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This Technical Support Document addresses in more detail the existing scientific literature and 
technical information in support of the final rule of the U.S. Environmental Protection Agency (EPA) and 
U.S. Department of the Army’s (“the agencies”) which revises the definition of “waters of the United 
States.”1 The Preamble, the 2015 report Connectivity of Streams and Wetlands to Downstream Waters: A 
Review and Synthesis of the Scientific Evidence, this Technical Support Document, and the rest of the 
administrative record provide the basis for the definition of “waters of the United States” established in 
the final rule. Where this Technical Support Document does not reflect the language in the preamble and 
final rule, the language in the preamble and final rule controls and should be used for purposes of 
understanding the scope, requirements, and basis of the final rule.  
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I. Science Report, More Recent Literature, and Other Scientific 
Support 

EPA’s 2015 report Connectivity of Streams and Wetlands to Downstream Waters: A Review and 
Synthesis of the Scientific Evidence (hereafter the Science Report) summarizes and assesses relevant 
scientific literature that is part of the administrative record for this final rule. In addition, the agencies 
considered other sources of scientific information and literature, particularly for topics that were not 
addressed in the Science Report. This includes peer-reviewed literature, federal and state government 
reports, and other relevant information. The agencies also conducted a literature search for scientific 
literature that had been published since the Science Report’s publication, which is described in more 
detail in section I.C. Section I.A.i of this document provides the major conclusions of the Science Report. 
Section III provides additional detail of the scientific literature and the agencies’ reasoning in support of 
the rule. The agencies’ interpretation of the Clean Water Act’s scope in this final rule is guided by the 
best available peer-reviewed science, including on the connectivity and effects that streams, wetlands, and 
open waters have on the chemical, physical, and biological integrity of traditional navigable waters, the 
territorial seas, or interstate waters. 

 

A. Science Report: Synthesis of Peer-Reviewed Scientific Literature 

The Science Report provides much of the technical support for this final rule. The Science Report 
is based on a review of more than 1,300 peer-reviewed publications. EPA’s Office of Research and 
Development prepared the Science Report, a peer-reviewed synthesis of published peer-reviewed 
scientific literature discussing the nature of connectivity and effects of tributaries and wetlands on 
downstream waters. The Science Report was directly considered in the development of this final rule, as 
was the peer review of the Science Report led by EPA’s Science Advisory Board (SAB), and is available 
at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=296414. The SAB’s comprehensive peer review 
of the Science Report is discussed in detail in section I.B. The Science Report also underwent an earlier 
external independent peer review, and the results of both peer reviews are available in the docket for the 
final rule. Prior to the earlier peer review, the Science Report also underwent a peer consultation. 

The Science Report reviews and synthesizes the peer-reviewed scientific literature on the 
connectivity or isolation of streams and wetlands relative to large water bodies such as rivers, lakes, 
estuaries, and oceans. The purpose of the review and synthesis is to summarize current scientific 
understanding about the connectivity and mechanisms by which streams and wetlands, singly or in 
aggregate, affect the physical, chemical, and biological integrity of downstream waters. Specific types of 
connections considered in the Science Report include transport of physical materials and chemicals such 
as water, wood, and sediment, nutrients, pesticides, and mercury; movement of organisms or their seeds 
or eggs; and hydrologic and biogeochemical interactions occurring in surface and groundwater flows, 
including hyporheic zones and alluvial aquifers. A hyporheic zone is the area next to and beneath a stream 
or river in which hyporheic flow (water from a stream or river channel that enters subsurface materials of 
the stream bed and bank and then returns to the stream or river) occurs. Science Report at A-6. An 

http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=296414
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alluvial aquifer is an aquifer with geologic materials deposited by a stream or river (alluvium) that retains 
a hydraulic connection with the depositing stream. Id. at A-1.  

The final Science Report states that connectivity is a foundational concept in hydrology and 
freshwater ecology. Connectivity is the degree to which components of a system are joined, or connected, 
by various transport mechanisms and is determined by the characteristics of both the physical landscape 
and the biota of the specific system. Connectivity for purposes of interpreting the scope of “waters of the 
United States” under the Clean Water Act serves to demonstrate the “nexus” between upstream water 
bodies and the downstream traditional navigable water, the territorial seas, or interstate water and the 
strength of those connections. The scientific literature does not use the term “significant” as it is used in 
the context of the geographic scope of the Clean Water Act, but it does provide information on the 
strength of the effects on the chemical, physical, and biological functioning of traditional navigable 
waters, the territorial seas, and interstate waters from the connections among tributaries, adjacent 
wetlands, and intrastate waters that do not meet the criteria for jurisdiction under other categories of the 
rule and those fundamental waters. The scientific literature also does not use the terms traditional 
navigable waters, the territorial seas, or interstate waters. However, evidence of strong chemical, physical, 
and biological connections to larger rivers, estuaries, and lakes applies to that subset of rivers, estuaries, 
and lakes that are traditional navigable waters, the territorial seas, or interstate waters.  

The agencies reiterate their previous conclusion that determining the presence of a significant 
nexus is not a purely scientific inquiry. This section reflects the scientific consensus on the connections 
and the strength of the effects that upstream tributaries, adjacent wetlands, and intrastate waters that do 
not meet the criteria for jurisdiction under other categories of the rule can and do have on traditional 
navigable waters, the territorial seas, or interstate waters. However, a significant nexus determination 
requires legal, technical, and policy judgment, as well as scientific considerations, for example, to assess 
the significance of any effects. 

The Science Report presents evidence of those connections from various categories of waters, 
evaluated singly or in combination, which affect downstream waters and the strength of that effect. The 
objectives of the Science Report are (1) to provide a context for considering the evidence of connections 
between downstream waters and their tributary waters, and (2) to summarize current understanding about 
these connections, the factors that influence them, and the mechanisms by which the connections affect 
the function or condition of downstream waters. The connections and mechanisms discussed in the 
Science Report include transport of physical materials and chemicals such as water, wood, sediment, 
nutrients, pesticides, and mercury; functions that adjacent wetlands perform, such as storing and cleansing 
water; movement of organisms or their seeds and eggs; and hydrologic and biogeochemical interactions 
occurring in and among surface and groundwater flows, including hyporheic zones2 and alluvial aquifers.  

The Science Report consists of six chapters. Chapter 1 outlines the purpose, scientific context, 
and approach of the report. Chapter 2 describes the components of a river system and watershed; the types 
of physical, chemical, and biological connections that link those components; the factors that influence 
connectivity at various temporal and spatial scales; and methods for quantifying connectivity. Chapter 3 

 
2 The hyporheic zone is the subsurface area immediately below the bed of intermittent and ephemeral streams that 
remains wet even when there is no surface flow. These areas are extremely important to macro-benthic organisms 
critical to the biochemical integrity of streams. 
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reviews literature on connectivity in stream networks in terms of physical, chemical, and biological 
connections and their resulting effects on downstream waters. Chapter 4 reviews literature on the 
connectivity and effects of nontidal wetlands and certain open waters on downstream waters. Chapter 5 
applies concepts and evidence from previous chapters to six case studies from published literature on 
Carolina and Delmarva bays, oxbow lakes, prairie potholes, prairie streams, southwestern streams, and 
vernal pools. Chapter 6 summarizes key findings and conclusions, identifies data gaps, and briefly 
discusses research approaches that could fill those gaps. A glossary of scientific terms used in the report 
and detailed case studies of selected systems (summarized in Chapter 5) are included in Appendix A and 
Appendix B of the Report, respectively. 

Since its publication in 2015, the scope, findings, and conclusions of the Science Report have at 
times been misconstrued as inclusive of all waters and all types of interconnections, regardless of their 
relevance to the Clean Water Act. This is not the case. As explained in the Executive Summary and 
Introduction of the Report, the scope of the Science Report was clearly restricted to specific types of 
surface waters, and considered only those connections having clearly documented scientific effects on the 
integrity of larger downstream waters. 

i. Summary of Major Conclusions of the Science Report 

Based on the review and synthesis of more than 1,300 publications from the peer-reviewed 
scientific literature, the evidence supports the Science Report’s five major conclusions. Citations have 
been omitted from the text to improve readability; please refer to the Executive Summary and individual 
chapters of the Science Report for supporting publications and additional information. 

Conclusion 1: Streams 

The scientific literature unequivocally demonstrates that streams, individually or cumulatively, 
exert a strong influence on the integrity of downstream waters. All tributary streams, including perennial, 
intermittent, and ephemeral streams, are physically, chemically, and biologically connected to 
downstream rivers via channels and associated alluvial deposits where water and other materials are 
concentrated, mixed, transformed, and transported. Streams are the dominant source of water in most 
rivers, and the majority of tributaries are perennial, intermittent, or ephemeral headwater streams. 
Headwater streams also convey water into local storage compartments such as ponds, shallow aquifers, or 
stream banks, and into regional and alluvial aquifers; these local storage compartments are important 
sources of water for maintaining baseflow in rivers. In addition to water, streams transport sediment, 
wood, organic matter, nutrients, chemical contaminants, and many of the organisms found in rivers. The 
literature provides robust evidence that streams are biologically connected to downstream waters by the 
dispersal and migration of aquatic and semiaquatic organisms, including fish, amphibians, plants, 
microorganisms, and invertebrates, that use both upstream and downstream habitats during one or more 
stages of their life cycles, or provide food resources to downstream communities. In addition to material 
transport and biological connectivity, ephemeral, intermittent, and perennial flows influence fundamental 
biogeochemical processes by connecting channels and shallow ground water with other landscape 
elements. Physical, chemical, and biological connections between streams and downstream waters 
interact via integrative processes such as nutrient spiraling, in which stream communities assimilate and 
chemically transform large quantities of nitrogen and other nutrients that otherwise would be transported 
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directly downstream, increasing nutrient loads and associated impairments due to excess nutrients in 
downstream waters. 

Conclusion 2: Riparian/Floodplain Wetlands and Open Waters 

The literature clearly shows that wetlands and open waters in riparian areas and floodplains are 
physically, chemically, and biologically integrated with rivers via functions that improve downstream 
water quality, including the temporary storage and deposition of channel-forming sediment and woody 
debris, temporary storage of local ground water that supports baseflow in rivers, and transformation and 
transport of stored organic matter. Riparian/floodplain wetlands and open waters improve water quality 
through the assimilation, transformation, or sequestration of pollutants, including excess nutrients and 
chemical contaminants such as pesticides and metals, that can degrade downstream water integrity. In 
addition to providing effective buffers to protect downstream waters from point source and nonpoint 
source pollution, these systems form integral components of river food webs, providing nursery habitat 
for breeding fish and amphibians, colonization opportunities for stream invertebrates, and maturation 
habitat for stream insects. Lateral expansion and contraction of the river in its floodplain result in an 
exchange of organic matter and organisms, including fish populations that are adapted to use floodplain 
habitats for feeding and spawning during high water, that are critical to river ecosystem function. 
Riparian/floodplain wetlands and open waters also affect the integrity of downstream waters by 
subsequently releasing (desynchronizing) floodwaters and retaining large volumes of stormwater, 
sediment, and contaminants in runoff that could otherwise negatively affect the condition or function of 
downstream waters.  

Conclusion 3: Non-Floodplain Wetlands and Open Waters 

Wetlands and open waters in non-floodplain landscape settings (hereafter called “non-floodplain 
wetlands”) provide numerous functions that benefit downstream water integrity. These functions include 
storage of floodwater; recharge of ground water that sustains river baseflow; retention and transformation 
of nutrients, metals, and pesticides; export of organisms or reproductive propagules (e.g., seeds, eggs, 
spores) to downstream waters; and habitats needed for stream species. This diverse group of wetlands 
(e.g., many prairie potholes, vernal pools, playa lakes) can be connected to downstream waters through 
surface-water, shallow subsurface-water, and groundwater flows and through biological and chemical 
connections. 

In general, connectivity of non-floodplain wetlands occurs along a gradient (Conclusion 4), and 
can be described in terms of the frequency, duration, magnitude, timing, and rate of change of water, 
material, and biotic fluxes to downstream waters. These descriptors are influenced by climate, geology, 
and terrain, which interact with factors such as the magnitudes of the various functions within wetlands 
(e.g., amount of water storage or carbon export) and their proximity to downstream waters to determine 
where wetlands occur along the connectivity gradient. At one end of this gradient, the functions of non-
floodplain wetlands clearly affect the condition of downstream waters if a visible (e.g., channelized) 
surface-water or a regular shallow subsurface-water connection to the river network is present. For non-
floodplain wetlands lacking a channelized surface or regular shallow subsurface connection (i.e., those at 
intermediate points along the gradient of connectivity), generalizations about their specific effects on 
downstream waters from the available literature are difficult because information on both function and 
connectivity is needed. Although there is ample evidence that non-floodplain wetlands provide 
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hydrologic, chemical, and biological functions that affect material fluxes (as of publication of the Science 
Report in 2015), few scientific studies explicitly addressing connections between non-floodplain wetlands 
and river networks have been published in the peer-reviewed literature. Even fewer publications 
specifically focus on the frequency, duration, magnitude, timing, or rate of change of these connections. 
In addition, although areas that are closer to rivers and streams have a higher probability of being 
connected than areas farther away when conditions governing the type and quantity of flows—including 
soil infiltration rate, wetland storage capacity, hydraulic gradient, etc.—are similar, information to 
determine if this similarity holds is generally not provided in the studies we reviewed (for the Science 
Report). Thus, current science (as of the Report’s publication in 2015) does not support evaluations of the 
degree of connectivity for specific groups or classes of wetlands (e.g., prairie potholes or vernal pools). 
Evaluations of individual wetlands or groups of wetlands, however, could be possible through case-by-
case analysis. 

Some effects of non-floodplain wetlands on downstream waters are due to their isolation, rather 
than their connectivity. Wetland “sink” functions that trap materials and prevent their export to 
downstream waters (e.g., sediment and entrained pollutant removal, water storage) result because of the 
wetland’s ability to isolate material fluxes. To establish that such functions influence downstream waters, 
we also need to know that the wetland intercepts materials that otherwise would reach the downstream 
water. The literature reviewed does provide limited examples of direct effects of wetland isolation on 
downstream waters, but not for classes of wetlands (e.g., vernal pools). Nevertheless, the literature 
reviewed supports the conclusion that sink functions of non-floodplain wetlands, which result in part from 
their relative isolation, will affect a downstream water when these wetlands are situated between the 
downstream water and known point or nonpoint sources of pollution, and thus intersect flowpaths 
between the pollutant source and downstream waters. 

 

Conclusion 4: Degrees and Determinants of Connectivity 

Watersheds are integrated at multiple spatial and temporal scales by flows of surface water and 
ground water, transport and transformation of physical and chemical materials, and movements of 
organisms. Although all parts of a watershed are connected to some degree—by the hydrologic cycle or 
dispersal of organisms, for example—the degree and downstream effects of those connections vary 
spatially and temporally, and are determined by characteristics of the physical, chemical, and biological 
environments and by human activities. 

Stream and wetland connections have particularly important consequences for downstream water 
integrity. Most of the materials—broadly defined as any physical, chemical, or biological entity—in 
rivers, for example, originate from aquatic ecosystems located upstream or elsewhere in the watershed. 
Longitudinal flows through ephemeral, intermittent, and perennial stream channels are much more 
efficient for transport of water, materials, and organisms than diffuse overland flows, and areas that 
concentrate water provide mechanisms for the storage and transformation, as well as transport, of 
materials. 

Connectivity of streams and wetlands to downstream waters occurs along a continuum that can be 
described in terms of the frequency, duration, magnitude, timing, and rate of change of water, material, 
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and biotic fluxes to downstream waters. These terms, which are referred to collectively as connectivity 
descriptors, characterize the range over which streams and wetlands vary and shift along the connectivity 
gradient in response to changes in natural and anthropogenic factors and, when considered in a watershed 
context, can be used to predict probable effects of different degrees of connectivity over time. The 
evidence unequivocally demonstrates that the stream channels and riparian/floodplain wetlands or open 
waters that together form river networks are clearly connected to downstream waters in ways that 
profoundly influence downstream water integrity. The connectivity and effects of non-floodplain 
wetlands and open waters are more variable and thus more difficult to address solely from evidence 
available in peer-reviewed studies. 

Variations in the degree of connectivity influence the range of functions provided by streams and 
wetlands, and are critical to the integrity and sustainability of downstream waters. Connections with low 
values of one or more descriptors (e.g., low-frequency, low-duration streamflows caused by flash floods) 
can have important downstream effects when considered in the context of other descriptors (e.g., large 
magnitude of water transfer). At the other end of the frequency range, high-frequency, low-magnitude 
vertical (surface-subsurface) and lateral flows contribute to aquatic biogeochemical processes, including 
nutrient and contaminant transformation and organic matter accumulation. The timing of an event can 
alter both connectivity and the magnitude of its downstream effect. For example, when soils become 
saturated by previous rainfall events, even low or moderate rainfall can cause streams or wetlands to 
overflow, transporting water and materials to downstream waters. Fish that use nonperennial or perennial 
headwater stream habitats to spawn or rear young, and invertebrates that move into seasonally inundated 
floodplain wetlands prior to emergence, have life cycles that are synchronized with the timing of flows, 
temperature thresholds, and food resource availability in those habitats. 

 

Conclusion 5: Cumulative Effects 

The incremental effects of individual streams and wetlands are cumulative across entire 
watersheds and therefore must be evaluated in context with other streams and wetlands. Downstream 
waters are the time-integrated result of all waters contributing to them. For example, the amount of water 
or biomass contributed by a specific ephemeral stream in a given year might be small, but the aggregate 
contribution of that stream over multiple years, or by all ephemeral streams draining that watershed in a 
given year or over multiple years, can have substantial consequences on the integrity of the downstream 
waters. Similarly, the downstream effect of a single event, such as pollutant discharge into a single stream 
or wetland, might be negligible but the cumulative effect of multiple discharges could degrade the 
integrity of downstream waters. 

In addition, when considering the effect of an individual stream or wetland, all contributions and 
functions of that stream or wetland should be evaluated cumulatively. For example, the same stream 
transports water, removes excess nutrients, mitigates flooding, and provides refuge for fish when 
conditions downstream are unfavorable; if any of these functions is ignored, the overall effect of that 
stream would be underestimated. 
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ii. Discussion of Major Conclusions 

The Science Report synthesized a large body of scientific literature on the connectivity and 
mechanisms by which streams, wetlands, and open waters, singly or in aggregate, affect the physical, 
chemical, and biological integrity of downstream waters. The major conclusions reflect the strength of 
evidence available at that time in the peer-reviewed scientific literature for assessing the connectivity and 
downstream effects of water bodies identified in Chapter 1 of the Science Report. 

The conclusions of the Science Report were corroborated by two independent peer reviews by 
scientists identified in the front matter of the Science Report and discussed in section I.B of this 
document. 

The term connectivity is defined in the Science Report as the degree to which components of a 
watershed are joined and interact by transport mechanisms that function across multiple spatial and 
temporal scales. Connectivity is determined by the characteristics of both the physical landscape and the 
biota of the specific system. ORD’s review found strong evidence supporting the central roles of the 
physical, chemical, and biological connectivity of streams, wetlands, and open waters—encompassing 
varying degrees of both connection and isolation—in maintaining the structure and function of 
downstream waters, including rivers, lakes, estuaries, and oceans. ORD’s review also found strong 
evidence demonstrating the various mechanisms by which material and biological linkages from streams, 
wetlands, and open waters affect downstream waters, classified here into five functional categories 
(source, sink, refuge, lag, and transformation; discussed below), and modify the timing of transport and 
the quantity and quality of resources available to downstream ecosystems and communities. Thus, the 
literature available at the time of its publication in January 2015 provided a large body of evidence for 
assessing the types of connections and functions by which streams and wetlands produce the range of 
observed effects on the integrity of downstream waters. 

ORD identified five categories of functions by which streams, wetlands, and open waters 
influence the timing, quantity, and quality of resources available to downstream waters: 

• Source: the net export of materials, such as water and food resources; 

• Sink: the net removal or storage of materials, such as sediment and contaminants; 

• Refuge: the protection of materials, especially organisms; 

• Transformation: the transformation of materials, especially nutrients and chemical contaminants, 
into different physical or chemical forms; and 

• Lag: the delayed or regulated release of materials, such as stormwater. 

