403.16, and 403.17 and definitions and monitoring requirements specific to the Coil Coating Point Source Category, Subpart D-Canmaking found in 40 C.F.R. Part 465. The applicable effluent limits are listed in the Canmaking pretreatment standards for new sources at 40 C.F.R. 465.45.

The Pretreatment Requirements apply at Outfall 001, described as follows:

Metal Container Corporation-Windsor Can Plant Fact Sheet
CO-PF00102

Outfall 001: Discharge from the wastewater treatment clarifier through a discharge pipe that conveys regulated wastewater to the POTW. The treated wastewater from the clarifier overflows over a weir into the effluent trough leading to the discharge pipe. A continuous pH monitoring meter is installed in the effluent trough directly next to the discharge pipe. Figures 9 and 10 show the configuration of Outfall 001 within the wastewater treatment clarifier and the discharge pipe leading from the clarifier.

Figure 9 - Wastewater Treatment Clarifier-Outfall 001

Figure 10 - Discharge Pipe-Outfall 001

3.1 Discharge Limitations

3.1.1 Categorical Pretreatment Standards

The Canmaking Categorical Pretreatment Standards for New Sources found in 40 C.F.R. § 465.45 establish the limitations for listed pollutants. Except as provided in 40 CFR § 403.7 any new source subject to this subpart which introduces pollutants into a publicly owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for new sources.

Table 4 – Notice of Discharge Requirements Limits

Pollutant	Outfall 001 lbs/1,000,000 cans manufactured		
	Instantaneous	Daily maximum	Monthly Average
Chromium (Cr)	---	0.0617	0.025
Copper (Cu)	---	0.267	0.140
Zinc (Zn)	---	0.205	0.086
Fluoride (F)	---	8.345	3.702
Phosphorus (P)	---	2.342	0.958
Manganese (Mn)	---	0.095	0.041
Total Toxic Organics (TTO)	---	0.045	0.0210
Oil and Grease (for alternate monitoring)	---	2.804	1.683
pH	≥5.0	---	---

3.1.2 TTO Limit

The fourteen (14) toxic organics regulated under this category are:

1,1,1-trichloroethane
Pentachlorophenol
1,1-dichloroethane
Bis (2-ethylhexyl) phthalate
1,1,2,2-tetrachloroethane
Butyl benzylphthalate
Bis (2-chloroethyl) ether
Di-N-butyl phthalate
Chloroform
Phenanthrene
1,1-dichloroethylene
Tetrachloroethylene
Methylene chloride (dichloromethane)
Toluene

Compliance with the TTO limit is demonstrated by summing the mass of the individual toxic organic

compounds present in the regulated wastestream in concentrations above 0.01 mg/l. This summation is then compared with the TTO standard to determine the Industrial User's compliance status. Both a maximum daily limit and a maximum monthly average identified in Table 4 have been promulgated and must be met by the facility to achieve compliance.

3.1.3 Alternative to TTO Monitoring

As an alternative to TTO monitoring, the facility may elect to comply with the oil and grease standards listed in Table 4 above. The facility will not be subject to the TTO standards if it elects to be subject to the oil and grease standards in Table 4. (*Guidance Manual for Implementing TTO Pretreatment Standards-September 1985, Section 3.5.2*)

Pursuant to 40 C.F.R. § 465.03(c), the analytical method required for determination of petroleum hydrocarbons (non-polar material) is given under the listing for "oil and grease" at 40 C.F.R. 136.3(a), Table IB and must be used after December 31, 2005. (Note: the use of freon as the extraction solvent was discontinued and replaced with n-hexane.) The oil and grease method listed in Table 1B at 40 C.F.R. 136.3(a) includes the use of n-hexane extraction and gravimetry to analyze hexane extracted materials (HEM) as total oil and grease and HEM-silica gel treatment and gravimetry as the polar hydrocarbon component of oil and grease. Both analytical procedures are listed in Table 1B as EPA Method 1664 Revision A and B.

3.1.4 Compliance with the Production-Based Standards

EPA evaluated permit conditions to accurately evaluate compliance with the canmaking production-based standards found in 40 C.F.R. § 465.45. Equivalent mass or concentration limits established as alternative limits to the production-based standards in 40 C.F.R. § 465.45 were evaluated. The facility's production and flow data were evaluated to determine if the variability of these data were sufficient to establish long-term production or flow averages for use in calculating equivalent mass or concentration limits.