These functions are not mutually exclusive; for example, the same stream or wetland can be both 
a source of organic matter and a sink for nitrogen. The presence or absence of these functions, which 
depend on the biota, hydrology, and environmental conditions in a watershed, can change over time; for 
example, the same wetland can attenuate runoff during storm events and provide groundwater recharge 
following storms. Further, some functions work in conjunction with others; a lag function can include 
transformation of materials prior to their delayed release. Finally, effects on downstream waters should 
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consider both actual function and potential function. A potential function represents the capacity of an 
ecosystem to perform that function under suitable conditions. For example, a wetland with high capacity 
for denitrification is a potential sink for nitrogen, a nutrient that becomes a contaminant when present in 
excessive concentrations. In the absence of nitrogen, this capacity represents the wetland’s potential 
function. If nitrogen enters the wetland (e.g., from fertilizer in runoff), it is removed from the water; this 
removal represents the wetland’s actual function. Both potential and actual functions play critical roles in 
protecting and restoring downstream waters as environmental conditions change. 

The evidence unequivocally demonstrates that the stream channels and riparian/floodplain 
wetlands or open waters that together form river networks are clearly connected to downstream waters in 
ways that profoundly influence downstream water integrity. The body of literature documenting 
connectivity and downstream effects was most abundant for perennial and intermittent streams, and for 
riparian/floodplain wetlands. Although less abundant, the evidence for connectivity and downstream 
effects of ephemeral streams was strong and compelling, particularly in context with the large body of 
evidence supporting the physical connectivity and cumulative effects of channelized flows that form and 
maintain stream networks. 

As stated in Conclusion 3, the connectivity and effects of wetlands and open waters that lack 
visible surface connections to other water bodies were more difficult to address solely from evidence 
available in the peer-reviewed literature at the time of publication of the Science Report. The limited 
evidence available at the time showed that these systems have important hydrologic, water-quality, and 
habitat functions that can affect downstream waters where connections to them exist; the literature also 
provided limited examples of direct effects of non-floodplain wetland isolation on downstream water 
integrity. The available peer-reviewed literature, however, did not identify which types or classes of non-
floodplain wetlands had or lacked the types of connections needed to convey the effects on downstream 
waters of functions, materials, or biota provided by those wetlands. 

iii. Key Findings for the Science Report’s Major Conclusions 

This section summarizes key findings for each of the five major conclusions, above and in 
Chapter 6 of the Science Report. Citations have been omitted from the text to improve readability; please 
refer to individual chapters of the Science Report for supporting publications and additional information.  
 
Conclusion 1, Streams: Key Findings 

• Streams are hydrologically connected to downstream waters via channels that convey surface and 
subsurface water either year-round (i.e., perennial flow), weekly to seasonally (i.e., intermittent 
flow), or only in direct response to precipitation (i.e., ephemeral flow). Streams are the dominant 
source of water in most rivers, and the majority of tributaries are perennial, intermittent, or 
ephemeral headwater streams. For example, headwater streams, which are the smallest channels 
where streamflows begin, are the cumulative source of approximately 60% of the total mean 
annual flow to all northeastern U.S. streams and rivers. 

• In addition to downstream transport, headwaters convey water into local storage compartments 
such as ponds, shallow aquifers, or stream banks, and into regional and alluvial aquifers. These 
local storage compartments are important sources of water for maintaining baseflow in rivers. 
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Streamflow typically depends on the delayed (i.e., lagged) release of shallow ground water from 
local storage, especially during dry periods and in areas with shallow groundwater tables and 
pervious subsurfaces. For example, in the southwestern United States, short-term shallow 
groundwater storage in alluvial floodplain aquifers, with gradual release into stream channels, is a 
major source of annual flow in rivers. 

• Infrequent, high-magnitude events are especially important for transmitting materials from 
headwater streams in most river networks. For example, headwater streams, including ephemeral 
and intermittent streams, shape river channels by accumulating and gradually or episodically 
releasing stored materials such as sediment and large woody debris. These materials help 
structure stream and river channels by slowing the flow of water through channels and providing 
substrate and habitat for aquatic organisms.  

• There is strong evidence that headwater streams function as nitrogen sources (via export) and 
sinks (via uptake and transformation) for river networks. For example, one study estimated that 
rapid nutrient cycling in small streams with no agricultural or urban impacts removed 20−40% of 
the nitrogen that otherwise would be delivered to downstream waters. Nutrients are necessary to 
support aquatic life, but excess nutrients lead to eutrophication and hypoxia, in which over-
enrichment causes dissolved oxygen concentrations to fall below the level necessary to sustain 
most aquatic animal life in the stream and streambed. Thus, the influence of streams on nutrient 
loads can have significant repercussions for hypoxia in downstream waters.  

• Headwaters provide habitat that is critical for completion of one or more life-cycle stages of 
many aquatic and semiaquatic species capable of moving throughout river networks. Evidence is 
strong that headwaters provide habitat for complex life-cycle completion; refuge from predators, 
competitors, parasites, or adverse physical conditions in rivers (e.g., temperature or flow 
extremes, low dissolved oxygen, high sediment); and reservoirs of genetic- and species-level 
diversity. Use of headwater streams as habitat is especially critical for the many species that 
migrate between small streams and marine environments during their life cycles (e.g., Pacific and 
Atlantic salmon, American eels, certain lamprey species). The presence of these species within 
river networks provides robust evidence of biological connections between headwaters and larger 
rivers; because these organisms also transport nutrients and other materials as they migrate, their 
presence also provides evidence of biologically mediated chemical connections. In prairie 
streams, many fishes swim upstream into tributaries to release eggs, which develop as they are 
transported downstream.  

• Human alterations affect the frequency, duration, magnitude, timing, and rate of change of 
connections between headwater streams, including ephemeral and intermittent streams, and 
downstream waters. Human activities and built structures (e.g., channelization, dams, 
groundwater withdrawals) can either enhance or fragment longitudinal connections between 
headwater streams and downstream waters, while also constraining lateral and vertical exchanges 
and tightly controlling the temporal dimension of connectivity. In many cases, research on human 
alterations has enhanced our understanding of the headwater stream-downstream water 
connections and their consequences. Recognition of these connections and effects has encouraged 
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the development of more sustainable practices and infrastructure to reestablish and manage 
connections, and ultimately to protect and restore the integrity of downstream waters. 

Conclusion 2, Riparian/Floodplain Wetlands and Open Waters: Key Findings 

• Riparian areas and floodplains connect upland and aquatic environments through both surface and 
subsurface hydrologic flowpaths. These areas are therefore uniquely situated in watersheds to 
receive and process waters that pass over densely vegetated areas and through subsurface zones 
before the waters reach streams and rivers. When pollutants reach a riparian or floodplain 
wetland, they can be sequestered in sediments, assimilated into wetland plants and animals, 
transformed into less harmful or mobile forms or compounds, or lost to the atmosphere. A 
wetland’s potential for biogeochemical transformations (e.g., denitrification) that can improve 
downstream water quality is influenced by local factors, including anoxic conditions and slow 
organic matter decomposition, shallow water tables, wetland plant communities, permeable soils, 
and complex topography. 

• Riparian/floodplain wetlands can reduce flood peaks by storing and desynchronizing floodwaters. 
They can also maintain river baseflows by recharging alluvial aquifers. Many studies have 
documented the ability of riparian/floodplain wetlands to reduce flood pulses by storing excess 
water from streams and rivers. One review of wetland studies reported that riparian wetlands 
reduced or delayed floods in 23 of 28 studies. For example, peak discharges between upstream 
and downstream gaging stations on the Cache River in Arkansas were reduced 10−20% primarily 
due to floodplain water storage.  

• Riparian areas and floodplains store large amounts of sediment and organic matter from upstream 
and from upland areas. For example, riparian areas have been shown to remove 80−90% of 
sediments leaving agricultural fields in North Carolina. 

• Ecosystem function within a river system is driven in part by biological connectivity that links 
diverse biological communities with the river system. Movements of organisms that connect 
aquatic habitats and their populations, even across different watersheds, are important for the 
survival of individuals, populations, and species, and for the functioning of the river ecosystem. 
For example, lateral expansion and contraction of the river in its floodplain result in an exchange 
of matter and organisms, including fish populations that are adapted to use floodplain habitats for 
feeding and spawning during high water. Wetland and aquatic plants in floodplains can become 
important seed sources for the river network, especially if catastrophic flooding scours vegetation 
and seed banks in other parts of the channel. Many invertebrates exploit temporary hydrologic 
connections between rivers and floodplain wetland habitats, moving into these wetlands to feed, 
reproduce, or avoid harsh environmental conditions and then returning to the river network. 
Amphibians and aquatic reptiles commonly use both streams and riparian/floodplain wetlands to 
hunt, forage, overwinter, rest, or hide from predators. Birds can spatially integrate the watershed 
landscape through biological connectivity. 

Conclusion 3, Non-floodplain Wetlands and Open Waters: Key Findings  
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• Water storage by wetlands well outside of riparian or floodplain areas can affect streamflow. 
Hydrologic models of prairie potholes in the Starkweather Coulee subbasin (North Dakota) that 
drains to Devils Lake indicate that increasing the volume of prairie pothole storage across the 
subbasin by approximately 60% caused simulated total annual streamflow to decrease 50% 
during a series of dry years and 20% during wet years. Similar simulation studies of watersheds 
that feed the Red River of the North in North Dakota and Minnesota demonstrated qualitatively 
comparable results, suggesting that the ability of prairie potholes to modulate streamflow could 
be widespread across eastern portions of the prairie pothole region. This work also indicates that 
reducing water storage capacity of wetlands by connecting formerly isolated prairie potholes 
through ditching or drainage to the Devils Lake and Red River basins could increase stormflow 
and contribute to downstream flooding. In many agricultural areas already crisscrossed by 
extensive drainage systems, total streamflow and baseflow are increased by directly connecting 
prairie potholes to stream networks. The impacts of changing streamflow are numerous, including 
altered flow regime, stream geomorphology, habitat, and ecology. The presence or absence of an 
effect of prairie pothole water storage on streamflow depends on many factors, including patterns 
of precipitation, topography, and degree of human alteration. For example, in parts of the prairie 
pothole region with low precipitation, low stream density, and little human alteration, hydrologic 
connectivity between prairie potholes and streams or rivers is likely to be low.  

• Non-floodplain wetlands act as sinks and transformers for various pollutants, especially nutrients, 
which at excess levels can adversely impact human and ecosystem health and pose a serious 
pollution problem in the United States. In one study, sewage wastewaters were applied to forested 
wetlands in Florida for 4.5 years; more than 95% of the phosphorus, nitrate, ammonium, and total 
nitrogen were removed by the wetlands during the study period, and 66−86% of the nitrate 
removed was attributed to the process of denitrification (chemical and biological processes that 
remove nitrogen from water). In another study, sizeable phosphorus retention occurred in marshes 
that comprised only 7% of the lower Lake Okeechobee basin area in Florida. A non-floodplain 
bog in Massachusetts was reported to sequester nearly 80% of nitrogen inputs from various 
sources, including atmospheric deposition, and prairie pothole wetlands in the upper Midwest 
were found to remove >80% of the nitrate load via denitrification. A large prairie marsh was 
found to remove 86% of nitrate, 78% of ammonium, and 20% of phosphate through assimilation 
and sedimentation, sorption, and other mechanisms. Together, these and other studies indicate 
that onsite nutrient removal by non-floodplain wetlands is substantial and geographically 
widespread. The effects of this removal on rivers were generally not reported in the literature as 
of the 2015 publication date of the Scientific Report. 

• Non-floodplain wetlands provide unique and important habitats for many species, both common 
and rare. Some of these species require multiple types of waters to complete their full life cycles, 
including downstream waters. Abundant or highly mobile species play important roles in 
transferring energy and materials between non-floodplain wetlands and downstream waters. 

• Biological connections are likely to occur between most non-floodplain wetlands and 
downstream waters through either direct or stepping stone movement of amphibians, 
invertebrates, reptiles, mammals, and seeds of aquatic plants, including colonization by invasive 
species. Many species in those groups that use both stream and wetland habitats are capable of 
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dispersal distances equal to or greater than distances between many wetlands and river networks. 
Migratory birds can be an important vector of long-distance dispersal of plants and invertebrates 
between non-floodplain wetlands and the river network, although their influence has not been 
quantified. Whether those connections are of sufficient magnitude to impact downstream waters 
will either require estimation of the magnitude of material fluxes or evidence that these 
movements of organisms are required for the survival and persistence of biota that contribute to 
the integrity of downstream waters. 

• Spatial proximity is one important determinant of the magnitude, frequency and duration of 
connections between wetlands and streams that will ultimately influence the fluxes of water, 
materials and biota between wetlands and downstream waters. However, proximity alone is not 
sufficient to determine connectivity, due to local variation in factors such as slope and 
permeability. 

• The cumulative influence of many individual wetlands within watersheds can strongly affect the 
spatial scale, magnitude, frequency, and duration of hydrologic, biological and chemical fluxes or 
transfers of water and materials to downstream waters. Because of their aggregated influence, any 
evaluation of changes to individual wetlands should be considered in the context of past and 
predicted changes (e.g., from climate change) to other wetlands within the same watershed. 

• Non-floodplain wetlands can be hydrologically connected directly to river networks through 
natural or constructed channels, nonchannelized surface flows, or subsurface flows, the latter of 
which can travel long distances to affect downstream waters. A wetland surrounded by uplands is 
defined as “geographically isolated.” Our review found that, in some cases, wetland types such as 
vernal pools and coastal depressional wetlands are collectively—and incorrectly—referred to as 
geographically isolated. Technically, the term “geographically isolated” should be applied only to 
the particular wetlands within a type or class that are completely surrounded by uplands. 
Furthermore, “geographic isolation” should not be confused with functional isolation, because 
geographically isolated wetlands can still have hydrologic, chemical, and biological connections 
to downstream waters.  

• Non-floodplain wetlands occur along a gradient of hydrologic connectivity-isolation with respect 
to river networks, lakes, or marine/estuarine water bodies. This gradient includes, for example, 
wetlands that serve as origins for stream channels that have permanent surface-water connections 
to the river network; wetlands with outlets to stream channels that discharge to deep groundwater 
aquifers; geographically isolated wetlands that have local groundwater or occasional surface-
water connections to downstream waters; and geographically isolated wetlands that have minimal 
hydrologic connection to other water bodies (but which could include surface and subsurface 
connections to other wetlands). This gradient can exist among wetlands of the same type or in the 
same geographic region.  

• Caution should be used in interpreting connectivity for wetlands that have been designated as 
“geographically isolated” because (1) the term can be applied broadly to a heterogeneous group 
of wetlands, which can include wetlands that are not actually geographically isolated; (2) 
wetlands with permanent channels could be miscategorized as geographically isolated if the 



Page 24 of 564 

designation is based on maps or imagery with inadequate spatial resolution, obscured views, etc.; 
and (3) wetland complexes could have connections to downstream waters through stream 
channels even if individual wetlands within the complex are geographically isolated. For 
example, a recent study examined hydrologic connectivity in a complex of wetlands on the Texas 
Coastal Plain. The wetlands in this complex have been considered to be a type of geographically 
isolated wetland; however, collectively they are connected both geographically and 
hydrologically to downstream waters in the area: During an almost 4-year study period, nearly 
20% of the precipitation that fell on the wetland complex flowed out through an intermittent 
stream into downstream waters. Thus, wetland complexes could have connections to downstream 
waters through stream channels even when the individual wetland components are geographically 
isolated. 

Conclusion 4, Degrees and Determinants of Connectivity: Key Findings 

• The surface-water and groundwater flowpaths (hereafter, hydrologic flowpaths), along which 
water and materials are transported and transformed, determine variations in the degree of 
physical and chemical connectivity. These flowpaths are controlled primarily by variations in 
climate, geology, and terrain within and among watersheds and over time. Climate, geology, and 
terrain are reflected locally in factors such as rainfall and snowfall intensity, soil infiltration rates, 
and the direction of groundwater flows. These local factors interact with the landscape positions 
of streams and wetlands relative to downstream waters, and with functions (such as the removal 
or transformation of pollutants) performed by those streams and wetlands to determine 
connectivity gradients.  

• Gradients of biological connectivity (i.e., the active or passive movements of organisms through 
water or air and over land that connect populations) are determined primarily by species 
assemblages, and by features of the landscape (e.g., climate, geology, terrain) that facilitate or 
impede the movement of organisms. The temporal and spatial scales at which biological 
pathways connect aquatic habitats depend on characteristics of both the landscape and species, 
and overland transport or movement can occur across watershed boundaries. Dispersal is essential 
for population persistence, maintenance of genetic diversity, and evolution of aquatic species. 
Consequently, dispersal strategies reflect aquatic species’ responses and adaptations to biotic and 
abiotic environments, including spatial and temporal variation in resource availability and quality. 
Species’ traits and behaviors encompass species-environment relationships over time, and 
provide an ecological and evolutionary context for evaluating biological connectivity in a 
particular watershed or group of watersheds. 

• Pathways for chemical transport and transformation largely follow hydrologic flowpaths, but 
sometimes follow biological pathways (e.g., nutrient transport from wetlands to coastal waters by 
migrating waterfowl, upstream transport of marine-derived nutrients by spawning of anadromous 
fish, uptake and removal of nutrients by emerging stream insects).  

• Human activities alter naturally occurring gradients of physical, chemical, and biological 
connectivity by modifying the frequency, duration, magnitude, timing, and rate of change of 
fluxes, exchanges, and transformations. For example, connectivity can be reduced by dams, 
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levees, culverts, water withdrawals, and habitat destruction, and can be increased by effluent 
discharges, channelization, drainage ditches and tiles, and impervious surfaces. 

Conclusion 5, Cumulative Effects: Key Findings 

• Structurally and functionally, stream-channel networks and the watersheds they drain are 
fundamentally cumulative in how they are formed and maintained. Excess water from 
precipitation that is not evaporated, taken up by organisms, or stored in soils and geologic layers 
moves downgradient by gravity as overland flow or through channels carrying sediment, 
chemical constituents, and organisms. These channels concentrate surface-water flows and are 
more efficient than overland (i.e., diffuse) flows in transporting water and materials, and are 
reinforced over time by recurrent flows. 

• Connectivity between streams and rivers provides opportunities for materials, including nutrients 
and chemical contaminants, to be transformed chemically as they are transported downstream. 
Although highly efficient at the transport of water and other physical materials, streams are 
dynamic ecosystems with permeable beds and banks that interact with other ecosystems above 
and below the surface. The exchange of materials between surface and subsurface areas involves 
a series of complex physical, chemical, and biological alterations that occur as materials move 
through different parts of the river system. The amount and quality of such materials that 
eventually reach a river are determined by the aggregate effect of these sequential alterations that 
begin at the source waters, which can be at some distance from the river. The opportunity for 
transformation of material (e.g., biological uptake, assimilation, or beneficial transformation) in 
intervening stream reaches increases with distance to the river. Nutrient spiraling, the process by 
which nutrients entering headwater streams are transformed by various aquatic organisms and 
chemical reactions as they are transported downstream, is one example of an instream alteration 
that exhibits significant beneficial effects on downstream waters. Nutrients (in their inorganic 
form) that enter a headwater stream (e.g., via overland flow) are first removed from the water 
column by streambed algal and microbial populations. Fish or insects feeding on algae and 
microbes take up some of those nutrients, which are subsequently released back into the stream 
via excretion and decomposition (i.e., in their organic form), and the cycle is repeated. In each 
phase of the cycling process―from dissolved inorganic nutrients in the water column, through 
microbial uptake, subsequent transformations through the food web, and back to dissolved 
nutrients in the water column―nutrients are subject to downstream transport. Stream and wetland 
capacities for nutrient cycling have important implications for the form and concentration of 
nutrients exported to downstream waters.  

• Cumulative effects across a watershed must be considered when quantifying the frequency, 
duration, and magnitude of connectivity, to evaluate the downstream effects of streams and 
wetlands. For example, although the probability of a large-magnitude transfer of organisms from 
any given headwater stream in a given year might be low (i.e., a low-frequency connection when 
each stream is considered individually), headwater streams are the most abundant type of stream 
in most watersheds. Thus, the overall probability of a large-magnitude transfer of organisms is 
higher when considered for all headwater streams in a watershed—that is, a high-frequency 
connection is present when headwaters are considered cumulatively at the watershed scale, 
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compared with probabilities of transport for streams individually. Similarly, a single pollutant 
discharge might be negligible but the cumulative effect of multiple discharges could degrade the 
integrity of downstream waters. Riparian open waters (e.g., oxbow lakes), wetlands, and 
vegetated areas cumulatively can retain up to 90% of eroded clays, silts, and sands that otherwise 
would enter stream channels. The larger amounts of snowmelt and precipitation cumulatively 
held by many wetlands can reduce the potential for flooding at downstream locations. For 
example, wetlands in the prairie pothole region cumulatively stored about 11−20% of the 
precipitation in one watershed. 

• The combination of diverse habitat types and abundant food resources cumulatively makes 
floodplains important foraging, hunting, and breeding sites for fish, aquatic life stages of 
amphibians, and aquatic invertebrates. The scale of these cumulative effects can be extensive; for 
example, coastal ibises travel up to 40 km to obtain food from freshwater floodplain wetlands for 
nesting chicks, which cannot tolerate salt levels in local food resources until they fledge.  

 

iv. Science Report: Framework for Analysis 

In support of the conclusions addressed above in this section, Chapter 2 of the Science Report 
essentially provides the framework for the analysis by describing the components of a river system and 
watershed; the types of physical, chemical, and biological connections that link those components; the 
factors that influence connectivity at various temporal and spatial scales; and methods for quantifying 
connectivity. In addition, Chapter 1 of the Science Report introduces the approach used for the analysis of 
the peer-reviewed literature.  

Justice Kennedy’s opinion in Rapanos v. United States, 547 U.S. 715 (2006) (Rapanos) 
established the framework for a significant nexus analysis that mirrors the framework through which 
scientists assess a river system – examining how the components of the system (e.g., wetlands), in the 
aggregate (in combination), in the region, contribute and connect to the river (significantly affect the 
chemical, physical, or biological integrity of traditional navigable waters, the territorial seas, or interstate 
waters). In implementing the significant nexus standard under this rule for tributaries and adjacent 
wetlands, all tributaries and adjacent wetlands within the catchment area (i.e., watershed) of the tributary 
of interest will be analyzed as part of the significant nexus analysis. The watershed scale is a scientifically 
valid scale for considering cumulative effects, including at the various levels of the watershed scale (e.g., 
small watersheds, the catchment level for an individual stream reach, the watershed that drains to the next 
named stream, etc.). Watershed position influences function (e.g., storage or groundwater recharge or 
surface outflow to other features), so it is defensible to allow for wetlands adjacent to the same tributary 
reach to be aggregated together with that tributary reach at the catchment level to assess the functions that 
work in concert to influence the traditional navigable water, the territorial seas, or the interstate water. 
Density is another important factor, but the effects of functions of remaining wetlands in formerly-dense 
wetland landscapes could become more important in light of cumulative losses. 

To identify connections and effects of streams, wetlands, and other water bodies on downstream 
waters, the Science Report used two types of evidence from peer-reviewed, published literature: (1) direct 
evidence that demonstrated a connection or effect (e.g., observed transport of materials or movement of 



Page 27 of 564 

organisms from streams or wetlands to downstream waters) and (2) indirect evidence that suggested a 
connection or effect (e.g., presence of environmental factors known to influence connectivity, a gradient 
of impairment associated with cumulative loss of streams or wetlands). In some cases, an individual line 
of evidence demonstrated connections along the entire river network (e.g., from headwaters to large 
rivers). In most cases, multiple sources of evidence were gathered and conclusions drawn via logical 
inference―for example, when one body of evidence shows that headwater streams are connected to 
downstream segments, another body of evidence shows those downstream segments are linked to other 
segments farther downstream, and so on. This approach, which borrows from weight-of-evidence 
approaches in causal analysis is an effective way to synthesize the diversity of evidence needed to address 
questions at larger spatial and longer temporal scales than are often considered in individual scientific 
studies. Science Report at 1-14, 1-16 (citing Suter et al. 2002; Suter and Cormier 2011). 

A river is the time-integrated result of all waters contributing to it, and connectivity is the 
property that spatially integrates the individual components of the watershed. In discussions of 
connectivity, the watershed scale is the appropriate context for interpreting technical evidence about 
individual watershed components. Science Report at 2-1 (citing Newbold et al. 1982b; Stanford and Ward 
1993; Bunn and Arthington 2002; Power and Dietrich 2002; Benda et al. 2004b; Naiman et al. 2005; 
Nadeau and Rains 2007; Rodriguez-Iturbe et al. 2009). Such interpretation requires that freshwater 
resources be viewed within a landscape—or systems—context. Id. (citing Baron et al. 2002). Addressing 
the questions asked in the Science Report, therefore, requires an integrated systems perspective that 
considers both the components contributing to the river and the connections between those components 
and the river.  

Components of the River System 

In the Science Report, the term river refers to a relatively large volume of flowing water within a 
visible channel, including subsurface water moving in the same direction as the surface water and lateral 
flows exchanged with associated floodplain and riparian areas. Id. at 2-2 (Naiman and Bilby 1998). 
Channels are natural or constructed passageways or depressions of perceptible linear extent that convey 
water and associated materials downgradient. They are defined by the presence of continuous bed and 
bank structures, or uninterrupted (but permeable) bottom and lateral boundaries. Although bed and bank 
structures might in places appear to be disrupted (e.g., bedrock outcrops, braided channels, flow-through 
wetlands), the continuation of the bed and banks downgradient from such disruptions is evidence of the 
surface connection with the channel that is upgradient of the perceived disruption. Such disruptions are 
associated with changes in the gradient and in the material over and through which the water flows. If a 
disruption in the bed and bank structure prevented connection, the area downgradient would lack a bed 
and banks, be colonized with terrestrial vegetation, and be indiscernible from the nearby land. The 
concentrated longitudinal movement of water and sediment through these channels lowers local elevation, 
prevents soil development, selectively transports and stores sediment, and hampers the colonization and 
persistence of terrestrial vegetation. Streams are defined in a similar manner as rivers: a relatively small 
volume of flowing water within a visible channel, including subsurface water moving in the same 
direction as the surface water and lateral flows exchanged with associated floodplain and riparian areas. 
Id. (citing Naiman and Bilby 1998).  
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A river network is a hierarchical, interconnected population of channels that drains surface and 
subsurface water from a watershed to a river and includes the river itself. Watershed boundaries 
traditionally are defined topographically, such as by ridges. These channels can convey water year-round, 
weekly to seasonally, or only in direct response to rainfall and snowmelt. Id. (citing Frissell et al. 1986; 
Benda et al. 2004b). The smallest of these channels, where streamflows begin, are considered headwater 
streams. Headwater streams are first- to third-order streams, where stream order is a classification system 
based on the position of the stream in the river network. Id. (citing Strahler 1957; Vannote et al. 1980; 
Meyer and Wallace 2001; Gomi et al. 2002; Fritz et al. 2006; Nadeau and Rains 2007). The point at 
which stream or river channels intersect within a river network is called a confluence. The confluence of 
two streams with the same order results in an increase of stream order (i.e., two first-order streams join to 
form a second-order stream, two second-order streams join to form a third-order stream, and so on); when 
streams of different order join, the order of the larger stream is retained.  

Terminal and lateral source streams3 typically originate at channel heads, which occur where 
surface-water runoff is sufficient to erode a definable channel. Id. at 2-3 (citing Dietrich and Dunne 
1993). The channel head denotes the upstream extent of a stream’s continuous bed and banks structure. 
Channel heads are relatively dynamic zones in river networks, as their position can advance upslope by 
overland or subsurface flow-driven erosion, or retreat downslope by colluvial infilling. Source streams 
also can originate at seeps or springs and associated wetlands.  

When two streams join at a confluence, the smaller stream (i.e., that with the smaller drainage 
area or lower mean annual discharge) is called a tributary of the larger stream, which is referred to as the 
mainstem. A basic way of classifying tributary contributions to a mainstem is the symmetry ratio, which 
describes the size of a tributary relative to the mainstem at their confluence, in terms of their respective 
discharges, drainage areas, or channel widths. Id. at 2-4 (citing Roy and Woldenberg 1986; Rhoads 1987; 
Benda 2008).  

Surface-water hydrologic connectivity within river network channels occurs, in part, through the 
unidirectional movement of water from channels at higher elevations to ones at lower elevations―that is, 
hydrologic connectivity exists because water flows downhill. In essence, the river network represents the 
aboveground flow route and associated subsurface-water interactions, transporting water, energy, and 
materials from the surrounding watershed to downstream rivers, lakes, estuaries, and oceans (The River 
Continuum Concept). Id. (citing (Vannote et al. 1980).  

Streamflow and the quantity and character of sediment—interacting with watershed geology, 
terrain, soils and vegetation—shape morphological changes in the stream channel that occur from river 
network headwaters to lower rivers. Id. (citing Montgomery 1999; Church 2002). Headwater streams are 
typically erosion zones in which sediment from the base of adjoining hillslopes moves directly into 
stream channels and is transported downstream. As stream channels increase in size and decrease in 
slope, a mixture of erosion and deposition processes usually is at work. At some point in the lower 

 
3 Mock (1971) presented a classification of the streams comprising stream or river networks. He designated first-
order streams that intersect other first-order streams as sources. We refer to these as terminal source streams. Mock 
defined first-order streams that flow into higher order streams as tributary sources, and we refer to this class of 
streams as lateral source streams.  
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portions of river networks, sediment deposition becomes the dominant process and floodplains form. 
Floodplains are level areas bordering stream or river channels that are formed by sediment deposition 
from those channels under present climatic conditions. These natural geomorphic features are inundated 
during moderate to high water events. Id. (citing Leopold 1994; Osterkamp 2008). Floodplain and 
associated river channel forms (e.g., meandering, braided, anastomosing) are determined by interacting 
fluvial factors, including sediment size and supply, channel gradient, and streamflow. Id. (citing Church 
2002; Church 2006).  

Both riparian areas and floodplains are important components of river systems. Riparian areas are 
transition zones between terrestrial and aquatic ecosystems that are distinguished by gradients in 
biophysical conditions, ecological processes, and biota. They are areas through which surface and 
subsurface hydrology connect water bodies with their adjoining uplands, and they include those portions 
of terrestrial ecosystems that significantly influence exchanges of energy and matter with aquatic 
ecosystems. Id. (citing National Research Council 2002). Riparian areas often have high biodiversity. Id. 
(citing Naiman et al. 2005). They occur near lakes and estuarine-marine shorelines and along river 
networks, where their width can vary from narrow bands along headwater streams to broad zones that 
encompass the floodplains of large rivers. 

Floodplains are also considered riparian areas, but not all riparian areas have floodplains. All 
rivers and streams within river networks have riparian areas, but small streams in constrained valleys are 
less likely to have floodplains than larger streams and rivers in unconstrained valleys. The “100-year 
floodplain” is the area with a one percent annual chance of flooding. Id. at 2-5; USGS c. The 100-year 
floodplain can but need not coincide with the geomorphic floodplain.  

Wetlands are transitional areas between terrestrial and aquatic ecosystems. Wetlands include 
areas such as swamps, bogs, fens, marshes, ponds, and pools. Science Report at 2-6 (citing Mitsch et al. 
2009).  

Many classification systems have been developed for wetlands. Id. (citing Mitsch and Gosselink 
2007). These classifications can focus on vegetation, hydrology, hydrogeomorphic characteristics, or 
other factors. Id. (citing Cowardin et al. 1979; Brinson 1993; Tiner 2003a; Comer et al. 2005). Because 
the Science Report focuses on downstream connectivity, it considered two landscape settings in which 
wetlands occur based on directionality of hydrologic flows. Directionality of flow also is included as a 
component of hydrodynamic setting in the hydrogeomorphic approach and as an element of water 
flowpath in an enhancement of National Wetlands Inventory data (the National Wetlands Inventory is a 
mapping dataset of the U.S. Fish and Wildlife Service regarding the extent and types of wetlands and 
deepwater habitats across the country) that provides descriptors for landscape position, landform, water 
flow path, and waterbody type (LLLW). Id. (citing Brinson 1993; Smith et al. 1995, Tiner 2011); see also 
U.S. FWS 2010. This emphasis on directionality of flow is necessary because hydrologic connectivity 
plays a dominant role in determining the types of effects wetlands have on downstream waters. 

A non-floodplain wetland setting is a landscape setting where a potential exists for unidirectional, 
lateral hydrologic flows from wetlands to the river network through surface water or ground water. Such a 
setting would include upgradient areas such as hillslopes or upland areas outside of the floodplain. A 
floodplain is the level area bordering a stream or river channel that was built by sediment deposition from 
the stream or river under present climatic conditions and is inundated during moderate to high flow 
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events. Floodplains formed under historic or prehistoric climatic conditions can be abandoned by rivers 
and form terraces. Any wetland setting where water could only flow from the wetland toward a river 
network would be considered a non-floodplain setting, regardless of the magnitude and duration of flows 
and of travel times. The Science Report refers to wetlands that occur in these settings as non-floodplain 
wetlands.  

A riparian/floodplain wetland setting is a landscape setting (e.g., floodplains, most riparian areas, 
lake and estuarine fringes) that is subject to bidirectional, lateral hydrologic flows. Wetlands in 
riparian/floodplain settings can have some of the same types of hydrologic connections as those in non-
floodplain settings. In addition, wetlands in these settings also have bidirectional flows. For example, 
wetlands within a riparian area are connected to the river network through lateral movement of water 
between the channel and riparian area (e.g., through overbank flooding, hyporheic flow). Given the 
Science Report’s interest in addressing the effects of wetlands on downstream waters, it focused in 
particular on the subset of these wetlands that occur in riparian areas with and without floodplains 
(collectively referred to hereafter as riparian/floodplain wetlands); the Science Report generally does not 
address wetlands at lake and estuarine fringes. Riparian wetlands are portions of riparian areas that meet 
the Cowardin et al. (1979) three-attribute wetland criteria (i.e., having wetland hydrology, hydrophytic 
vegetation, or hydric soils); floodplain wetlands are portions of the floodplain that meet these same 
criteria. Id. at 2-7. Given that even infrequent flooding can have profound effects on wetland development 
and function, the Science Report considers such a wetland to be in a riparian/floodplain setting. 

Note that the scientific definition of “wetland” used in the Science Report is not the same as the 
longstanding Clean Water Act regulatory definition of “wetlands,” retained in the final rule at paragraph 
(c)(1)4. Only aquatic resources that meet the regulatory definition of “wetlands” at paragraph (c)(1) are 
considered to be wetlands for Clean Water Act purposes under the final rule. The agencies are not 
changing their longstanding regulation that requires that an aquatic resource must meet all three 
parameters under normal circumstances to be considered a wetland in the regulatory sense. Cowardin 
wetlands do not need to have all three parameters.5 FGDC 2013. Conclusions in the Science Report apply 
to the Cowardin wetlands, and the Cowardin definition of wetlands encompasses a larger universe of 
wetlands than the regulatory definition. Therefore, the Science Report conclusions regarding Cowardin 
wetlands apply to the wetlands meeting the regulatory definition because those wetlands are a subset of 
the Cowardin wetlands. All wetlands that meet the regulatory definition also meet the Cowardin 
definition of wetlands. Because wetlands under the regulatory definition of “wetlands” must meet all 
three parameters under normal circumstances, it is even more likely that they provide the many functions 
described in the Science Report due to the conditions in the waters that make them wetlands – that is, 
their hydric soils (inundated or saturated soils), hydrophytic vegetation (plants that thrive in wet 

 
4 The final rule at paragraph (c)(1) states, “Wetlands means those areas that are inundated or saturated by surface or 
ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a 
prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, 
marshes, bogs, and similar areas.” See also 33 CFR 328.3(b) (1987); 33 CFR 328.3(c)(16) (2021); 40 CFR 230.3(t) 
(1988); 40 CFR 120.2(3)(xvi) (2021). 
5 The Federal Geographic Data Committee (FGDC) (2013, p. 7) noted that “three (3) indicators – hydrophytic 
vegetation, undrained hydric soil, and wetland hydrology; two (2) indicators—hydrophytic vegetation and wetland 
hydrology or undrained hydric soil and wetland hydrology; and one (1) indicator—wetland hydrology, respectively, 
would be used to make the identification [that a feature meets the Cowardin “wetland” definition], based on the 
features available at the particular site.” 
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conditions), and wetland hydrology (inundation or saturation at the surface at some time during the 
growing season). In addition, many of the Cowardin wetland types are in fact open waters, as the 
Cowardin definition encompasses open waters like ponds, and the Science Report utilizes many 
references that include such open waters when discussing floodplain and non-floodplain wetlands. Thus, 
open waters also provide the many functions described in the Science Report and throughout this 
document. The Science Report acknowledges that its conclusions apply to open waters as well as 
wetlands, stating, “although the literature review did not address other non-floodplain water bodies to the 
same extent as wetlands, our overall conclusions also apply to these water bodies (e.g., ponds and lakes 
that lack surface water inlets) because the same principles govern hydrologic connectivity between these 
water bodies and downstream waters.” Id. at 4-41. Wetlands and open waters are only jurisdictional when 
they meet the definition of “waters of the United States.” 

A major consequence of the two different landscape settings (non-floodplain versus 
riparian/floodplain) is that waterborne materials can be transported only from the wetland to the river 
network for a non-floodplain wetland, whereas waterborne materials can be transported from the wetland 
to the river network and from the river network to the wetland for a riparian/floodplain wetland. In the 
latter case, there is a mutual, interacting effect on the structure and function of both the wetland and river 
network. In contrast, a non-floodplain wetland can affect a river through the transport of waterborne 
material, but the opposite is not true. Note that the Science Report limits use of riparian/floodplain and 
non-floodplain landscape settings to describe the direction of hydrologic flow; the terms cannot be used to 
describe directionality of geochemical or biological flows. For example, mobile organisms can move 
from a stream to a non-floodplain wetland. Id. at 2-8 (citing, e.g., Subalusky et al. 2009a; Subalusky et al. 
2009b).  

Both non-floodplain and riparian/floodplain wetlands can include geographically isolated 
wetlands, or wetlands completely surrounded by uplands. Id. (citing Tiner 2003b). These wetlands have 
no apparent surface-water outlets, but can hydrologically connect to downstream waters through spillage 
or groundwater. The Science Report defines an upland as any area not meeting the Cowardin et al. (1979) 
three-attribute wetland criteria, meaning that uplands can occur in both terrestrial and riparian areas.6 Id. 
Thus, a wetland that is located on a floodplain but is surrounded by upland would be considered a 
geographically isolated, riparian/floodplain wetland that is subject to periodic inundation from the river 
network. Although the term “geographically isolated” could be misconstrued as implying functional 
isolation (see Mushet et al. 2015), the term has been defined in the peer-reviewed literature to refer 
specifically to wetlands surrounded by uplands. Furthermore, the literature explicitly notes that 
geographic isolation does not imply functional isolation. Id. (citing Leibowitz 2003; Tiner 2003b). 
Discussion of geographically isolated wetlands is essential because hydrologic gradients of connectivity 
in these systems support a wide range of functions that can benefit downstream waters.  

River System Hydrology  

 
6 Note that this definition of upland is the one that is used in the Science Report. The agencies are not promulgating 
a definition of upland in the rule. In addition, while the agencies consistently use the phrase “dry land” in the 
regulatory text to provide clarity to the public, the preamble and this Technical Support Document use the phrases 
“dry land” and “upland” interchangeably.   
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River system hydrology is controlled by hierarchical factors that result in a broad continuum of 
belowground and aboveground hydrologic flowpaths connecting river basins and river networks. Id. 
(citing Winter 2001; Wolock et al. 2004; Devito et al. 2005; Poole et al. 2006; Wagener et al. 2007; 
Poole 2010; Bencala et al. 2011; Jencso and McGlynn 2011). At the broadest scale, regional climate 
interacts with river-basin terrain and geology to shape inherent hydrologic infrastructure that bounds the 
nature of basin hydrologic flowpaths. Different climate-basin combinations form identifiable hydrologic 
landscape units with distinct hydrologic characteristics. Id. at 2-8 to 2-9 (Winter 2001; Wigington et al. 
2013). Buttle (2006) posited three first-order controls of watershed streamflow generated under specific 
hydroclimatic conditions: (1) the ability of different landscape elements to generate runoff by surface or 
subsurface lateral flow of water; (2) the degree of hydrologic connectivity among landscapes by which 
surface and subsurface runoff can reach river networks; and (3) the capacity of the river network itself to 
convey runoff downstream to the river-basin outlet. Id. at 2-9. River and stream waters are influenced by 
not only basin-scale or larger ground-water systems, but also local-scale, vertical and lateral hydrologic 
exchanges between water in channels and sediments beneath and contiguous with river network channels. 
Id. at 2-9 (citing Ward 1989; Woessner 2000; Malard et al. 2002; Bencala 2011). The magnitude and 
importance of river-system hydrologic flowpaths at all spatial scales can radically change over time at 
hourly to yearly temporal scales. Id. (citing Junk et al. 1989; Ward 1989; Malard et al. 1999; Poole et al. 
2006).  