The Pretreatment Regulations at 40 C.F.R. § 403.12(j) require Industrial Users to promptly notify the Control Authority (and the POTW if the POTW is not the Control Authority) in advance of any substantial change in the volume or character of pollutants in their Discharge. EPA is the Control Authority in this case. The EPA "Guidance Manual for the Use of Production-Based Pretreatment Standards and the Combined Wastestream Formula" – September 1985 establishes as a general rule, the average flow is considered to have changed significantly if the change is greater than 20%. The variability of production and flow changes of greater than 20% was used to determine if it was feasible to calculate long-term averages used to establish equivalent mass or concentration limits, as an alternative to the production-based standards.

Based on the evaluation of discharge monitoring report (DMR) data from 2019-2020 in Figure 5, it appears that the facility's production numbers are relatively stable and within the 20% criterion identified above. The average number of cans produced from 2019-2020 is 5,506,866 cans per day with a maximum of 5,885,678 cans per day (6.9% above the average) and a minimum of 5,004,903 cans per day (9.1% below the average).

However, the daily average flows for regulated process and unregulated wastewaters exceed the 20% criterion identified above and do not appear stable enough to establish long-term equivalent mass or concentration limits. The facility's daily average process flow from 2019 to 2020 is 37,327 gallons per day (gpd) with a maximum daily average process flow of 47,497 gpd (27.2% above the average) and a

minimum daily average process flow of 25,151 gpd (32.6% below the average). The facility's daily average unregulated flow from 2019 to 2020 is 1,092 gpd with a maximum unregulated daily flow of 2,323 gpd and a minimum unregulated daily flow of 388 gpd. As a result of this flow variability, EPA is establishing production-based standards as permit limits based on representative and current flow and production data for each sampling event in order to ensure compliance with the regulations.

3.1.4.1 Unregulated/Dilute Wastestreams

The facility introduces unregulated/dilute wastestreams to its waste treatment system. These unregulated wastestreams identified in Section 1.4 and quantified in Figure 5 generates a dilution factor that affects the regulated wastestreams when monitoring for compliance. When the Canmaking production-based standards were developed, a model flow rate per unit of production was assumed based on appropriate water consumption levels and flow reduction methods. If the facility's actual regulated process flow rate is significantly higher than the model rate, the effluent from the facility could contain concentrations of regulated pollutants below analytical detection levels.

To ensure data is representative of dilution from unregulated wastewaters on the regulated process wastewaters, the facility will be required to first adjust the concentration of their compliance sample by the percentage of dilution from unregulated wastewaters discharged for that production day.

3.1.4.2 Example Calculation to Determine Daily and Monthly Dilution Factors

3.1.4.2.1 Daily Calculation Example

The regulated process wastewater daily average flow from 2019-2020 is 37,327 gpd and the unregulated wastewaters daily average flow (not including the potential batch discharges of DI backwash and regeneration wastewaters in this example) from 2019-2020 is 1,092 gpd. If these represent actual flows from a production day, then the dilution factor can be by dividing the unregulated flow by the total facility flows (regulated and unregulated process wastewater) to determine a dilution factor of 0.028 for that production day. This example is shown in the following calculation:

Dilution Factor for the Production Day =

$$\frac{1,092 \text{ gpd (unregulated wastewater flow)}}{37,327 \text{ gpd (regulated wastewater flow)} + 1,092 \text{ gpd (unregulated wastewater flow)}}$$

Dilution factor for the production day = 0.028

If a representative sampling event for fluoride (F) results in a concentration of 11.00 mg/L, then the facility will adjust the F concentration by the dilution factor. The dilution flow is assumed to contain zero F. This is accomplished by multiplying the sample result by the dilution factor, then adding the result of this calculation to the sample result to generate an adjusted daily concentration, as shown in the following steps:

Step 1 – 11.00 mg/L (F concentration) x 0.028 (dilution factor) = 0.313 mg/L

Step 2 – 11.00 mg/L + 0.313 mg/L = 11.31 mg/L (Adjusted Daily Concentration)

3.1.4.2.2 Monthly Calculation Example

For example, the regulated process wastewater total monthly flow from 2019-2020 is 1,153,228 gallons

and the unregulated wastewaters total monthly flow (not including the potential batch discharges of DI backwash and regeneration wastewaters in this example) from 2019-2020 is 26,211 gallons. If these were actual flows from a single production month, then the dilution factor is calculated by dividing the unregulated flow by the total monthly flows (regulated and unregulated) to calculate the dilution factor of 0.022 for that production month. This is shown in the following calculation:

Dilution Factor for the Production Month =

$$\frac{26,211 \text{ gallons (unregulated wastewater flow)}}{1,153,228 \text{ gallons (regulated wastewater flow)} + 26,211 \text{ gallons (unregulated flow)}}$$

Dilution factor for the production month = 0.022

If the calculation of the monthly average for fluoride (F) results in a concentration of 5.00 mg/L, then the facility will adjust the F monthly average by the dilution factor. The dilution flow is assumed to contain zero F. This is accomplished by multiplying the sample result by the dilution factor, then adding the result of this calculation to the sample result to generate an adjusted monthly concentration, as shown in the following steps:

Step 1 – 5.00 mg/L (F concentration) x 0.022 (dilution factor) = 0.111 mg/L

Step 2 – 5.00 mg/L + 0.111 mg/L = 5.12 mg/L (Adjusted Monthly Concentration)

3.1.4.2.3 Alternative to Calculating a Dilution Factor for the Daily and Monthly Compliance Data

Alternatively, the facility may choose to discharge the unregulated wastestreams identified in Section 1.4 through a separate outfall connection to the Town's sewer system; in doing so, the unregulated wastestreams will not dilute the regulated process wastewaters at Outfall 001.

3.1.4.3 Calculations to Determine Compliance with the Daily and Monthly Production-Based Standards

Production-based standards are expressed in terms of allowable pollutant mass discharge rate per unit of production (e.g., grams or lbs/number of cans produced). For a production-based standard, the facility must measure the flow of the regulated wastestream and determine the corresponding production rate for that day of the sampling event. Compliance with the daily maximum and monthly average production-based standards are determined by using the following formula:

- mg/L = milligrams per liter
- MGD = million gallons per day
- 8.34 = conversion factor is used to express the relationship to the weight of 1 gallon of water, in pounds. (Loadings on treatment units are often expressed in terms of pounds per day.)

Production-based Standard = $\frac{\text{Adjusted Concentration (mg/L)} \times \text{Flow (MGD)} \times 8.34 \text{ (conversion factor)}}{\text{Number of cans produced, in millions}}$

The facility will be required to measure daily regulated process wastewater flow and determine the number of cans produced for every production day and use these values to determine compliance with the daily maximum and monthly average production-based standards identified in Table 4. In addition, the facility needs to adjust the pollutant concentrations by the dilution factor based on unregulated and regulated process flows for the production day as described in Section 3.1.4.2.1 and production month, as described

in Section 3.1.4.2.2.

To determine compliance for the **daily maximum production-based standard**, the facility must use the adjusted daily concentration in the following formula:

Daily Max Production-based Result =

$$\frac{\text{Adjusted Daily Concentration (mg/L)} \times \text{Flow(MGD)} \times 8.34(\text{Conversion Factor})}{\text{Production Day Number of Cans (in millions)}}$$

To determine compliance for the **monthly average production-based standard**, the facility must calculate the monthly average concentration, from all sample taken for that month, adjusted by the dilution factor for the production month, and then use the adjusted monthly concentration in the following formula:

Monthly Avg. Production-based Result =

$$\frac{\text{Adjusted Monthly Concentration (mg/L)} \times \text{Flow(MGD)} \times 8.34(\text{Conversion Factor})}{\text{Production Month Number of Cans (in millions)}}$$

3.2 Reporting, Monitoring, Notification and Record-Keeping Requirements

The reporting, monitoring, notification, and record keeping requirements are found in 40 C.F.R. Part 403 of the General Pretreatment Regulations and include the following:

- **Baseline Report and 90-Day Compliance Report Monitoring Requirements** (40 C.F.R. § 403.12(b) and (d); 40 C.F.R. § 403.12(g));
- **Periodic Compliance Report Monitoring Requirements** (40 CFR§ 403.12(e); 40 CFR§ 403.12(g))
- **Potential Problem and Slug Reporting** (40 C.F.R. § 403.12(f))
- **Effluent Violation Reporting and Resampling** (40 C.F.R. § 403.12(g)(2))
- **Notification of Changed Discharge** (40 C.F.R. § 403.12(j))
- **Hazardous Waste Discharge Notification** (40 C.F.R. § 403.12(p))
- **Upset Effect, Notification, and Reporting** (40 C.F.R. § 403.16)
- **Bypass Requirements Notification** (40 C.F.R. § 403.17)
- **Report Signatory Requirements** (40 C.F.R. § 403.12(l))
- **Retention of Records** (40 C.F.R. § 403.12(o))