Because interactions between groundwater and surface waters are essential processes in rivers, 
knowledge of basic groundwater hydrology is necessary to understand the interaction between surface 
and subsurface water and their relationship to connectivity and effects within river systems. Subsurface 
water occurs in two principal zones: the unsaturated zone and the saturated zone. Id. (citing Winter et al. 
1998). In the unsaturated zone, the spaces between soil, gravel, and other particles contain both air and 
water. In the saturated zone, these spaces are completely filled with water. Ground water refers to any 
water that occurs and flows (saturated groundwater flow) in the saturated zone beneath a watershed 
surface. Id. (citing Winter et al. 1998). Rapid flow (interflow) of water can occur through large pore 
spaces in the unsaturated zone. Id. (citing Beven and Germann 1982).  

Other hydrologic flowpaths are also significant in determining the characteristics of river 
systems. The most obvious is the downstream water movement within stream or river channels, or open-
channel flow. River water in stream and river channels can reach riparian areas and floodplains via 
overbank flow, which occurs when floodwaters flow over stream and river channels. Id. at 2-12 (citing 
Mertes 1997). Overland flow is the portion of streamflow derived from net precipitation that flows over 
the land surface to the nearest stream channel with no infiltration. Id. (citing Hewlett 1982). Overland 
flow can be generated by several mechanisms. Infiltration-excess overland flow occurs when the rainfall 
rates exceed the infiltration rates of land surfaces. Id. (citing Horton 1945). Saturation-excess overland 
flow occurs when precipitation inputs cause water tables to rise to land surfaces so that precipitation 
inputs to the land surfaces cannot infiltrate and flow overland. Id. (citing Dunne and Black 1970). Return 
flow occurs when water infiltrates, percolates through the unsaturated zones, enters saturated zones, and 
then returns to and flows over watershed surfaces, commonly at hillslope-floodplain transitions. Id. (citing 
Dunne and Black 1970).  

Alluvium consists of deposits of clay, silt, sand, gravel, or other particulate materials that running 
water has deposited in a streambed, on a floodplain, on a delta, or in a fan at the base of a mountain. 
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These deposits occur near active river systems but also can be found in buried river valleys—the remnants 
of relict river systems. Id. (citing Lloyd and Lyke 1995). The Science Report was concerned primarily 
with alluvium deposited along active river networks. Commonly, alluvium is highly permeable, creating 
an environment conducive to groundwater flow. Alluvial groundwater (typically a mixture of river water 
and local, intermediate, and regional groundwater) moves through the alluvium. Together, the alluvium 
and alluvial ground water comprise alluvial aquifers. Alluvial aquifers are closely associated with 
floodplains and have high levels of hyporheic exchange. Id. (citing Stanford and Ward 1993; Amoros and 
Bornette 2002; Poole et al. 2006). Hyporheic exchange occurs when water moves from stream or river 
channels into alluvial deposits and then returns to the channels. Id. at 2-12, 4-8 (citing Sjodin et al. 2001; 
Bencala 2005; Gooseff et al. 2008; Leibowitz et al. 2008; Bencala 2011). Hyporheic exchange allows for 
the mixing of surface water and groundwater. It occurs during both high- and low-flow periods, and 
typically has relatively horizontal flowpaths at scales of meters to tens of meters and vertical flowpaths 
with depths ranging from centimeters to tens of meters. Science Report at 2-12 (citing Stanford and Ward 
1988; Woessner 2000 and references therein; Bencala 2005).  

Riparian areas and floodplains can have a diverse array of hydrologic inputs and outputs, which, 
in turn influence riparian/floodplain wetlands. Riparian areas and floodplains receive water from 
precipitation; overland flow from upland areas; local, intermediate, regional ground water; and hyporheic 
flows. Id. at 4-14 (National Research Council 2002; Richardson et al. 2005; Vidon et al. 2010). Water 
flowing over the land surface in many situations can infiltrate soils in riparian areas. Id. If low 
permeability subsoils or impervious clay layers are present, water contact with the plant root zone is 
increased and the water is subject to ecological functions (e.g., sink or transformation) such as 
denitrification before it reaches the stream channel. Id. (citing National Research Council 2002; Naiman 
et al. 2005; Vidon et al. 2010).  

The relative importance of the continuum of hydrologic flowpaths among river systems varies, 
creating streams and rivers with different flow duration (or hydrologic permanence) classes. Perennial 
streams or stream reaches typically flow year-round. They are maintained by local or regional ground-
water discharge or streamflow from higher in the stream or river network. Intermittent streams or stream 
reaches flow continuously, but only at certain times of the year (e.g., during certain seasons such as spring 
snowmelt); drying occurs when the water table falls below the channel bed elevation. Ephemeral streams 
or stream reaches flow briefly (typically hours to days) during and immediately following precipitation; 
these channels are above the water table at all times. Streams in these flow duration classes often 
transition longitudinally, from ephemeral to intermittent to perennial, as drainage area increases and 
elevation decreases along river networks. Many headwater streams, however, originate from permanent 
springs and flow directly into intermittent downstream reaches. At low flows, intermittent streams can 
contain dry segments alternating with flowing segments. Transitions between flow duration classes can 
coincide with confluences or with geomorphic discontinuities within the network. Id. at 2-14 (citing May 
and Lee 2004; Hunter et al. 2005). Variation of streamflow within river systems occurs in response to 
hydrologic events resulting from rainfall or snowmelt. Stormflow is streamflow that occurs in direct 
response to rainfall or snowmelt, which might stem from multiple groundwater and surface-water sources. 
Id. (citing Dunne and Leopold 1978). Baseflow is streamflow originating from groundwater discharge or 
seepage (locally or from higher in the river network), which sustains water flow through the channel 
between hydrologic events. Perennial streams have baseflow year-round; intermittent streams have 
baseflow seasonally; ephemeral streams have no baseflow. All three stream types convey stormflow. 
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Thus, perennial streams are more common in areas receiving high precipitation, whereas intermittent and 
ephemeral streams are more common in the more arid portions of the United States. Id. (citing NHD 
2008). The distribution of headwater streams (perennial, intermittent, or ephemeral) as a proportion of 
total stream length is similar across geographic regions and climates. 

Similar to streams, the occurrence and persistence of riparian/floodplain wetland and non-
floodplain wetland hydrologic connections with river networks, via surface water (both channelized and 
nonchannelized) or groundwater, can be continuous, seasonal, or ephemeral, depending on the overall 
hydrologic conditions in the watershed. For example, a non-floodplain wetland might have a direct 
groundwater connection with a river network during wet conditions but an indirect regional ground-water 
connection (via groundwater recharge) under dry conditions. Another non-floodplain wetland might have 
direct surface water connections during wet periods (e.g., fill and spill) and groundwater connections 
during drier periods. See, e.g., Rains et al. 2008; Leibowitz and Vining 2003; Leibowitz et al. 2016. 
Geographically isolated wetlands can be hydrologically connected to the river network via 
nonchannelized surface flow (e.g., swales or overland flow) or groundwater.  

The portions of river networks with flowing water expand and contract longitudinally (in an 
upstream-downstream direction) and laterally (in a stream channel-floodplain direction) in response to 
seasonal environmental conditions and precipitation events. Id. at 2-18 (citing Hewlett and Hibbert 1967; 
Gregory and Walling 1968; Dunne and Black 1970; Day 1978; Junk et al. 1989; Hunter et al. 2005; 
Wigington et al. 2005; Rains et al. 2006; Rains et al. 2008). The longitudinal expansion of channels with 
flowing water in response to major precipitation events represents a transient increase in the extent of 
headwater streams. Intermittent and perennial streams flow during wet seasons, whereas ephemeral 
streams flow only in response to rainfall or snowmelt. During dry periods, flowing portions of river 
networks are limited to perennial streams; these perennial portions of the river network can be 
discontinuous or interspersed with intermittently flowing stream reaches but may be flowing in the 
hyporheic zone for thousands of meters before emerging. Id. (citing Stanley et al. 1997; Hunter et al. 
2005; Larned et al. 2010). Thus, stream reaches can be perennial even if the entire stream channel is not. 
As discussed previously, perennial streams typically flow year-round, intermittent streams flow 
continuously only at certain times of the year (e.g., when they receive water from a spring, groundwater 
source, or surface snow such as melting snow), and ephemeral streams flow briefly in direct response to 
precipitation. In perennial streams, baseflow (the portion of flow contributed by groundwater) is typically 
present year-round. The definition of “perennial” allows for infrequent periods of severe drought to cause 
some perennial streams to not have flow year-round. Leopold 1994. Some studies have noted that 
perennial flow is present greater than 90% of the time, except in periods of severe drought, or greater than 
80% of the time, and these definitions are consistent with the one used in the Science Report. Hedman 
and Osterkamp 1982; Hewlett 1982.  

The dominant sources of water to a stream can shift during river network expansion and 
contraction. Id. (citing Malard et al. 1999; McGlynn and McDonnell 2003; McGlynn et al. 2004; Malard 
et al. 2006). Rainfall and snowmelt cause a river network to expand in two ways. First, local aquifers 
expand and water moves into dry channels, which increases the total length of the wet channel; the 
resulting intermittent streams will contain water during the entire wet season. Id. (citing Winter et al. 
1998). Second, stormflow can cause water to enter ephemeral and intermittent streams. The larger the 
rainfall or snowmelt event, the greater the number of ephemeral streams and total length of flowing 
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channels that occur within the river network. Ephemeral flows cease within days after rainfall or 
snowmelt ends, causing the length of wet channels to decrease and river networks to contract. The 
flowing portion of river networks further shrinks as the spatial extent of aquifers with ground water in 
contact with streams contract and intermittent streams dry. In many river systems across the United 
States, stormflow comprises a major portion of annual streamflow. Id. (citing Hewlett et al. 1977; Miller 
et al. 1988; Turton et al. 1992; Goodrich et al. 1997; Vivoni et al. 2006). In these systems, intermittent 
and ephemeral streams are major sources of river water. When rainfall or snowmelt induces stormflow in 
headwater streams or other portions of the river network, water flows downgradient through the network 
to its lower reaches. As water moves downstream through a river network, the hydrograph for a typical 
event broadens with a lower peak. This broadening of the hydrograph shape results from transient storage 
of water in river network channels and nearby alluvial aquifers. Id. (citing Fernald et al. 2001).  

During very large hydrologic events, aggregate flows from headwaters and other tributary 
streams can result in overbank flooding in river reaches with floodplains; this occurrence represents 
lateral expansion of the river network. Id. (citing Mertes 1997). Water from overbank flows can recharge 
alluvial aquifers, supply water to floodplain wetlands, surficially connect floodplain wetlands to rivers, 
and shape the geomorphic features of the floodplain. Id. at 2-18 to 2-19 (citing Wolman and Miller 1960; 
Hammersmark et al. 2008). Bidirectional exchanges of water between ground water and river networks, 
including hyporheic flow, can occur under a wide range of streamflows, from flood flows to low flows. 
Id. at 2-19 to 2-20 (citing National Research Council 2002; Naiman et al. 2005; Vivoni et al. 2006).  

Many studies have documented the fact that riparian/floodplain wetlands can attenuate flood 
pulses of streams and rivers by storing excess water from streams and rivers. Bullock and Acreman 
(2003) reviewed wetland studies and reported that wetlands reduced or delayed floods in 23 of 28 studies. 
Id. at 2-21. For example, Walton et al. (1996) found that peak discharges between upstream and 
downstream gaging stations on the Cache River in Arkansas were reduced 10–20% primarily due to 
floodplain water storage. Id. Locations within floodplains and riparian areas with higher elevations likely 
provide flood storage less frequently than lower elevation areas.  

The interactions of high flows with floodplains and associated alluvial aquifers of river networks 
are important determinants of hydrologic and biogeochemical conditions of rivers. Id. at 2-21 (citing 
Ward 1989; Stanford and Ward 1993; Boulton et al. 1998; Burkart et al. 1999; Malard et al. 1999; 
Amoros and Bornette 2002; Malard et al. 2006; Poole 2010). Bencala (1993; 2011) noted that streams 
and rivers are not pipes; they interact with the alluvium and geologic materials adjoining and under 
channels. Id. In streams or river reaches constrained by topography, significant floodplain and near-
channel alluvial aquifer interactions are limited. In reaches with floodplains, however, stormflow 
commonly supplies water to alluvial aquifers during high-flow periods through the process of bank 
storage. Id. at 2-22 (citing Whiting and Pomeranets 1997; Winter et al. 1998; Chen and Chen 2003). As 
streamflow decreases after hydrologic events, the water stored in these alluvial aquifers can serve as 
another source of baseflow in rivers.  

In summary, the extent of wetted channels is dynamic because interactions between surface water 
in the channel and alluvial ground water, via hyporheic exchange, determine open-channel flow. The 
flowing portion of river networks expands and contracts in two primary dimensions: (1) longitudinally, as 
intermittent and ephemeral streams wet up and dry; and (2) laterally, as floodplains and associated 
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alluvial aquifers gain (via overbank flooding, bank storage, and hyporheic exchange) and lose (via 
draining of alluvial aquifers and evapotranspiration) water. Vertical ground-water exchanges between 
streams and rivers and underlying alluvium are also key connections, and variations in these vertical 
exchanges contribute to the expansion and contraction of the portions of river networks with open-
channel flow. Numerous studies have documented expansion and contraction of river systems; the 
temporal and spatial pattern of this expansion and contraction varies in response to many factors, 
including interannual and long-term dry cycles, climatic conditions, and watershed characteristics. Id. 
(citing Gregory and Walling 1968; Cayan and Peterson 1989; Fleming et al. 2007). 

Influence of Streams and Wetlands on Downstream Waters 

The structure and function of rivers are highly dependent on the constituent materials stored in 
and transported through them. Most of these materials, broadly defined here as any physical, chemical, or 
biological entity, including water, heat energy, sediment, wood, organic matter, nutrients, chemical 
contaminants, and organisms, originate outside of the river; they originate from either the upstream river 
network or other components of the river system, and then are transported to the river by water movement 
or other mechanisms. Thus, the fundamental way in which streams and wetlands affect river structure and 
function is by altering fluxes of materials to the river. This alteration of material fluxes depends on two 
key factors: (1) functions within streams and wetlands that affect material fluxes, and (2) connectivity (or 
isolation) between streams and wetlands and rivers that allows (or prevents) transport of materials 
between the systems. Id.  

Streams and wetlands affect the amounts and types of materials that are or are not delivered to 
downstream waters, ultimately contributing to the structure and function of those waters. Leibowitz et al. 
(2008) identified three functions, or general mechanisms of action, by which streams and wetlands 
influence material fluxes into downstream waters: source, sink, and refuge. Id. at 2-22 to 2-23. The 
Science Report expanded on this framework to include two additional functions: lag and transformation. 
These five functions provide a framework for understanding how physical, chemical, and biological 
connections between streams and wetlands and downstream waters influence river systems.  

These five functions are neither static nor mutually exclusive, and often the distinctions between 
them are not sharp. A stream or wetland can provide different functions at the same time. These functions 
can vary with the material considered (e.g., acting as a source of organic matter and a sink for nitrogen) 
and can change over time (e.g., acting as a water sink when evapotranspiration is high and a water source 
when evapotranspiration is low). The magnitude of a given function also is likely to vary temporally; for 
example, streams generally are greater sources of organic matter and contaminants during high flows. Id. 
at 2-24.  

Leibowitz et al. (2008) explicitly focused on functions that benefit downstream waters, but these 
functions also can have negative effects―for example, when streams and wetlands serve as sources of 
chemical contamination. Id. In fact, benefits need not be linear with respect to concentration; a beneficial 
material could be harmful at higher concentrations due to nonlinear and threshold effects. For example, 
nitrogen can be beneficial at lower concentrations but can reduce water quality at higher concentrations. 
Although the Science Report focused primarily on the effects of streams and wetlands on downstream 
waters, these same functions can describe effects of downstream waters on streams and wetlands (e.g., 
downstream rivers can serve as sources of colonists for upstream tributaries). Id. 
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Because many of these functions depend on import of materials and energy into streams and 
wetlands, distinguishing between actual function and potential function is instructive. For example, a 
wetland with appropriate conditions (e.g., a reducing environment and denitrifying bacteria) is a potential 
sink for nitrogen: If nitrogen applied to the land is imported into the wetland, the wetland can remove it 
by denitrification. The wetland will not serve this function, however, if nitrogen is not imported. Thus, 
even if a stream and wetland do not currently serve a function, it has the potential to provide that function 
under appropriate conditions (e.g., when material imports or environmental conditions change). These 
functions can be instrumental in protecting those waters from future impacts. Ignoring potential function 
also can lead to the paradox that degraded streams and wetlands (e.g., those receiving nonpoint-source 
nitrogen inputs) receive more protection than less impacted systems. Id. (citing Leibowitz et al. 2008).  

Three factors influence the effect that material and energy fluxes from streams and wetlands have 
on downstream waters: (1) proportion of the material originating from (or reduced by) streams and 
wetlands relative to the importance of other system components, such as the river itself; (2) residence 
time of the material in the downstream water; and (3) relative importance of the material. Id. In many 
cases, the effects on downstream waters need to be considered in aggregate. For example, the contribution 
of material by a particular stream and wetland (e.g., a specific ephemeral stream) might be small, but the 
aggregate contribution by an entire class of streams and wetlands (e.g., all ephemeral streams in the river 
network) might be substantial. Similarly, the functions of a given non-floodplain wetland relative to 
nitrogen removal may be small, but the cumulative effects of nitrogen removal by the extant wetland on 
the landscape will be substantive. See, e.g., Evenson et al. 2018; Evenson et al. 2021. Integrating 
contributions over time also might be necessary, taking into account the frequency, duration, and timing 
of material export and delivery. Considering the cumulative material fluxes that originate from a specific 
stream and wetland, rather than the individual materials separately, is essential in understanding the 
effects of material fluxes on downstream waters. Science Report at 2-26. 

In general, the more frequently a material is delivered to the river (i.e., high connectivity), the 
greater its effect. The effect of an infrequently supplied material, however, can also be large if the 
material has a long residence time in the river and wetlands. Id. (citing Leibowitz et al. 2008). For 
example, woody debris might be exported to downstream waters infrequently but it can persist in 
downstream channels. In addition, some materials are more important in defining the structure and 
function of a river. For example, woody debris can have a large effect on river structure and function 
because it affects water flow, sediment and organic matter transport, and habitat. Id. (citing Harmon et al. 
1986; Gurnell et al. 1995). Another example is salmon migrating to a river: They can serve as a keystone 
species to regulate other populations and as a source of marine-derived nutrients. Id. (citing Schindler et 
al. 2005). For functions relating to sinks and transformations, often the less frequently a material is 
delivered to the river (i.e., high disconnectivity), the greater the effect. More examples of disconnectivity 
via sink functions are provided at the end of this section.  

The functions discussed above represent general mechanisms by which streams and wetlands 
influence downstream waters. For these altered material and energy fluxes to affect a river, however, 
transport mechanisms that deliver (or could deliver) these materials to the river are necessary. 
Connectivity describes the degree to which components of a system are connected and interact through 
various transport mechanisms; connectivity is determined by the characteristics of both the physical 
landscape and the biota of the specific system. Id. This definition is related to, but is distinct from, 
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definitions of connectivity based on the actual flow of materials between system components. Id. (citing, 
e.g., Pringle 2001). That connectivity among river-system components, including streams and wetlands, 
plays a significant role in the structure and function of these systems is not a new concept. In fact, much 
of the theory developed to explain how these systems work focuses on connectivity and linkages between 
system components. Id. (citing, e.g., Vannote et al. 1980; Newbold et al. 1982a; Newbold et al. 1982b; 
Junk et al. 1989; Ward 1989; Benda et al. 2004b; Thorp et al. 2006).  

In addition to its central role in defining river systems, water movement through the river system 
is the primary mechanism providing physical connectivity both within river networks and between those 
networks and the surrounding landscape. Id. (citing Fullerton et al. 2010). Hydrologic connectivity results 
from the flow of water, which provides a “hydraulic highway” along which physical, chemical, and 
biological materials associated with the water are transported (e.g., sediment, woody debris, 
contaminants, organisms). Id. (citing Fausch et al. 2002). 