3.2.1 Reporting Requirements

40 C.F.R. § 403.12(e) requires industrial users “subject to a categorical Pretreatment Standard” to monitor and report twice per year “unless required more frequently...by the Control Authority,” which is the EPA in this case. The reporting requirements for Metal Container are more frequent than the twice a year minimum listed in 40 C.F.R. § 403.12(e) to ensure compliance with the Pretreatment Standards found in the canmaking regulations (40 C.F.R. § 465.45). The facility has a daily discharge that averages about 37,000 gallons per day from Outfall 001. The EPA is requiring a quarterly monitoring frequency and corresponding reporting frequency to gather an adequate dataset and determine compliance with the

Canmaking Categorical Pretreatment Standards. The facility is currently monitoring and reporting on a quarterly frequency.

The facility will submit reports through the NetDMR electronic reporting system, as described in §3.3.1(1). Table 5 lists the deadline due dates based on quarterly reporting:

Table 5 – Metal Container Reporting Frequency

Compliance Monitoring Period	Due Date
January through March	April 30
April through June	July 31
July through September	October 31
October through December	January 31

3.2.2 Monitoring Requirements

40 C.F.R. § 403.12(g)(3) requires that periodic compliance reports “must be based upon data obtained through appropriate sampling and analyses performed during the period covered by the report, which data are representative of the conditions occurring during the reporting period.” Based on the EPA’s evaluation of the facility’s discharge characteristics, a flow-proportional composite sampling for the metals at Outfall 001 is representative of the discharge for the production day. In addition, the facility is required to continuously measure for pH and flow at Outfall 001 because of the potential for fluctuations during the discharge. At a minimum, the pH and flow measurements shall be recorded at one-minute intervals on a continuous recording device.

All analyses shall be performed in accordance with test procedures established in 40 C.F.R. Part 136. Sampling methods shall be those defined in 40 C.F.R. Part 136, 40 C.F.R. Part 403, as further described in the Notification of Discharge Requirements.

The discharges from the facility at Outfall 001 are subject to the following monitoring requirements, listed in Table 6.

3.2.3 Canmaking Monitoring and Reporting Requirements – Notification of Cans Manufactured from Aluminum Alloys Containing less than 1.0 percent Manganese – (40 C.F.R. § 465.03)

The owner or operator of any canmaking facility subject to the provisions of this regulation shall advise the EPA Region 8 at the address in Part III and the EPA Office of Water Regulations and Standards, Washington, DC 20460 whenever it has been decided that the plant will manufacture cans from an aluminum alloy containing less than 1.0 percent manganese. Such notification shall be made in writing, not less than 30 days in advance of the scheduled production and shall provide the chemical analysis of the alloy and the expected period of use. Metal Container Corporation-Windsor Can Plant submitted the notification required by 40 C.F.R. § 465.03 on June 2, 1992.

Table 6 – Metal Container Monitoring Frequency, Outfall 001

Pollutant	Sample Type	Sampling Frequency
Flow	Continuously measured	Continuously recorded ⁽¹⁾
pH	Continuously measured	Continuously recorded ⁽¹⁾
Chromium (Cr)	Flow proportional Composite ⁽²⁾	Quarterly
Copper (Cu)	Flow proportional Composite ⁽²⁾	Quarterly
Zinc (Zn)	Flow proportional Composite ⁽²⁾	Quarterly
Fluoride (F)	Flow proportional Composite ⁽²⁾	Quarterly
Phosphorus (P)	Flow proportional Composite ⁽²⁾	Quarterly
Manganese (Mn)	Flow proportional Composite ⁽²⁾	Quarterly
Total Toxic Organics (TTO) • Volatile Organics (VOA) • Semi-volatile Organics (SVOA)	VOA – grab samples taken at 6-hour intervals throughout the production day and analyzed as discrete samples. The VOA grab samples must be sampled in 40mL glass vials with no headspace. SVOA – equal aliquots taken at 6-hour intervals throughout the production day in a glass sampling container and composited in a pre-preserved amber glass container.	Quarterly
Oil and Grease (for alternate monitoring)	Grab samples taken at 2-hour intervals throughout the production day.	Quarterly

(1) At a minimum, the pH and flow measurements shall be recorded at one-minute intervals on a continuous recording device.

(2) A flow proportional composite sample representative of the discharge for the production day. The sampling may be done using an automatic sampler programmed to perform representative flow-proportional sampling or manually by taking aliquots every 2 hours during the period of discharge for the production day and compositing the aliquots using one of the following flow-proportional techniques. Discrete sampling may be flow proportioned either by varying the time interval between each aliquot or the volume of each aliquot. All composites should be flow proportional to either the stream flow at the time of collection of the influent aliquot or to the total influent flow since the previous influent aliquot.

3.3 Signatory Requirements

Per 40 C.F.R. Section 403.12(l), the Baseline Report, 90-day Compliance Report, and Periodic Compliance Reports (Parts III.A and B) shall include the following signed certification statement:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

The certification statement shall be signed as follows:

1. By a responsible corporate officer, if the Industrial User is a corporation. For the purpose of this paragraph, a responsible corporate officer means:
 - a. A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or
 - b. The manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiate and direct other comprehensive measures to assure long-term environmental compliance with environmental laws and regulations; can ensure that the necessary systems are established or actions taken to gather complete and accurate information for control mechanism requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.
2. By a general partner or proprietor if the Industrial User is a partnership, or sole proprietorship respectively.
3. By a duly authorized representative of the individual designated in (1) or (2) of this section if:
 - a. The authorization is made in writing by the individual described in paragraph (1) or (2);
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the facility from which the Industrial Discharge originates, such as the position of plant manager, operator of a well, or well field superintendent, or a position of equivalent responsibility, or having overall responsibility for environmental matters for the company; and
 - c. The written authorization is submitted to the EPA.
4. If an authorization under (3) of this section is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, or overall responsibility for environmental matters for the company, a new authorization satisfying the requirements of (3) of this section must be submitted to EPA prior to or together with any reports to be signed by an authorized representative.

3.3.1 Reporting and Notification Contacts

1. On October 22, 2015, the Environmental Protection Agency (EPA) published in the federal register the NPDES Electronic Reporting rule for all NPDES permit reporting and notification

requirements (40 C.F.R. Part 127). The deadline for the electronic reporting of Periodic Compliance Reports for CIUs/SIUs in municipalities without an approved Pretreatment (Phase 2 of the Rule) is December 21, 2020 (40 C.F.R. §127.16). A proposal to extend this deadline to December 21, 2025 was signed by the EPA on September 23, 2020. Upon the effective date of the NPDES Electronic Reporting Rule, the facility will be required to:

- a. Establish a NetDMR account to electronically submit DMRs and notifications and must sign and certify all electronic submissions in accordance with the signatory requirements of the control mechanism. NetDMR is accessed from the internet at <https://netdmr.zendesk.com/home>. Additionally, the facility can contact the EPA via our R8NetDMR@epa.gov mailbox for any individual assistance or one-on-one training and support.
- b. Effluent monitoring results will be summarized for each month and recorded on a DMR to be submitted via NetDMR to the EPA on a **quarterly** basis. If no discharge occurs during a month, it shall be stated as such on the DMR.

2. Until the effective date of the NPDES Electronic Reporting Rule, the facility may either submit Periodic Compliance Reports electronically, as described above, or submit hard copies to the address below. Other written reports and notifications to the EPA shall be submitted at the following address:

NPDES and Wetlands Enforcement Section (8ENF-W-NW)
US EPA Region 8
1595 Wynkoop Street
Denver, CO 80202
Attention: Pretreatment

3. All written reports and notifications must also be submitted to the POTW at the following address:

Dennis Markham, WWTF Manager
Town of Windsor
Windsor, CO 80550
970-686-2144/dmarkham@windsorgov.com

4. Verbal notifications required to be submitted to the EPA shall be made by calling either number below and asking to speak with NPDES Enforcement, Pretreatment.

303-312-6312 or 800-227-8917

5. Verbal notifications required to be submitted to the POTW shall be made by calling the number below.

720-466-6109

Public Notice Period and Response to Comments

Metal Container Corporation-Windsor Can Plant Fact Sheet
CO-PF00102

The proposed fact sheet and discharge requirements for the Metal Container-Windsor Can Plant developed by Al Garcia, EPA Region 8 Pretreatment Coordinator, 303.312.6382, were public noticed in the Windsor Beacon on **February 11, 2022** for a 30-day public comment period. During the public notice period, EPA received public comments from the Metal Container Corporation – Windsor Can Plant (MCC).