Ecosystem functions within a river system are driven by interactions between the river system’s 
physical environment and the diverse biological communities living within it. Id. (Wiens 2002; Schroder 
2006). Thus, river system structure and function also depend on biological connectivity among the 
system’s populations of aquatic and semiaquatic organisms. Biological connectivity refers to the 
movement of organisms, including transport of reproductive materials (e.g., seeds, eggs, genes) and 
dormant stages, through river systems. Id. at 2-26 to 2-27. These movements link aquatic habitats and 
populations in different locations through several processes important for the survival of individuals, 
populations, and species. Id. at 2-27. Movements include dispersal, or movement away from an existing 
population or parent organism; migration, or long-distance movements occurring seasonally; localized 
movement over an organism’s home range to find food, mates, or refuge from predators or adverse 
conditions; and movement to different habitats to complete life-cycle requirements. Biological 
connectivity can occur within aquatic ecosystems or across ecosystem or watershed boundaries, and it can 
be multidirectional. For example, organisms can move downstream from perennial, intermittent, and 
ephemeral headwaters to rivers; upstream from estuaries to rivers to headwaters; or laterally between 
floodplain wetlands and open waters, non-floodplain wetlands and open waters, rivers, lakes, or other 
water bodies.  

As noted above, streams, rivers, wetlands, and open waters are not pipes; they provide 
opportunities for water to interact with internal components (e.g., alluvium, organisms) through the five 
functions (i.e., sink, source, lag, transformation, and refugia) by which streams, wetlands, and open 
waters alter material fluxes. Id. (citing Bencala 1993; Bencala et al. 2011). Connectivity between streams 
and wetlands provides opportunities for material fluxes to be altered sequentially by multiple streams and 
wetlands as the materials are transported downstream. The aggregate effect of these sequential fluxes 
determines the proportion of material that ultimately reaches the river. The form of the exported material 
can be transformed as it moves down the river network, however, making quantitative assessments of the 
importance of individual stream and wetland resources within the entire river system difficult. For 
example, organic matter can be exported from headwater streams and consumed by downstream 
macroinvertebrates. Those invertebrates can drift farther downstream and be eaten by juvenile fish that 
eventually move into the mainstem of the river, where they feed further and grow.  
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The assessment of stream and wetland influence on rivers also is complicated by the cumulative 
time lag resulting from these sequential transformations and transportations. For example, removal of 
nutrients by streambed algal and microbial populations, subsequent feeding by fish and insects, and 
release by excretion or decomposition delays the export of nutrients downstream.  

Although the Science Report primarily focused on the benefits that connectivity can have on 
downstream systems, isolation (or more accurately, degrees of “disconnectivity”) also can have important 
positive effects on the condition and function of downstream waters, especially when considered in the 
aggregate. Nevertheless, the literature reviewed supports the conclusion that sink functions of non-
floodplain wetlands, which result in part from their relative isolation, will affect a downstream water 
when these wetlands are situated between the downstream water and known point or nonpoint sources of 
pollution, and thus intersect flowpaths between the pollutant source and downstream waters. For example, 
waterborne contaminants that enter a non-floodplain wetland (e.g., excessive nitrate) are processed 
through transformations or sink functions and hence are not transported to a river system because the 
wetland is on the “less frequently connected” side of the aquatic connectivity continuum (i.e., if the 
wetland is hydrologically isolated from the river, except by non-hydrologic pathways. Id. at 2-28 to 2-29). 
Furthermore, increased hydrologic isolation, again when considered in the aggregate, can attenuate 
stormflows, decoupling storm peaks and decreasing flood risks to downgradient communities (e.g., 
Golden et al. 2021b). Increased isolation can also decrease the spread of pathogens and invasive species, 
and increase the rate of local adaptation. Id. at 2-29 (citing, e.g., Hess 1996; Bodamer and Bossenbroek 
2008; Fraser et al. 2011). Thus, both connectivity and isolation should be considered when examining 
material fluxes from streams and wetlands, and biological interactions should be viewed in light of the 
natural balance between these two factors.  

 

Spatial and Temporal Variability of Connectivity 

Connectivity is not a fixed characteristic of a system, but varies over space and time. Id. (citing 
Ward 1989; Leibowitz 2003; Leibowitz and Vining 2003). Variability in hydrologic connectivity results 
primarily from the longitudinal and lateral expansion and contraction of the river network and transient 
connection with other components of the river system. The variability of connectivity can be described in 
terms of frequency, duration, magnitude, timing, and rate of change. When assessing the effects of 
connectivity or isolation and the five general functions (sources, sinks, refuges, lags, and transformations) 
on downstream waters, dimensions of time and space must be considered. Id. Water or organisms 
transported from distant headwater streams or wetlands generally will take longer to travel to a larger 
river than materials transported from streams or wetlands near the river. This can introduce a lag between 
the time the function occurs and the time the material arrives at the river. In addition, the distribution of 
streams and wetlands can be a function of their distance from the mainstem channel. For example, in a 
classic dendritic network, there is an inverse geometric relationship between number of streams and 
stream order. In such a case, the aggregate level of function could be greater for terminal source streams, 
compared to higher order or lateral source streams. This is one reason why watersheds of terminal source 
streams often provide the greatest proportion of water for major rivers. Connectivity, however, results 
from many interacting factors. For example, the relationship between stream number and order can vary 
with the shape of the watershed and the configuration of the network.  
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The expansion and contraction of river networks affects the extent, magnitude, timing, and type 
of hydrologic connectivity. For example, intermittent and ephemeral streams flow only during wetter 
seasons or during and immediately following precipitation events. Thus, the spatial extent of connectivity 
between streams and wetlands and rivers increases greatly during these high-flow events because 
intermittent and ephemeral streams are estimated to account for 59% of the total length of streams in the 
contiguous United States. Id. (citing Nadeau and Rains 2007). Changes in the spatial extent of 
connectivity due to expansion and contraction are even more pronounced in the arid and semiarid 
Southwest, where more than 80% of all streams are intermittent or ephemeral. Id. at 2-29 to 2-30 (citing 
Levick et al. 2008). Expansion and contraction also affect the magnitude of connectivity because larger 
flows provide greater potential for material transport. Id. at 2-30. 

Besides affecting the spatial extent and magnitude of hydrologic connectivity, expansion and 
contraction of the stream network also affect the duration and timing of flow in different portions of the 
network. Perennial streams have year-round surface water connectivity with a downstream river, while 
intermittent streams have seasonal connectivity. The temporal characteristics of connectivity for 
ephemeral streams depend on the duration and timing of storm events. Similarly, connectivity between 
wetlands and downstream waters can range from permanent to seasonal to episodic.  

The expansion and contraction of river systems also affect the type of connectivity. For example, 
during wet periods when input from precipitation can exceed evapotranspiration and available storage, 
non-floodplain wetlands could have connectivity with other wetlands or streams through surface spillage. 
Id. (citing Leibowitz and Vining 2003; Rains et al. 2008). When spillage ceases due to drier conditions, 
hydrologic connectivity could only occur through groundwater. Id. (citing Rains et al. 2006; Rains et al. 
2008).  

When the flow of water mediates dispersal, migration, and other forms of biotic movement, 
biological and hydrologic connectivity can be tightly coupled. For example, seasonal flooding of 
riparian/floodplain wetlands creates temporary habitat that fish, aquatic insects, and other organisms use. 
Id. (citing Junk et al. 1989; Smock 1994; Tockner et al. 2000; Robinson et al. 2002; Tronstad et al. 2007). 
Factors other than hydrologic dynamics also can affect the temporal and spatial dynamics of biological 
connectivity. Such factors include movement associated with seasonal habitat use and shifts in habitat use 
due to life-history changes, quality or quantity of food resources, presence or absence of favorable 
dispersal conditions, physical differences in aquatic habitat structure, or the number and sizes of nearby 
populations. Id. (citing Moll 1990; Smock 1994; Huryn and Gibbs 1999; Lamoureux and Madison 1999; 
Gibbons et al. 2006; Gamble et al. 2007; Grant et al. 2007; Subalusky et al. 2009a; Schalk and Luhring 
2010). For a specific river system with a given spatial configuration, variability in biological connectivity 
also occurs due to variation in the dispersal distance of organisms and reproductive propagules. Id. (citing 
Semlitsch and Bodie 2003).  

Finally, just as connectivity from temporary or seasonal wetting of channels can affect 
downstream waters, temporary or seasonal drying also can affect river networks. Riverbeds or streambeds 
that temporarily dry up are used by aquatic organisms that are specially adapted to alternating flowing and 
dry conditions, and can serve as egg and seed banks for several organisms, including aquatic invertebrates 
and plants. Id at 2-30 (citing Steward et al. 2012). These temporary dry areas also can affect nutrient 
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dynamics due to reduced microbial activity, increased oxygen availability, and inputs of terrestrial 
sources of organic matter and nutrients. Id. (citing Steward et al. 2012).  

Numerous factors affect physical, chemical, and biological connectivity within river systems. 
These factors operate at multiple spatial and temporal scales, and interact with each other in complex 
ways to determine where components of a system fall on the connectivity-isolation gradient at a given 
time. Id. at 2-30 to 2-31. The Science Report focused on five key factors: climate, watershed 
characteristics, spatial distribution patterns, biota, and human activities and alterations. Id. at 2-31. These 
are by no means the only factors influencing connectivity, but they illustrate how many different variables 
shape physical, chemical, and biological connectivity.  

Climate-watershed Characteristics  

The movement and storage of water in watersheds varies with climatic, geologic, physiographic, 
and edaphic characteristics of river systems. Id. (citing Winter 2001; Wigington et al. 2013). At the 
largest spatial scale, climate determines the amount, timing, and duration of water available to watersheds 
and river basins. Key characteristics of water availability that influence connectivity include annual water 
surplus (precipitation minus evapotranspiration), timing (seasonality) of water surplus during the year that 
is heavily influenced by precipitation timing and form (e.g., rain, snow), and rainfall intensity.  

Annual runoff generally reflects water surplus and varies widely across the United States. 
Seasonality of water surplus during the year determines when and for how long runoff and ground-water 
recharge occur. Precipitation and water surplus in the eastern United States is less seasonal than in the 
West. Id. (Finkelstein and Truppi 1991). The Southwest experiences summer monsoonal rains, while the 
West Coast and Pacific Northwest receive most precipitation during the winter season. Id. (citing 
Wigington et al. 2013). Throughout the West, winter precipitation in the mountains occurs as snowfall, 
where it accumulates in seasonal snowpack and is released during the spring and summer melt seasons to 
sustain streamflow during late spring and summer months. Id. (citing Brooks et al. 2012). The flowing 
portions of river networks tend to have their maximum extent during seasons with the highest water 
surplus, when conditions for flooding are most likely. Typically, the occurrence of ephemeral and 
intermittent streams is greatest in watersheds with low annual runoff and high water surplus seasonality 
but also is influenced by watershed geologic and edaphic features. Id. (citing Gleeson et al. 2011).  

Rainfall intensity can affect hydrologic connectivity in localities where watershed surfaces have 
low infiltration capacities relative to rainfall intensities. Infiltration-excess overland flow occurs when 
rainfall intensity exceeds watershed surface infiltration, and it can be an important mechanism in 
providing water to wetlands and river networks (Goodrich et al. 1997; Levick et al. 2008). Overland flow 
is common at low elevations in the Southwest, due to the presence of desert soils with low infiltration 
capacities combined with relatively high rainfall intensities. The Pacific Northwest has low rainfall 
intensities, whereas many locations in the Mid-Atlantic, Southeast, and Great Plains have higher rainfall 
intensities. The prevalence of impermeable surfaces in urban areas can generate overland flow in virtually 
any setting. Id. (citing Booth et al. 2002).  

River system topography and landscape form can profoundly influence river network drainage 
patterns, distribution of wetlands, and ground-water and surface-water flowpaths. Winter (2001) 
described six generalized hydrologic landscape forms common throughout the United States. Id. 
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Mountain Valleys and Plateaus and High Plains have constrained valleys through which streams and 
rivers flow. Id. at 2-31, 2-33. The Mountain Valleys form has proportionally long, steep sides with narrow 
to nonexistent floodplains resulting in the rapid movement of water downslope. In contrast, Riverine 
Valleys have extensive floodplains that promote strong surface-water, hyporheic water, and alluvial 
ground-water connections between wetlands and rivers. Id. at 2-33 to 2-34. Small changes in water table 
elevations can influence the water levels and hydrologic connectivity of wetlands over extensive areas in 
this landscape form. Local ground-water flowpaths are especially important in Hummocky Terrain. 
Constrained valleys, such as the Mountain Valley landform, have limited opportunities for the 
development of floodplains and alluvial aquifers, whereas unconstrained valleys, such as the Riverine 
Valley landform, provide opportunities for the establishment of floodplains. Some river basins can be 
contained within a single hydrologic landscape form, but larger river basins commonly comprise 
complexes of hydrologic landscape forms. For example, the James River in Virginia, which flows from 
mountains through the Piedmont to the Coastal Plain, is an example of a Mountain Valley-High Plateaus 
and Plains-Coastal Terrain-Riverine Valley complex. 

Floodplain hydrologic connectivity to rivers and streams occurs primarily through overbank 
flooding, shallow ground-water flow, and hyporheic flow. Water-table depth can influence connectivity 
across a range of hydrologic landscape forms, but especially in floodplains. Rivers and wetlands can shift 
from losing reaches (or recharge wetlands) during dry conditions to gaining reaches (or discharge 
wetlands) during wet conditions. Wet, high water-table conditions influence both ground-water and 
surface-water connectivity. When water tables are near the watershed surface, they create conditions in 
which swales and small stream channels fill with water and flow to nearby water bodies. Id. at 2-34 
(citing Wigington et al. 2003; Wigington et al. 2005). Nanson and Croke (1992) noted that a complex 
interaction of fluvial processes forms floodplains, but their character and evolution are essentially a 
product of stream power (the rate of energy dissipation against the bed and banks of a river or stream) and 
sediment characteristics. Id. They proposed three floodplain classes based on the stream power-sediment 
characteristic paradigm: (1) high-energy noncohesive, (2) medium-energy noncohesive, and (3) low-
energy cohesive. The energy term describes stream power during floodplain formation, and the 
cohesiveness term depicts the nature of material deposited in the floodplain. In addition, hyporheic and 
alluvial aquifer exchanges are more responsive to seasonal discharge changes in floodplains with complex 
topography. Id. (citing Poole et al. 2006).  

Within hydrologic landscape forms, soil and geologic formation permeabilities are important 
determinants of hydrologic flowpaths. Permeable soils promote infiltration that results in ground-water 
hydrologic flowpaths, whereas the presence of impermeable soils with low infiltration capacities is 
conducive to overland flow. In situations in which ground-water outflows from watersheds or landscapes 
dominate, the fate of water depends in part on the permeability of deeper geologic strata. The presence of 
an aquiclude (a confining layer) near the watershed surface leads to shallow subsurface flows through soil 
or geologic materials. 

These local ground-water flowpaths connect portions of watersheds to nearby wetlands or 
streams. Id. at 2-35. Alternatively, if a deep permeable geologic material (an aquifer) is present, water is 
likely to move farther downward within watersheds and recharge deeper aquifers. Id. at 2-35 to 2-36. The 
permeability of soils and geologic formations both can influence the range of hydrologic connectivity 
between non-floodplain wetlands and river networks. Id. at 2-36. 



Page 43 of 564 

Climate and watershed characteristics directly affect spatial and temporal patterns of connectivity 
between streams and wetlands and rivers by influencing the timing and extent of river network expansion 
and contraction. Id. at 2-38. They also influence the spatial distribution of water bodies within a 
watershed, and in particular, the spatial relationship between those water bodies and the river. Id. (citing, 
e.g., Tihansky 1999) 

Hydrologic connectivity between streams and rivers can be a function of the distance between the 
two water bodies. Id. (citing Bracken and Croke 2007; Peterson et al. 2007). If channels functioned as 
pipes, this would not be the case, and any water and its constituent materials exported from a stream 
eventually would reach the river. Because streams and rivers are not pipes, water can be lost from the 
channel through evapotranspiration and bank storage and diluted through downstream inputs. Id. (Bencala 
1993). Thus, material from a headwater stream that flowed directly into the river would be subject to less 
transformation or dilution. On the other hand, the greater the distance a material travels between a 
particular stream reach and the river, the greater the opportunity for that material to be altered (e.g., taken 
up, transformed, or assimilated) in intervening stream reaches; this alteration could reduce the material’s 
direct effect on the river, but it could also allow for beneficial transformations. For example, organic 
matter exported from a headwater stream located high in a drainage network might never reach the river 
in its original form, instead becoming reworked and incorporated into the food chain. Similarly, higher 
order streams generally are located closer to rivers and, therefore, can have higher connectivity than 
upstream reaches of lower order. Note that although an individual low-order stream can have less 
connectivity than a high-order stream, a river network has many more low-order streams, which can 
represent a large portion of the watershed; thus, the magnitude of the cumulative effect of these low-order 
streams can be significant. 

The relationship between streams and the river network is a function, in part, of basin shape and 
network configuration. Elongated basins tend to have trellis networks where relatively small streams join 
a larger mainstem; compact basins tend to have dendritic networks with tree-like branching, where 
streams gradually increase in size before joining the mainstem. This network configuration describes the 
incremental accumulation of drainage area along rivers, and therefore provides information about the 
relative contributions of streams to downstream waters. Streams in a trellis network are more likely to 
connect directly to a mainstem, compared with a dendritic network. The relationship between basin shape, 
network configuration, and connectivity, however, is complex. A mainstem in a trellis network also is 
more likely to have a lower stream order than one in a dendritic network. Id. at 2-38 to 2-39. 

Distance also affects connectivity between non-floodplain and riparian/floodplain wetlands and 
downstream waters. Id. at 2-39. Riverine wetlands that serve as origins for lateral source streams that 
connect directly to a mainstem river have a more direct connection to that river than wetlands that serve 
as origins for terminal source streams high in a drainage network. This also applies to riparian/floodplain 
wetlands that have direct surface-water connections to streams or rivers. If geographically isolated non-
floodplain wetlands have surface-water outputs (e.g., depressions that experience surface-water spillage 
or ground-water seeps), the probability that surface water will infiltrate or be lost through 
evapotranspiration increases with distance. This is a beneficial function in attenuating storm flows and 
providing area (and time) for biogeochemical processing. Golden et al. 2021b; Evenson et al. 2018. For 
non-floodplain wetlands connected through ground-water flows, less distant areas are generally connected 
through shallower flowpaths, assuming similar soil and geologic properties. These shallower ground-
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water flows have the greatest interchange with surface waters and travel between points in the shortest 
amount of time. Although elevation is the primary factor determining areas that are inundated through 
overbank flooding, connectivity with the river generally will be higher for riparian/floodplain wetlands 
located near the river’s edge compared with riparian/floodplain wetlands occurring near the floodplain 
edge.  

Distance from the river network also influences biological connectivity among streams and 
wetlands. For example, mortality of an organism due to predators and natural hazards generally increases 
with the distance it has to travel to reach the river network. The likelihood that organisms or propagules 
traveling randomly or by diffusive mechanisms such as wind will arrive at the river network decreases as 
distance increases.  

The distribution of distances between wetlands and river networks depends on both the drainage 
density of the river network (the total length of stream channels per unit area) and the density of wetlands. 
Science Report at 2-40. Climate and watershed characteristics influence these spatial patterns, which can 
vary widely.  

Biota  

Biological connectivity results from the interaction of physical characteristics of the 
environment―especially those facilitating or restricting dispersal―and species’ traits or behaviors, such 
as life-cycle requirements, dispersal ability, or responses to environmental cues. Id. Thus, the types of 
biota within a river system are integral in determining the river system’s connectivity, and landscape 
features or species traits that necessitate or facilitate movement of organisms tend to increase biological 
connectivity among water bodies.  

Diadromous fauna (e.g., Pacific and Atlantic salmon, certain freshwater shrimps and snails, 
American eels), which require both freshwater and marine habitats over their life cycles and therefore 
migrate along river networks, provide one of the clearest illustrations of biological connectivity. Many of 
these taxa are either obligate or facultative users of headwater streams, meaning that they either require 
(obligate) or can take advantage of (facultative) these habitats; these taxa thereby create a biological 
connection along the entire length of the river network. Id. (citing Erman and Hawthorne 1976; 
Wigington et al. 2006). For example, many Pacific salmon species spawn in headwater streams, where 
their young grow for a year or more before migrating downstream, living their adult life stages in the 
ocean, and then migrating back upstream to spawn. Many taxa also can exploit temporary hydrologic 
connections between rivers and floodplain wetland habitats caused by flood pulses, moving into these 
wetlands to feed, reproduce, or avoid harsh environmental conditions and then returning to the river 
network. Id. at 2-40, 2-43 (citing Copp 1989; Junk et al. 1989; Smock 1994; Tockner et al. 2000; 
Richardson et al. 2005).  

Biological connectivity does not solely depend on diadromy, however, as many non-diadromous 
organisms are capable of significant movement within river networks. Id. at 2-40. For example, organisms 
such as pelagic-spawning fish and mussels release directly into the water eggs or larvae that disperse 
downstream with water flow; many fish swim significant distances both upstream and downstream; and 
many aquatic macroinvertebrates move or drift downstream. Id. at 2-40 (citing, e.g., Elliott 1971; Müller 
1982; Gorman 1986; Brittain and Eikeland 1988; Platania and Altenbach 1998; Elliott 2003; Hitt and 
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Angermeier 2008; Schwalb et al. 2010). Taxa capable of movement over land, via either passive transport 
(e.g., wind dispersal or attachment to animals capable of terrestrial dispersal) or active movement (e.g., 
terrestrial dispersal or aerial dispersal of winged adult stages), can establish biotic linkages between river 
networks and wetlands, as well as linkages across neighboring river systems. Science Report at 2-40 
(citing Hughes et al. 2009). 

Gradients of biological connectivity (i.e., the active or passive movements of organisms through 
water or air and over land that connect populations) are determined primarily by species assemblages, and 
by features of the landscape (e.g., climate, geology, terrain) that facilitate or impede the movement of 
organisms. Science Report 6-10. For example, mass river insect migrations into headwater streams 
provide food subsidies to support young-of-year fish (Uno and Power 2015), including diadromous 
salmon (Bramblett et al. 2002). On the other hand, lower rates of movement between more isolated 
habitats can decrease the spread of pathogens (e.g., Hess 1996) and invasive species (e.g., Bodamer and 
Bossenbroek 2008) and increase regional biodiversity through adaptation to local conditions, (e.g., Fraser 
et al. 2011), increasing resiliency of aquatic species to changing landuse and climate. 

Human Activities and Alterations  

Human activities frequently alter connectivity between headwater streams, riparian/floodplain 
wetlands, non-floodplain wetlands, and downgradient river networks. Id. at 2-44. In doing so, they alter 
the transfer and movement of materials and energy between river system components. In fact, the 
individual or cumulative effects of headwater streams and wetlands on river networks often become 
discernible only following human-mediated changes in degree of connectivity. These human-mediated 
changes can increase or decrease hydrologic and biological connectivity (or, alternatively, decrease or 
increase hydrologic and biological isolation). Id at 2-44 to 2-45. For example, activities and alterations 
such as dams, levees, water abstraction, piping, channelization, and burial can reduce hydrologic 
connectivity between streams and wetlands and rivers, whereas activities and alterations such as wetland 
drainage, irrigation, impervious surfaces, interbasin transfers, and channelization can enhance hydrologic 
connections. Id. at 2-45. Biological connectivity can be affected similarly: For example, dams and 
impoundments might impede biotic movement, whereas nonnative species introductions artificially 
increase biotic movement. Further complicating the issue is that a given activity or alteration might 
simultaneously increase and decrease connectivity, depending on which part of the river network is 
considered. For example, channelization and levee construction reduce lateral expansion of the river 
network (thereby reducing hydrologic connections with floodplains), but might increase this connectivity 
downstream due to increased frequency and magnitude of high flows.  

The greatest human impact on riparian/floodplain wetlands and non-floodplain wetlands has been 
through wetland drainage, primarily for agricultural purposes. Estimates show that, in the conterminous 
United States, states have lost more than half their original wetlands (50%), with some losing more than 
90%; wetland surface areas also have declined significantly. Id. (citing Dahl 1990). 

Drainage causes a direct loss of function and connectivity in cases where wetland characteristics 
are completely lost. Id. at 2-45. In the Des Moines lobe of the prairie pothole region, where more than 
90% of the wetlands have been drained, a disproportionate loss of smaller and larger wetlands has 
occurred. Accompanying this loss have been significant decreases in perimeter area ratios—which are 
associated with greater biogeochemical processing and groundwater recharge rates—and increased mean 
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distances between wetlands, which reduces biological connectivity. Id. at 2-45 to 2-46 (citing Van Meter 
and Basu 2015). Wetland drainage also increases hydrologic connectivity between the landscape—
including drained areas that retain wetland characteristics—and downstream waters. Effects of this 
enhanced hydrologic connectivity include (1) reduced water storage and more rapid conveyance of water 
to the network, with subsequent increases in total runoff, baseflows, stormflows, and flooding risk; (2) 
increased delivery of sediment and pollutants to downstream waters; and (3) increased transport of water-
dispersing organisms. Id. at 2-46 to 2-47 (citing Babbitt and Tanner 2000; Baber et al. 2002; Mulhouse 
and Galatowitsch 2003; Wiskow and van der Ploeg 2003; Blann et al. 2009). Biological connectivity, 
however, also can decrease with drainage and ditching, as average distances between wetlands increase 
and limit the ability of organisms to disperse between systems aerially or terrestrially. Id. at 2-47 (citing 
Leibowitz 2003). Groundwater withdrawal also can affect wetland connectivity by reducing the number 
of wetlands. Of particular concern in the arid Southwest is that ground-water withdrawal can decrease 
regional and local water tables, reducing or altogether eliminating ground-water-dependent wetlands. Id. 
(citing Patten et al. 2008). Groundwater withdrawal, however, also can increase connectivity in areas 
where that ground water is applied or consumed. 

B. Peer Review of Report 

The process for developing the Science Report followed standard information quality guidelines 
for EPA. In September 2013, EPA released a draft of the Science Report for an independent SAB review 
and invited submissions of public comments for consideration by the SAB panel. In October 2014, after 
several public meetings and hearings, the SAB completed its peer review of the draft Science Report 
(hereafter, “SAB 2014a”). The SAB was highly supportive of the draft Science Report’s conclusions 
regarding streams, riparian and floodplain wetlands, and open waters, and recommended strengthening 
the conclusion regarding non-floodplain waters to include a more definitive statement that reflects how 
numerous functions of such waters sustain the integrity of downstream waters. SAB 2014a. The final peer 
review report is available on the SAB website, as well as in the docket for this final rulemaking. EPA 
revised the draft Science Report based on comments from the public and recommendations from the SAB 
panel.  

The SAB was established in 1978 by the Environmental Research, Development, and 
Demonstration Authorization Act (ERDDAA), to provide independent scientific and technical advice to 
the EPA Administrator on the technical basis for Agency positions and regulations. Advisory functions 
include peer review of EPA’s technical documents, such as the Science Report. At the time the peer 
review was completed, the chartered SAB was comprised of more than 50 members from a variety of 
sectors including academia, non-profit organizations, foundations, state governments, consulting firms, 
and industry. To conduct the peer review, EPA’s SAB staff formed an ad hoc panel based on nominations 
from the public to serve as the primary reviewers. The panel consisted of 27 technical experts in an array 
of relevant fields, including hydrology, wetland and stream ecology, biology, geomorphology, 
biogeochemistry, and freshwater science. Similar to the chartered SAB, the panel members represented 
sectors including academia, a federal government agency, non-profit organizations, and consulting firms. 
The chair of the panel was a member of the chartered SAB. 

The SAB process is open and transparent, consistent with the Federal Advisory Committee Act, 5 
U.S.C., App 2, and agency policies regarding Federal advisory committees. Consequently, the SAB has 
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an approved charter, which must be renewed biennially, announces its meetings in the Federal Register, 
and provides opportunities for public comment on issues before the Board. The SAB staff announced via 
the Federal Register that they sought public nominations of technical experts to serve on the expert panel: 
SAB Panel for the Review of the EPA Water Body Connectivity Report (via a similar process the public 
also is invited to nominate chartered SAB members). 78 FR 15012 (March 8, 2013). The SAB staff then 
invited the public to comment on the list of candidates for the panel. Once the panel was selected, the 
SAB staff posted a memo on its website addressing the formation of the panel and the set of 
determinations that were necessary for its formation (e.g., no conflicts of interest). In the public notice of 
the first public meetings interested members of the public were invited to submit relevant comments for 
the SAB Panel to consider pertaining to the review materials, including the charge to the Panel. Over 
133,000 public comments were received by the Docket. Every meeting was open to the public, noticed in 
the Federal Register, and had time allotted for the public to present their views. In total, the Panel held a 
two-day in-person meeting in Washington, DC, in December 2013, and three four-hour public 
teleconferences in April, May, and June 2014. The SAB Panel also compiled four draft versions of its 
peer review report to inform and assist the meeting deliberations that were posted on the SAB website. In 
September 2014, the chartered SAB conducted a public teleconference to conduct the quality review of 
the Panel’s final draft peer review report. The peer review report was approved at that meeting, and 
revisions were made to reflect the chartered SAB’s review. The culmination of that public process was 
the release of the final peer review report in October 2014. All meeting minutes and draft reports are 
available on the SAB website for public access. 

 

C. Updates to the Literature Since Publication of the Science Report 

The agencies requested that EPA’s Office of Research and Development (ORD) prepare an 
updated summary of the scientific evidence on the connectivity and downstream effects of streams 
(ephemeral, intermittent, and perennial) and both floodplain wetlands and open waters and non-floodplain 
wetlands and open waters since the publishing of the Science Report. The major conclusions of the 
Science Report are discussed in section I.A.i above.  

The goal of this update was to analyze and synthesize the peer-reviewed scientific literature 
published in or after 2014, the year determined to correspond with the finalization of the Science Report, 
and summarize the updated “scientific understanding about the connectivity and mechanisms by which 
streams and wetlands, singly or in aggregate, affect the physical, chemical, and biological integrity of 
downstream waters.” Science Report at ES-1. 

As discussed in this section, since the publication of the Science Report in 2015, the published 
literature has supported the conclusions of the Science Report and has expanded scientific understanding 
and quantification of functions that ephemeral streams and non-floodplain waters perform that affect the 
integrity of larger downstream, particularly in the aggregate. See also Sullivan et al. 2019a, 2019b, 2020; 
CASS 2021. For example, the more recent literature (i.e., 2014-present) has strengthened the scientific 
evidence underpinning the findings that non-floodplain wetlands have demonstrable hydrologic and 
biogeochemical downstream effects, such as decreasing peak flows, maintaining baseflows, and 
performing nitrate removal, particularly when considered cumulatively.  
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In addition to the screening process discussed in this section, the agencies also reviewed 
additional peer-reviewed literature published in or after 2014, including scientific references that were 
provided to the agencies as part of the public comment process for the proposed rule. The review of this 
additional literature is discussed in section I.C.vi. below. EPA’s Science Advisory Board (SAB) also 
chose to review the proposed rule, including aspects of the Technical Support Document, for technical 
and scientific accuracy. The SAB’s review is discussed in section I.G.  

i. Update Process 

The specific charge questions addressed in this update are the same as the Science Report (p. 1-1) 
report, namely:  

A. What are the physical, chemical, and biological connections to and effects of ephemeral, 
intermittent, and perennial streams on downstream waters (e.g., rivers, lakes, reservoirs, 
estuaries)?   

B. What are the physical, chemical, and biological connections to and effects of riparian or 
floodplain wetlands and open waters (e.g., riverine wetlands, oxbow lakes) on downstream 
waters?   

C. What are the physical, chemical, and biological connections to and effects of wetlands 
and open waters in non-floodplain settings (e.g., most prairie potholes, vernal pools) on 
downstream waters?   

Definitions used in this analysis follow the glossary available in the Science Report (i.e., at A-5 
onwards) and Appendix B of this document. 

ORD subject-matter scientists identified an initial database of 553 scientific peer-reviewed papers 
relevant to the specific charge questions (i.e., questions related to the connectivity and/or effects of (a) 
ephemeral, intermittent, and perennial streams, (b) floodplain wetlands and open waters, or (c) non-
floodplain wetlands and open waters) (Supplementary Material A). The focal paper citation database 
(n=553) was screened for duplicates and provided to EPA’s Health and Environmental Research Online 
(HERO) library research service. HERO library science staff conducted a ‘forward-citation mapping’ 
analysis within the Web of Science (WoS) global citation database for the 553-forward citation-mapping 
papers that had identifiers within the WoS. There were 17,044 peer-reviewed scientific papers published 
from 2014 onwards within WoS that had cited one or more of the 553 relevant papers provided by ORD. 
These 17,044 papers were the set from which all three evidentiary reviews were conducted.  

To analyze the updated scientific evidence within the available time frame, ORD scientists 
determined to include or exclude articles based on the paper’s relevance to the specific charge questions 
through a review of the title and abstract of the scientific articles within the SWIFT-Active Screener 
environment (v. 1.061.0514 through v. 1.061.0527, Sciome, LLC., Research Triangle Park, NC). SWIFT-
Active Screener is a software program designed to facilitate collaborative systematic reviews through 
application of a machine-learning algorithm that incorporates reviewer feedback (i.e., include/exclude) to 
prioritize a population of articles for screening (Howard et al. 2020). Concurrently, a separate model 
within SWIFT-Active Screener estimates how many relevant articles remain in the screening pool; ORD 
established a target of 95% recall, or “…the percentage of truly relevant documents [to be] discovered 
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during screening.” Howard et al. 2020 at 4. These two models within SWIFT-Active Screener provide the 
opportunity to rapidly identify and screen the relevant articles from a dataset, in this case 17,044 scientific 
papers.  

ORD identified 15-20 papers from the 17,044 that were selected as an initial training set for each 
of the evidentiary reviews (i.e., ephemeral, intermittent, and perennial streams; floodplain wetlands and 
open waters; and non-floodplain wetlands and open waters; Supplementary Material B). These 15-20 
papers were identified through preliminary screening as likely relevant (i.e., likely to be included) in the 
active learning model, and these papers were moved to the top of the screening prioritization (i.e., 
screened within the 30 papers presented to reviewers). This initiated the model building within SWIFT-
Active Screener; this model was retrained after every 30 papers were screened. Howard et al. 2020. Three 
ORD scientists independently screened at least 1,000 scientific papers each for the evidentiary review on 
the connectivity and downstream effects of ephemeral, intermittent, and perennial streams. A separate 
ORD screening team independently screened at least 1,000 scientific papers each focusing on floodplain 
wetlands and open waters; that same team of three also independently screened at least 1,000 scientific 
papers each on non-floodplain wetlands and open waters.  

During the screening process, ORD scientists read and reviewed the title and abstract (hereafter 
abstract) of each paper presented and determined if the paper was relevant to the appropriate charge 
question noted above. If papers were determined to be relevant, several additional questions were 
presented to the screener to extract further information associated with the charge questions (e.g., the 
types of aquatic systems studied, etc.) and the ORD reviewer checked the appropriate boxes based on 
knowledge gleaned from the abstract. Importantly, a question specific to the major conclusions of the 
Science Report (see sections I.A.i and I.A.ii) was asked of each included paper. For instance, the 
screeners assessed abstracts for included papers and considered the following statements for each paper, 
having re-familiarized themselves with the full-text major conclusions of the Science Report. Note that 
five of the six screeners were co-authors of the Report, and the remaining screener has worked as a 
Research Ecologist on this topic since 2012. Thus, the ORD scientists who served as screeners were 
subject-matter experts and well-versed in the Science Report and its conclusions, as well as literature that 
has been published since the Report’s release. The Report’s conclusions were as follows: 

Streams: The scientific literature unequivocally demonstrates that streams, individually or 
cumulatively, exert a strong influence on the integrity of downstream waters. All tributaries, 
regardless of size or flow duration, are physically, chemically, and biologically connected to 
downstream waters and strongly influence their function. 

Floodplain Wetlands and Open Waters: Wetlands and open waters in riparian areas and 
floodplains are physically, chemically, and biologically integrated with rivers via functions that 
improve downstream water quality. These systems buffer downstream waters from pollution and 
are essential components of river food webs. 

Non-Floodplain Wetlands and Open Waters: Wetlands and open waters located outside of 
riparian areas and floodplains, even when lacking surface water connections, provide numerous 
functions that could affect the integrity of downstream waters. Some benefits of these wetlands 
are due to their relative isolation rather than their connections. 
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For this particular question, screeners chose from the following answers: supports findings, 
refutes findings, cannot be discerned. The full list of questions asked and possible answers for selection 
are listed in Supplementary Material C. 

ii. Results 

1. Process 

ORD subject-matter experts screened the abstracts of 12,659 scientific papers across the three 
aquatic system topic areas. Papers were assessed on connectivity and downstream effects of ephemeral, 
intermittent, and/or perennial streams (total papers screened = 4,194, 24.6% of the scientific literature 
published in or after 2014), floodplain wetlands and open waters (total screened = 4,183, 24.5% of the 
presented scientific literature), and non-floodplain wetlands and open waters (total screened =4,282, 
25.1% of the presented scientific literature). The total number of papers screened by each reviewer varied 
by aquatic system, with stream screeners ranging from 1,200-1,527 papers screened (average = 1,398), 
floodplain wetland and open water screeners ranging from 1,273-1,600 (average = 1,394), and non-
floodplain wetlands and open waters ranging from 1,080-2,100 (average = 1,427). ORD screeners did not 
reach their SWIFT-Active Screener informed discovery and review target of 95% of the relevant literature 
(Howard et al. 2020) for any of the three aquatic systems analyzed. When the SWIFT-Active Screener 
recursive model-rebuilding ended for stream systems, 986 of 1,225.5 papers were included for a recall 
value of 80.5%. Floodplain wetland and open water systems screeners included 660 papers of a predicted 
813.8, a recall value of 81.1%. The calculated non-floodplain wetlands and open water systems recall 
value was 89.6%, with 491 papers of 547.8 included.  

The vast majority of the relevant papers were found earlier in the process, with fewer and fewer 
relevant papers found towards the end (e.g., frequently dozens to hundreds of papers screened prior to 
finding a relevant paper to include as the screening process neared completion). 

The ratio of included to excluded papers varied between screeners and across the three systems 
analyzed. The total included (n=2,137) to excluded (n=10,522) resulted in a ratio of 0.20; the 
include:exclude ratio was lowest for non-floodplain wetlands and open waters (0.13, indicating fewer 
papers were included), 0.19 for floodplain wetlands and open waters, and 0.31 for stream systems. The 
include:exclude ratio across screeners ranged from 0.10 to 0.34. Of the 2,137 total papers included, there 
were 2,022 unique papers, as 115 papers were relevant to multiple systems. The 2,022 unique papers are 
listed in Appendix C1. 

2. Analysis and Synthesis 

a. Ephemeral, Intermittent, and/or Perennial Streams  

Nine hundred and eighty-six (986) scientific papers published in or after 2014 were included by 
the screeners. See Appendix C1. The stream type(s) (e.g., ephemeral, intermittent, perennial, headwater 
[first- to third-order streams, can be ephemeral, intermittent, or perennial] for included papers was 
discernable in 38% of the papers (n=379; further analyzed below), with 607 papers not sufficiently 
descriptive to determine the stream type.  
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Across all screened and included papers (n=986), biological connectivity and effects was the 
most commonly reported type (n=344, or 35%), followed by physical (n=200, 20%) and chemical 
(n=163, 17%). Multiple types of connectivity and effects were noted in 265 (27%) papers, with physical 
and biological (n=122, 12%) and physical and chemical (n=101, 10%) more commonly found than 
chemical and biological (n=10, 1%). All three connectivity and effects types were reported in 32 papers 
(3%). Thirteen papers were noted as “connection and effects type[s]” could not be discerned, and one 
paper was marked as chemical connectivity and effects as well as “effect type cannot be discerned.” The 
plurality of the papers were marked as addressing watershed-scales (e.g., cumulative connections and 
effects; n=379 or 38%), followed by reach-scale studies (n=360, 37%), and “scale not discernable” in 211 
papers (21%). Both reach and watershed scales were marked in 32 papers (4%). The location of most 
studies (n=613, 62%) was not discernible from the abstract (e.g., a specific geographic location was not 
given in the abstract) or noted as outside of the United States. The balance was noted as having sufficient 
information in the abstract, such as a place name, to select occurring in the United States or parts thereof 
(n=373, 38%). The contributions of climate change, land use, or water use on connectivity and effects of 
the aquatic systems were analyzed for each paper. Most papers screened were noted as having no 
interacting effects (n=581, 59%), though climate interactions (n=167, 17%) and land use (n=132, 13%) 
were frequently noted, as was a combination of interacting effects (n=78, 8%). Water use was noted as an 
interacting effect in 28 papers (3%). 