EPA's responses to the submitted comments are provided below:

Comments received during Public Notice:

1. In the draft permit, Footnotes 5 and 6 of Table 1 note that samples should be pulled every 2 hours throughout the 24-hour discharge for TTO volatiles and semi-volatiles. This sampling frequency is difficult to staff for and I would like to request that the sampling frequency be every 6 hours. We requested a frequency of every 6 hours because while we are a 24-7 operation, we do not allow our wastewater operators to pull regulatory samples. Therefore, Environmental, Health and Safety department personnel must pull all wastewater samples. Company policy does not allow any one person to work for a full 24-hour period because of safety and health concerns.

With these operational constraints, pulling samples for VOA/SVOA is more feasible as we can more readily adjust staff schedules so that one person can work late to pull a sample and another individual can come in early to pull the next sample, for example, a late 10 p.m. sample and an early 4 a.m. sample. Six hours between samples makes this possible. With only two hours between samples, there is no reasonable and safe way to adjust schedules of day-time Environmental, Health and Safety department staff.

EPA Response:

The intent of the sampling volatile organics (VOA) and semi-volatile organics (SVOA) at a frequency of every 2 hours was to capture the potential fluctuation of concentrations in regulated wastewaters throughout the production day. According to MCC's comment, this is not feasible due to company policy that requires EHS personnel to collect regulatory samples and the restrictions on the daily workloads.

Ensuring the potential concentration fluctuations by collecting VOA and SVOA samples that are representative of the production day is important, however, the feasibility of MCC personnel collecting these samples is a concern. The proposed sampling frequency was for VOA grab samples and SVOA composite aliquots to be taken at 2-hour intervals. The VOA samples were allowed to be lab composited prior to analyses to be economically feasible due to costs of the VOA analysis. Decreasing the sample collection frequency from 2 hours to 6 hours may not capture all potential concentration fluctuations, however, requiring the VOA samples to be analyzed as discrete samples instead of allowing lab compositing allows EPA to determine if fluctuations in VOA concentration exist throughout the production day.

The SVOA sample collection will also be decreased to every 6 hours throughout the production day and must be composited in a pre-preserved amber glass container. EPA is satisfied that the VOA fraction of TTOs can be the "indicator pollutants" for fluctuations in TTO concentrations throughout MCC's production day. However, the SVOA sampling type will be modified to clarify that collection must be accomplished through glass to minimize the loss of SVOA pollutants due to adherence to PVC or plastic tubing. The modified sample types for VOA and SVOA are as follows:

VOA – grab samples taken at 6-hour intervals throughout the production day and analyzed as discrete samples. The VOA grab samples must be sampled in 40mL glass vials with no headspace.

SVOA – equal aliquots taken at 6-hour intervals throughout the production day in a glass sampling container and composited in a pre-preserved amber glass container.

2. Also, just so you know, I was doing some digging and re-read our current NDR's fact sheet. I found the statement I copied below regarding the requirement for aluminum alloys containing less than 1.0 percent manganese as noted on page 5 of the draft permit. I am not sure if this historical submission still stands for this permit. I have attached the complete NDR.

One of the requirements in the Coil Coating Category, Can Making Subcategory, requires the company to submit notification to the EPA Office of Water Regulations and Standards, whenever the manganese content in the aluminum alloy is less than 1%. MCC submitted such a notice on June 25, 1992. It is understood that this submittal will remain in place until further notification by MCC. There will not be a need to periodically resubmit this information.

EPA Response:

The comment is in reference to Part II.B.2 - Canmaking Monitoring and Reporting Requirements – Notification of Cans Manufactured from Aluminum Alloys Containing less than 1.0 percent Manganese – (40 C.F.R. § 465.03) which requires the following:

“The owner or operator of any canmaking facility subject to the provisions of this regulation shall advise the EPA Region 8 at the address in Part III and the EPA Office of Water Regulations and Standards, Washington, DC 20460 whenever it has been decided that the plant will manufacture cans from an aluminum alloy containing less than 1.0 percent manganese. Such notification shall be made in writing, not less than 30 days in advance of the scheduled production and shall provide the chemical analysis of the alloy and the expected period of use.”

Based on Metal Container's comment, the notification required by 40 C.F.R. § 465.03 was submitted on June 2, 1992. The date of the notification will be documented in the fact sheet and included in Part II.B.2 of the Notice of Discharge Requirements.