The screeners assessed whether the abstract contained sufficient information to support or refute 
the major conclusions on stream systems from the Science Report (discussed in sections I.A.i and I.A.ii). 
Forty-eight percent (n=471) of the papers were determined to lack sufficient information to assess their 
support or refutation vis-à-vis the conclusions. Of the remaining 515 papers, 506 (98%) were found to 
support the physical, biological, and chemical connectivity and effects of stream systems on 
downgradient waters. Four papers (1%) were marked as refuting the findings, while two were marked as 
both supports and refutes the findings. Three additional papers were marked as both supports the findings 
and support or refutation “cannot be discerned.” 

Analyzing a subset of papers where stream type was discernable to the screeners (379 of 986 
papers, or 38%), the majority of the papers with indicated stream type(s) identified headwaters (n=179, 
47%). Screeners noted ephemeral in 26 papers (7%), intermittent in 44 (12%), and perennial in 22 (6%), 
with the balance of papers a combination of types. Analyzing the 379 papers with known stream types, 
biological connections and/or effects were the most commonly reported (n=111, 29%), followed by 
physical (n=77, 20%), then chemical (n=73, 19%). Fifty-three papers (14%) were noted to have both 
physical and biological connections and/or effects, 38 (10%) had physical and chemical, and 21 (6%) had 
all three connectivity and effects types. Watershed-scale connectivity and effects were most commonly 
marked (n=166, 44%) followed by reach-scale (n=147, 39%) and both reach-scale and watershed-scale 
(n=16, 4%). The scale of the study could not be discerned in 50 of the screened papers with a known 
stream type denoted (13%). Forty percent of the studies (n=151) were noted as occurring in the United 
States or parts of the United States, whereas the location could not be discerned or did not encompass the 
United States in 60% (n=228) of the papers. Climate (n=80, 21%) and land use (n=53, 14%) were the 
most commonly occurring interactions noted, along with water use (n=11, 3%) and any combination of 
interacting effects (n=32, 8%). 
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Of the included papers with a known stream type marked (n=379), whether the conclusions 
supported or refuted the Science Report could be discerned in 224 of the papers (59%). Based on the 
abstracts read, the scientific papers reviewed with known types denoted unequivocally supported the 
connectivity and effects of ephemeral, intermittent, perennial, and headwater stream systems with 219 
(98%) supporting the major conclusions of the Science Report and one paper noted as refuting the 
findings. Three papers were marked as supports and “cannot be discerned” and one paper was marked as 
both supports and refutes.  

A further analysis was conducted on two smaller paper subsets on ephemeral streams (n=28) and 
both ephemeral and intermittent streams (n=70). Twenty-eight were marked as focusing on ephemeral 
streams (n=28, i.e., marked as ephemeral [n=26], ephemeral and headwater [n=1], and ephemeral and 
“stream type not discernable [n=1]). Of these, 22 papers were noted as supporting the Science Report 
major conclusions and zero papers were marked as refuting the findings. Two additional papers noted as 
both supporting and “cannot be discerned.” Support or refutation could not be discerned in an additional 
four papers.  

An additional 70 papers (19%) were demarcated as ephemeral and intermittent (n=14), 
intermittent (n=44), headwater and intermittent (n=11), and headwater plus ephemeral and intermittent 
(n=1). Support or refutation was discerned in 35 of those papers. The data presented to the screeners in 
the abstracts were sufficient for all 35 (100%) to be denoted as supporting the major conclusions of the 
Science Report, namely that these systems were physically, chemically, and/or connected to and exerted a 
strong influence on downgradient waters.  

b. Floodplain Wetlands and Open Waters 

Based on the content of the abstracts read by the screeners, six hundred and sixty (660) scientific 
papers published in or after 2014 were included for analyses. Of these, 62% (n=406) were noted as 
focusing specifically on floodplain (or riparian) wetlands and open waters (further analyzed below), 31 
(5%) on riverine (i.e., within channel) systems, 92 (14%) addressed multiple wetland types (e.g., riverine, 
floodplain wetlands, non-floodplain wetlands, etc.), and 33 (5%) lacked sufficient information to discern 
the aquatic system.  

Biological connections and effects were noted as the most commonly occurring in the papers 
reviewed (n=195, 30%), followed by chemical (n=144, 22%) and physical (n=143, 22%). Multiple 
connections and effect types were frequently noted, with both physical and chemical most common 
(n=103, 16%), followed by physical and biological (n=34, 5%), and chemical and biological (n=10, 2%). 
Eighteen papers (3%) were marked as having all three types of connections and effects, and 13 papers 
(2%) were noted as connection and/effect type could not be discerned.  

The scale of most screened and included papers were individual functions, connections, and 
effects (n=174, 26%) and landscape-scale analyses (n=162, 25%); 123 papers were marked as addressing 
both scales (19%). Fifty-three papers (8%) focused on watershed-scale analyses, while 57 (9%) noted 
both an individual and watershed-scale focus, 57 (9%) addressed landscape- and watershed-scales, and 14 
(2%) addressed all three listed scales. Twenty-six papers (4%) lacked sufficient information for screeners 
to note scale, and one paper noted both landscape-scale and “scale not discernable.” Thirty-nine percent 
(n=254) of the papers emanated from studies in the United States, whereas the balance (n=406) either 
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were outside of the United States or the study location could not be discerned from the abstract. Most 
papers did not have interacting effects noted (n=567, 86%), though 34 papers noted climate and 33 land 
use (5% each). Both water use and any combination of the three interacting effects were noted to occur in 
13 papers (2% each). 

The Science Report concludes that wetlands and open waters in riparian areas and floodplains are 
physically, chemically, and biologically integrated with rivers through functions that affect downstream 
water quality. Based on the abstracts reviewed from scientific papers published in or after 2014, 449 
papers presented sufficient material in the abstract relative to this finding. Of those papers, 95% (n=427) 
supported the conclusion, with another 3% (n=12) marked as supports and cannot be discerned. Seven 
papers (2%) were noted as both supporting and refuting, two papers were marked as refutes and cannot be 
discerned, and one paper was marked as refuting the major conclusions.  

Focusing specifically on a subset of papers with the aquatic system type noted as floodplain 
wetlands and open waters (n=406), these focal aquatic systems were found to mainly connect and/or 
affect flowing waters through biological connections and effects (n=123, 30%), followed by physical 
(n=85, 21%) and chemical (n=81, 20%) connections and effects. Both physical and chemical connections 
were noted on 76 papers (19%), followed by physical and biological (n=25, 6%), and chemical and 
biological (n=5, 1%). All three connectivity and effects types (n=7, 2%) were found infrequently, and 
connection and effect type were not discernable in four papers (1%).  

Individual system-scales of analyses was the most commonly selected scale (n=121, 30%), 
followed by landscape-scale (n=76, 19%); both were pipped in 96 papers (24%). Watershed-scale studies 
were noted in 29 cases (7%), and both individual and watershed-scales in 41 papers (10%), and 
landscape- and watershed-scales in 22 papers (5%). All three scales of analysis were denoted in nine 
papers (2%), whereas no scale was discernable in twelve papers (3%).  

Findings related to the major conclusions of the Science Report were discerned in 298 of the 406 
papers that focused on floodplain wetlands and open waters (74%). Of those 298 papers, 98% were found 
to support the findings on the interrelatedness and connectivity of floodplain wetlands and open waters 
with rivers. Four papers (1%) were marked as both supporting and “cannot be discerned.” Two papers 
(1%) were noted as both supporting and refuting the major conclusions. 

c. Non-Floodplain Wetlands and Open Waters 

Four-hundred and ninety-one (491) scientific papers published in or after 2014 were included by 
the screeners, and 51% (n=250, further analyzed below) were marked as explicitly focusing on known 
non-floodplain wetland types. A further 113 (23%) were marked as either multiple wetland types and 
spatial locations, and 20 (4%) had both “explicitly about known non-floodplain wetland type” and 
“multiple wetland types” marked. Six papers were marked as both multiple wetland types and wetlands 
type not discernable (1%). Wetland type was not discernable in 102 included papers (21%).  

Physical connectivity and/or effects were most commonly noted (n=160, 33%), followed by 
biological connectivity and/or effects (n=147, 30%), and chemical connectivity and/or effects (n=90, 
18%). Multiple connectivity and/or effects were frequently marked (n=82, 17%), with all but four (1% 
noted as chemical and biological) including physical connectivity and/or effects (e.g., 48 papers marked 
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as addressing physical and chemical effects, 12 papers addressing physical and biological, and 18 papers 
including all three connectivity types). The frequency of physical connectivity and effects was likely a 
result of surface, shallow subsurface, or groundwater serving as the physical medium directly connecting 
non-floodplain wetlands to downgradient systems. Surface water, shallow subsurface water, or 
groundwater also serves to functionally connect non-floodplain wetlands, for instance by mobilizing 
dissolved or entrained materials into non-floodplain wetlands whereby lags, transformation, or sink 
functions affecting downgradient systems occur. Leibowitz et al. 2018.  

The plurality of papers (n=182, 37%) addressed landscape-scale types of connections and effects 
(e.g., connections, functions, and/or effects on other features, such as a stream). One hundred and two 
papers (21%) focused on watershed-scale downgradient or downstream cumulative connections, 
functions, and/or effects, while 75 papers (15%) were noted as addressing functions or scales associated 
with individual wetland and open waters. Fifty-seven (12%) addressed individual and landscape scales 
while 40 were marked as both landscape and watershed connections (8%). Twelve were marked as 
individual and watershed scales (2%), five were noted as a combination of all three scales (1%), and 18 
(4%) did not have scale discernible from the abstracts. Fifty-two percent (n=257) were marked as being 
conducted in the US or parts thereof. Sixty-five percent (n=317) lacked interacting effects while 17% 
(n=81) involved climate effects and 12% (n=61) addressed land use effects. Seventeen papers (n=4%) 
addressed water use and fifteen papers (3%) addressed some combination of the three effects.  

Two hundred and thirty papers (47%, n=230) of included scientific papers (n=491) presented 
sufficient information in the abstract to assess findings vis-à-vis the major conclusions from the Science 
Report. Of the 230 papers assessed, 97% (n=223) were marked as supporting the findings of the Science 
Report. Three papers (1%) were noted as refuting the findings, two papers (1%) were noted as both 
supporting and refuting, and two papers (1%) were noted as supporting and “cannot be discerned.” 

There were 250 papers (51% of 491 included papers) marked as explicitly focusing on known 
non-floodplain wetland and open water types. Of these papers, most were noted as having physical 
connectivity and effects (n=89, 36%) followed by biological (n=68, 27%), and chemical (n=53, 21%); 
connection and/or effect type(s) were not discernable in seven papers (3%). Twenty papers were noted as 
addressing physical and chemical connectivity and effects (8%), with two each of physical and chemical 
or biological and chemical (1% each). Nine papers (4%) addressed all three connectivity and effects 
types. The scale of the included studies specific to non-floodplain wetland types tended towards 
landscape-scale papers (n=86, 34%), followed by watershed-scale papers (n=46, 18%), and individual 
wetlands and waters were noted as the paper focus in 45 instances (18%); 10 papers were marked as 
“scale not discernable” by the screeners (4%). Thirty-six papers (14%) were noted as addressing both 
individual and landscape-scale analyses, while 15 (6%) were marked as both landscape- and watershed-
scale, and eight (3%) marked as individual and watershed-scale. Four papers (2%) were noted to be a 
combination of all three scales. Sixty percent (n=149) of the papers noted research was conducted in the 
United States or parts of the United States. Most papers (n=154, 62%) did not include an interacting 
effect. Forty-five papers addressed climate interactions (18%), 35 addressed land use (14%), six 
addressed water use (2%), and 10 papers had a combination of interacting effects. 

Major conclusions from the Science Report on the connectivity and effects of non-floodplain 
wetlands and open waters on downstream waters state that these systems provide numerous functions that 
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could affect the integrity of downstream waters, and that some benefits of these wetlands emerge from 
their relative isolation (or disconnectivity) rather than their connections. The finding was supported when 
sufficient information was available in the abstract to assess. Across papers marked as explicitly focusing 
on known non-floodplain wetland types and sufficiently descriptive to assess the findings vis-à-vis the 
major conclusions (n=133 of 250), 99% of all papers (n=131) were found to support the findings, with 
one paper marked as both supporting and refuting the findings, and one paper noted to refute the findings.  

iii. Discussion 

The goal of this summary review of the scientific evidence was to analyze and synthesize the 
peer-reviewed scientific literature (published in or after 2014) and to provide updates on the “…scientific 
understanding about the connectivity and mechanisms by which streams and wetlands, singly or in 
aggregate, affect the physical, chemical, and biological integrity of downstream waters.” Science Report 
at ES-1. As noted, the summarized state-of-the-science in the Science Report is given in sections I.A.i and 
I.A.ii; updated assessments of the state of the science were peer-reviewed and published as a Featured 
Collection in the Journal of the American Water Resources Association. Alexander et al. 2018; Fritz et al. 
2018; Goodrich et al. 2018; Lane et al. 2018, Leibowitz et al. 2018; Schofield et al. 2018.  

The analysis by ORD subject-matter experts summarized in this document was conducted over a 
six-week period and consisted of reviewing the titles and abstracts of identified peer-reviewed literature 
published in or after 2014. The resulting citation database, with analysis of trends and illustrative 
summaries of abstracts for papers published since 2014, confirm that recent research reinforces the major 
conclusions of the Science Report, and that this report remains the authoritative standard regarding the 
connections, disconnections, and resulting effects between the nation’s streams, rivers, lakes, estuarine 
systems and seas, and the focal aquatic systems summarized here: (a) ephemeral, intermittent, and 
perennial streams, (b) riparian or floodplain wetlands and open waters, and (c) wetlands and open waters 
in non-floodplain settings.  

The screening process recovered a number of papers that directly addressed data gaps or needs 
identified in the Science Report and identified meaningful trends in the scientific literature published in or 
after 2014. For instance, the scientific literature published in or after 2014 on the downgradient 
connectivity and effects of non-floodplain wetlands and open waters has notably and markedly expanded 
the total available literature on these systems. Research published in or after 2014 has seen an increase in 
studies on connectivity and effects across multiple spatial scales, from individual systems to landscape- 
and watershed-scale findings reviewed here support the findings of the Science Report as well as fill data 
gaps. For example, 133 papers reviewed were marked as specifically focusing on a known non-floodplain 
wetland and/or open water and sufficiently descriptive to address the major conclusions. Of those, 99% 
(n=131) were reported to support the conclusions of the Science Report, noting the nutrient removal, 
flood-peak attenuation, base-flow maintenance, and habitat functions of non-floodplain wetlands and 
open waters affecting downgradient aquatic systems. These scientific advancements now provide a solid 
scientific foundation that builds upon the Scientific Report’s conclusions on wetlands and open waters in 
non-floodplain wetland settings. Based on the abstracts reviewed here, and on a recent review by Lane et 
al. (2018) which also updated the Science Report, the literature demonstrates that non-floodplain 
wetlands and open waters, particularly when evaluated in the aggregate, have substantive effects on 
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downstream waters through hydrological, biogeochemical, and biological connectivity pathways and 
gradients, performing functions affecting downstream water integrity.  

The Science Report concludes that all tributaries, including ephemeral and intermittent systems, 
are demonstrably and conclusively connected downgradient through physical, chemical, and biological 
pathways. Nearly 100 scientific papers published in or after 2014 specifically addressing the connectivity 
and effects of ephemeral and intermittent stream systems were identified through the screening process 
(98 papers; 28 ephemeral stream studies plus 70 ephemeral and intermittent stream studies). When 
sufficient information in the abstracts from which to draw conclusions was available (57 papers), 100% of 
the papers were noted by abstracts reviewed here to support the finding that these stream systems, 
individually and cumulatively, exert a demonstrative effect on downstream waters. These additional 
papers further underpin while continuing to advance the scientific findings specific to ephemeral and 
intermittent systems. 

Likewise, riparian and floodplain wetlands and open waters were found in the Science Report to 
be integrated with and connected to downgradient waters through processes that improve water quality, 
recharge groundwater, and attenuate storm flows. In this analysis, 98% of 298 scientific papers published 
in or after 2014 that explicitly focused on floodplain wetlands and open waters were found to support the 
Science Report, underlining the connections between and multiple functions performed by floodplain 
wetlands and open waters directly affecting downgradient rivers, streams, lakes, and other larger waters. 

The abstracts reviewed for this analysis included studies conducted outside of the United States. 
This research was reviewed to investigate the validity of scientific principles developed from studies 
inside the United States by comparing them to principles developed from research on similar systems in 
other locations. For example, studies on the Canadian Prairie Pothole Region encompass wetlands north 
of the Prairie Pothole Region in the United States that are part of the same ecoregion, and provide insights 
into the intrinsic functions of similar wetlands in the United States that are generally more drained or 
filled for agriculture and other purposes. In addition, research on ephemeral streams in arid regions of 
Australia can be informative of the functions of similar ephemeral streams in arid portions of the United 
States.  

The sections below provide a scientific narrative on the connectivity, functions, and effects of the 
three aquatic systems on downgradient rivers, streams, and other larger waters that draws on findings 
from the screening, as well as the available scientific literature. The screeners identified papers within 
each of the three focal systems analyzed wherein connectivity and/or effects were illustrative; these 
papers were noted and a plain-text assessment of their content provided in Appendix C2. Incorporation of 
additional peer-reviewed scientific literature places the summary review in the context of the existing 
scientific knowledge on the connectivity and effects of ephemeral, intermittent, and perennial streams, 
floodplains and open waters, and non-floodplain wetlands and open waters on downstream waters. After 
contextualizing the findings, the few papers found in the screening of the titles and abstracts marked as 
disagreeing with the findings of the Science Report are discussed. This section concludes with a note on 
the benefits and limitations of this analysis.  



Page 57 of 564 

1. Ephemeral, Intermittent, and Perennial Streams 

The Science Report, as well as the peer-reviewed updated synthesis of the scientific literature by 
Fritz et al. (2018), Schofield et al. (2018), and Goodrich et al. (2018), conclude that the scientific 
evidence unequivocally demonstrates that streams, including ephemeral, intermittent, and perennial 
streams and rivers are physically, chemically, and biologically connected to downstream rivers via 
channels and associated alluvial deposits. The scientific evidence in the Science Report (and Fritz et al. 
2018, Schofield et al. 2018, Goodrich et al. 2018) notes that streams, individually or cumulatively, exert a 
strong influence on the integrity of downstream waters, and that all tributaries, regardless of size or flow 
duration, are connected to and strongly influence the functioning of downstream waters. ORD’s analyses 
of 4,194 relevant abstracts published in or after 2014 supports these findings.  

The past seven years of published, peer-reviewed scientific literature have seen an increased 
research focus on the extent, abundance, connectivity, and effects of these flowing water systems. For 
instance, though Horton (1945) established that headwater streams are the most abundant components of 
the fluvial network, recent estimates suggest that nearly 89% of global stream longitudinal extent is 
comprised of headwater stream systems. Allen et al. 2018. In the United States, headwater stream systems 
represent ~50-80% of the total currently mapped conterminous United States stream length (Nadeau and 
Rains 2007; Hill et al. 2014; Colvin et al. 2019), certainly an underestimation of headwater stream 
abundance (Fesenmyer et al. 2021). For instance, Fritz et al. (2013) analyzed nine forest watersheds and 
determined that the high-resolution (1:24,000-scale or better) National Hydrography Dataset (NHD) 
depicted only 21-33% of the actual linear stream network length in seven of the nine watersheds. 
Fesenmyer et al. (2021) recently coupled the high-resolution NHD with a contributing area threshold 
model, concluding that 48% of stream length in the conterminous United States is likely ephemeral (43-
56%, depending on flow-area characteristics).  

Ephemeral, intermittent, and perennial stream networks are hydrologically connected to 
downstream systems, from the source area of headwaters to the flowing waters connected downgradient, 
to their terminus at endorheic lakes or estuarine systems. For instance, headwater streams supply the 
majority of flow in most river systems. Alexander et al. 2007; Fritz et al. 2018. By providing flows to 
higher-order systems that comprise the full watershed network, headwaters directly connect to and affect 
downstream waters.  

Flow response in headwater streams from precipitation varies regionally, affected by 
transmission, evaporation, transpiration, and groundwater recharge. The headwater streamflow response 
to precipitation and downgradient volume contributions can be nonlinear, with substantial increases (and 
decreases) in flow volumes as headwater-drained contributing areas become active on the rising limb and 
inactive on the falling limb of the hydrograph. McGuire and McDonnell 2010; Bergstrom et al. 2016. For 
instance, van Meerveld et al. (2019) noted that travel times (e.g., of water, material in the stream network, 
etc.) changed based on stream-network extension (during periods of higher precipitation) and retraction 
(during periods of lower precipitation). Travel times were skewed towards shorter, faster transit of 
dissolved and entrained materials during wetter periods as the stream network fully reconnected and 
longer, more uniform travel times during drier periods as the network retracted.  

The spatial and temporal distribution of river network connectivity is a primary nonlinear control 
on the network’s precipitation-runoff response. Bachmair and Weiler 2014. When water begins to flow in 
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headwater tributaries and longitudinally connect with other parts of the network, their confluence with 
larger-order streams can have profound effects on the receiving system due to the abrupt increase in 
water, sediment, wood, and other entrained materials. Benda et al. 2004a; Xu 2016. For instance, 
sediments from ephemeral tributaries provided important salmonid habitat in downgradient waters in a 
study in the United Kingdom. Marteau et al. 2020. Reconnecting a tributary to downgradient receiving 
waters increased sediment yield to the receiving water by 65%. Marteau et al. 2017.  

As the network contracts and disconnects during hydrograph recession, streams that were 
temporarily higher-order systems (e.g., stream order 2+, depending on flow characteristics) revert to 
performing headwater stream functions. Phillips et al. 2011. Godsey and Kirchner (2014) demonstrated 
the dynamism of headwater networks, mapping a 2.6 to 7.5-fold increase in both flowing network lengths 
and drainage densities in four drainages between fall (dry conditions) and spring (wet conditions). 
Surface-flow disconnected, low-order stream reaches may also function similarly to ponded or perched 
wetland systems (e.g., Rains et al. 2006) until network re-wetting and subsequent expansion. For 
instance, Gallo et al. (2020) found Arizona streams in their study area – which were noted to be important 
groundwater recharge systems – were highly variable in their expansion and retraction. Streams supported 
flowing waters for 0.6-82.4% of the time, but water was present for 4-33x longer than the stream flow 
(from 10-301 days) likely providing habitat, a water source, aquatic refugia, and a biogeochemically 
active area. 

The dynamic nature of headwater streams and downgradient connectivity is well-supported in the 
literature – headwater streams are neither spatially nor temporally invariant but rather dynamic systems 
that expand, contract, fragment, and reconnect across predictable spatial and temporal scales. Hewlett and 
Nutter 1970. The heterogeneity of dynamic flow paths creates storage and (subsequent) flow asynchronies 
by ephemeral, intermittent, and perennial stream systems, by delaying and attenuating downgradient 
storm flows and maintaining baseflows. Saco and Kumar 2002. Similarly, the variability in vulnerable 
water source area expansion and contraction (i.e., parts of watersheds that generate overland flow) 
produces subsequent variability in the timing of headwater stream connectivity at the reach-scale. The 
connectivity response by ephemeral, intermittent, and perennial streams thereby affects the timing and 
magnitude of watershed-scale hydrological fluxes in non-linear ways. The convolution of these diverse 
vulnerable water storages and flows across watersheds imparts hydrological stability, deepening the 
aquatic network’s resistance to drought and deluge perturbations See, e.g., Chezik et al. 2017; Li 2019; 
Rupp et al. 2021.  

Headwater streams without apparent surface flow often have complex and abundant hyporheic 
flow that maintains a downgradient hydrological connection, supports characteristic surface flows 
(Covino 2017; Magliozzi et al. 2018), and maintains habitats. In fact, Stanley et al. (1997) noted that in 
arid environments, streams and rivers unconstrained by valley topography may have zero surface flow for 
weeks to months yet flow in the hyporheic zone for thousands of meters before reconnecting with (and 
hence directly affecting) the surface-flowing network. Ebersole et al. (2015) found that even where they 
do not provide direct habit for salmon themselves, ephemeral streams can contribute to the habitat needs 
of salmon by supplying sources of cold water that these species need to survive (i.e., by providing 
appropriate physical conditions for cold water upwelling to occur at river confluences), transporting 
sediment that supports fish habitat downstream, and providing and transporting food for juveniles and 
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adults downstream. Similarly, Kelson and Carlson (2019) determined that groundwater discharge to 
tributaries in California were important in supporting steelhead trout habitat, especially during dry years.  

Many organisms use and connect the entirety of the stream network, including ephemeral, 
intermittent, and perennial reaches. Schofield et al. 2018. Koizumi et al. (2017) found that a small 
tributary dried during the summer, yet four months after resuming flow, >10,000 immature fish of three 
species (including rainbow trout) were found using the stream. Samia and Lutscher (2017) showed that 
upstream habitats are important refugia maintaining organisms (i.e., fish), especially those with high 
dispersal abilities, during hydrologic disturbances (e.g., droughts, floods). Upstream systems, such as 
headwater streams, contribute to downstream protist and rotifer community persistence and stability in the 
face of disturbances. Seymour et al. 2015. Teachey et al. (2019) reported that a microbial study in 
Georgia showed that upgradient systems repeatedly enriched (or repopulated) down-stream systems, 
contributing to the stability of the aquatic network. Similarly, variation in stream networks and habitat 
mosaics across a large, free-flowing watershed in Alaska was shown to support Pacific salmon 
populations by maintaining resilient natal and juvenile rearing habitat in face of climatic and other 
perturbations. Brennan et al. 2019. In some cases, headwater stream networks and dispersal dynamics 
increase or decrease genetic diversity, which was found by Chiu et al. (2020) to also depend on 
metapopulation (i.e., a group of spatially distributed populations) characteristics of macroinvertebrates.  

Headwater streams are biogeochemical reactors within hydrologic networks, transforming and 
sequestering materials affecting downgradient physical and chemical characteristics and concentrations 
along the full aquatic network. Sanford et al. 2007; Creed et al. 2015; Fritz et al. 2018. The full extent of 
the draining river network routes significant material fluxes from the terrestrial landscape into the 
watershed’s aquatic ecosystems via overland flow and other dispersed flow paths. Sabo and Hagen 2012; 
Li 2019. Headwater streams affect the variability of downgradient network exports, such as carbon (e.g., 
Creed et al. 2015, Senar et al. 2018), with effects increasing with flow magnitude, drainage density 
expansion, and hydrogeochemical interactions.  

Concomitant with the longitudinal expansion and contraction as well as varying lateral and 
hillslope connectivity (e.g., Jencso et al. 2009), headwater streams function as both sinks and sources of 
carbon, nitrogen, dissolved organic matter, and sediment in flowing hydrologic networks. Minshall et al. 
1983, Benda et al. 2004b, Creed and Beall 2009, Phillips et al. 2011. These biogeochemical functions can 
markedly affect downgradient metabolism, trophic states, and integrity. Creed et al. 2015; Ali and English 
2019; Fovet et al. 2020. For instance, dissolved organic material varies in its carbon lability and forms a 
basis for energy inputs supporting stream and river metabolism. The conveyance and sequestration of 
heterogenous dissolved organic material by headwater streams affects the state of downgradient systems. 
Lynch et al. 2019. For example, Creed et al. (2015) demonstrated high spatial heterogeneity and temporal 
variability in dissolved organic material in headwater streams across the United States, noting that storm 
events affected organic-material inputs into headwater streams. These ephemeral, intermittent, and 
perennial streams were sources of dissolved organic material during storm events, with mineral-soil flow 
paths rapidly transitioning to rich organic-soil flow paths. Mooney et al. (2020) noted that smaller 
tributaries connected to the Great Lakes and provided disproportionately high nutrient loads (biased 
towards dissolved inorganic forms) than expected for their relative area. Marcarelli et al. (2019) similarly 
analyzed over 2,800 tributaries to Lake Superior, finding these ephemerally, intermittently, or perennially 
flowing waters were detectable nutrient and organic-matter sources, contributing the bulk of these 



Page 60 of 564 

constituents to the lake during snow-melt driven flows in the winter and spring and rain-driven flows 
during the other times of the year. Iowa tributaries contributed excessive nitrate to the Gulf of Mexico 
(Jones et al. 2018c). Volumetric mixing and dilution suggest the biogeochemical influence of headwater 
streams on downgradient systems and disturbance-mitigation capacity may wane with increasing tributary 
contributions and stream order in the flowing network. See, e.g., Vannote et al. 1980; Benda et al. 2004a; 
Kellman 2004; Covino 2017. 

Research has shown that headwater stream systems can readily remove nitrogen (e.g., up to 50% 
of dissolved inorganic nitrogen; see, e.g., Cooper 1990; Ranalli and Macalady 2010), and headwater 
biogeochemical processing rates are most efficient at low flows. See, e.g., Alexander et al. 2007; Preston 
et al. 2011. Scanlon et al. (2010) noted that low-order streams “dominate the overall removal of nitrogen, 
primarily due to the large portion of the network that is composed of these headwater reaches.” 
Christensen et al. (2013) reported down-stream nitrogen concentrations were primarily a function of 
inputs at headwater stream reaches, with stream-buffer removal effectiveness decreasing markedly with 
increasing stream size. Schmadel et al. (2019) reported highest nitrogen removal in headwater stream 
systems, though the removal efficiency varied across river networks of the Mid-Atlantic and New 
England. In-channel denitrification was more efficient within first-to-third order streams as they removed 
~8% of the nitrogen versus 16% in first-to-fifth order streams. Alexander et al. 2007; Wollheim et al. 
2008. French et al. (2020) found that smaller headwater stream systems in Alaska played a 
disproportionately important role in predicting stream chemistry through the river network. Similar 
findings were reported in a European study by Abbott et al. (2018). Shogren et al. (2019) reported the 
dominant spatial scale for controlling organic carbon and inorganic nutrient stream concentrations were 
(headwater) watersheds of 3-30 km2 in area.  

Biogeochemical dynamics in headwater stream systems that are longitudinally, laterally, and 
vertically expanding, contracting, and mixing with groundwater or hyporheic flow for thousands of 
meters affects downgradient systems. Covino 2017. Nutrient inputs to headwater streams are removed 
through multiple pathways, including abiotic and biotic processes that either sequester or transform 
nutrients as they move to downgradient systems. Hedin et al. 1998; Bernhardt et al. 2005. Stanley et al. 
(1997) noted that the occurrence of nitrification in headwater streams and arid river hyporheic zones 
stimulated microbial and algal productivity for hundreds of meters downgradient of stream 
(re)emergence. Hyporheic exchange flows are predominantly a function of headwater stream systems and 
“play a significant role in biogeochemical cycling (e.g., [carbon]) and nutrient availability and 
transformation, ecological food webs, and habitat for diverse organisms.” Magliozzi et al. 2018 at 6163. 

It is evident that flow variability emerging from ephemeral, intermittent, and perennial stream 
network storage and their source areas is asynchronously connected over time and space and maintains an 
adaptive downgradient system, resilient to watershed-scale perturbations. See, e.g., Moore et al. 2015; 
Chezik et al. 2017; Rupp et al. 2021. Watershed properties (e.g., Klaus et al. 2015) coupled with 
precipitation patterning (e.g., Jencso et al. 2009) affect headwater stream storage and flows (Ward et al. 
2018), with downgradient implications. Ephemeral, intermittent, and perennially flowing waters create a 
varied mosaic of aquatic habitats that are connected over space and time, through surface, near-surface 
(e.g., hyporheic), and groundwaters to affect downgradient stream communities. See, e.g., Ebersole et al. 
2015; Schofield et al. 2018; Kelson and Carlson 2019; Chiu et al. 2020. Alterations affecting the 
synchrony of timed storage and fluxes from headwater streams at the reach-scale similarly decrease 
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network-scale resilience to hydrologic disturbance. Headwater streams also incontrovertibly affect 
downgradient systems through export of food resources (Schofield et al. 2018) and biogeochemical 
processing and functioning. Headwater streams affect the delivery, timing, and concentrations (see, e.g., 
Enanga et al. 2017, Senar et al. 2018) of entrained materials into downgradient waterways, with changes 
in timing and concentration amplified by the interaction between climate, drainage areas, and the 
receiving headwater stream systems. Mengistu et al. 2013a; Mengistu et al. 2013b.  

2. Floodplain Wetlands and Open Waters 

The Science Report concludes that floodplain wetlands and open waters are physically, 
chemically, and biologically integrated with rivers via functions that improve downstream water quality. 
Among other functions, the Science Report notes that these systems buffer downstream waters from 
pollution through biogeochemical processing and sedimentation, desynchronize floodwaters and thereby 
decrease flood magnitudes, and are essential components of river food webs. Our analysis of the titles and 
abstracts of 4,183 papers published in or after 2014 supports the findings of the Science Report.  

Floodplain wetlands and open waters are integrated with streams and rivers through surface and 
groundwater interactions and exchanges. Surface water interactions occur when riverbanks are 
overtopped and the floodplain, including wetlands and open waters, is inundated. Groundwater 
connectivity occurs through discharge from the floodplain system to the flowing water network, as well as 
recharge from the flood-induced inundation events. Covino 2017. For instance, Webb et al. (2017) 
reported floodplain inundation occurred during only 12% of their study period yet contributed to 72-76% 
of the groundwater discharge (to the river network). Inundation events often provide nutrient-laden 
floodwaters to floodplain wetlands and open waters wherein both physical settling and biogeochemical 
processing occurs. Gordon et al. (2020) reviewed the literature and found that floodplains remove an 
average of 200 kg-N ha-1 yr-1 of nitrate and 21 kg-P ha-1 yr-1 of total or particulate phosphorus; their 
synthesis reported that floodplain wetlands are most effective when located within river systems with 
higher nutrient loads. Dwivedi et al. (2018), who analyzed Colorado River riparian areas, demonstrated 
that reduced zones (i.e., areas low in sediment oxygen, such as wetlands) in the floodplain had 70% 
greater nitrate removal capacity than non-reduced zones. Scott et al. (2014) analyzed nitrate removal in 
the Atchafalaya River floodplain during a 2011 major flood event, noting that ~75% nitrate reduction 
occurred within the floodplain, reducing total nitrate delivered downgradient by 17%. A similar result was 
found by Macdonald et al. (2018), who noted nitrate reduction from floodplain systems as important for 
protecting local drinking water supplies. Gillespie et al. (2018) analyzed sedimentation, nutrient loading, 
and mineralization in floodplain systems of the Valley and Ridge physiographic province in the United 
States and found that nutrient and sediment removal in floodplain systems improved downgradient water 
quality. Jensen and Ford (2019) coupled high-resolution water quality data and simulation modeling to 
assess the physical (e.g., hydrologic, hydraulic) and biogeochemical processes affecting nitrate cycling in 
a confluence floodplain wetland along the Ohio River (June 2017-June 2018). Despite the wetland 
comprising only 0.42% of the overall watershed drainage area, 2.6% to 58.5% of the annual nitrate loads 
entering the wetland were removed by the wetland. Longer water residence times in the wetland and less 
frequent connectivity with the river (and its oxygenated waters, which decrease denitrification rates) 
allowed nitrate removal to occur at higher rates. The findings by Jensen and Ford (2019, p.1545) 
“demonstrate the significance of [wetland] connectivity [and disconnectivity] on watershed nitrate 
loadings to floodplain wetland soils.”  
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Floodplain wetlands and open waters are intimately connected to riverine food webs. Rees et al. 
(2020) studied riverine food webs through isotopic analyses, noting that floodplain-derived carbon 
following floodplain inundation was incorporated into the riverine food webs and was measurably found 
for up to four months following the flood peak. Battauz et al. (2017) noted that floodplain open waters 
were often highly vegetated with floating and emergent plants serving as zooplankton sources for 
downgradient waters when reconnected by flood events. Zooplankton are important food web 
components, and over 70 different zooplankton species were found on roots and submerged parts 
awaiting the proper environmental cues to emerge.  

Floodplain wetlands and open waters are important habitats. Pyron et al. (2014, p.14) sampled 
and examined fish assemblages in 41 floodplain open waters and wetlands in the Ohio River Basin. Their 
results demonstrated “that floodplain lakes in the Ohio River basin contain high species richness and are 
important habitats to conserve because they have the potential to act as source pools for river fish 
populations.” Carlson et al. (2016) noted that backwater habitats in the Missouri River flowing through 
South Dakota and Nebraska provided floodwater refugia, important for maintaining fish assemblages. 
Martens and Connolly (2014) found seasonally disconnected side channels (i.e., floodplain open waters) 
resulted in improved survival for juvenile salmon during periods of disconnection. Upon reconnection 
with the main channel, the previous cohort would rejoin the main population while new young of year 
salmon would move into the side channels.  

Floodplain wetlands and open waters also exert significant controls on downgradient stream 
temperature, impacting in-stream refugia. Dick et al. (2018) analyzed riparian wetlands and found that in 
periods of high river and riparian wetland connectivity (i.e., inundation), the coupled saturation and 
connectivity decreased the relative importance of the riparian wetland for temperature regulation. 
Conversely, dry periods with less river and riparian floodplain hydrologic connectivity were found to be 
important periods of distinctions between river water and riparian wetland temperatures (e.g., lower-
temperature waters were coming from the riparian wetland to the riverine system).  

High river flows can create downgradient flood hazards. Flow through floodplain wetlands and 
open waters slows river flows, desynchronizing floodwaters and mitigating flood magnitude effects. Quin 
and Destouni (2018) found that watersheds comprised of approximately 15% lakes and 0.5% floodplain 
wetlands decreased the streamflow variability to around 10-15%, compared to areas without lakes or 
floodplain wetlands, which had approximately 20-25% higher streamflow variabilities due to low 
landscape water storages. Similarly, Fossey et al. (2016) incorporated floodplain wetlands into a 
hydrological model, reporting that floodplain moderation of high flows (and support of base flows) 
occurred in proportion to the frequency of floodplain connectivity. Floodwaters significantly expand the 
connectivity of the stream, riparian, and non-riparian wetlands. Vanderhoof et al. (2016) analyzed 
remotely sensed data, finding that surface waters connected stream networks and wetlands from 90 m to 
1,400 m, depending on the (Upper Midwestern) ecoregion. Most of the stream and wetland connectivity 
occurred through riparian (i.e., floodplain) wetlands.  

Physical, chemical, and biological connectivity and effects by floodplain wetlands and open 
waters were found abundantly in the screened scientific literature that was reviewed. The peer-reviewed, 
scientific literature strongly supports the findings that floodplain wetlands and open waters are intimately 
connected to and affect downstream waters.  
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3. Non-Floodplain Wetlands and Open Waters  

The Science Report concludes that wetlands and open waters located outside of riparian areas and 
floodplains (i.e., non-floodplain wetlands and open waters), even when lacking surface water connections, 
provide numerous functions that can affect the integrity of downstream waters. The report further noted 
that the literature at that time (circa 2014) was insufficient to provide a definitive conclusion regarding the 
connectivity and effects of specific classes or groups of non-floodplain wetlands, with notable exceptions 
(for example, the Report concludes that non-floodplain wetlands situated between a pollution source and 
a downstream water, intercepting the [surface or near-surface] flowpath, do affect downstream waters 
through sink functions). However, substantive scientific advances since the publication of the Science 
Report have focused on the connectivity and effects of non-floodplain wetlands (e.g., Creed et al. 2017), 
which recent studies conclude comprise approximately 16% of existing total freshwater-wetland areal 
extent in the conterminous United States. Lane and D'Amico 2016. 

Based on this analysis of 4,282 scientific peer-reviewed papers published in or after 2014, it is 
evident that non-floodplain wetlands – individually and in the aggregate – are connected to and can affect 
the physical, chemical, and biological conditions and characteristics of downgradient waters (e.g., 
streams, rivers, and lakes). As noted in an updated 2018 analysis and synthesis on the connectivity and 
effects of non-floodplain wetlands, Lane et al. (2018) stated that peer-reviewed scientific research in 
hydrological modeling, remote sensing analyses, field-based observations, and coupled field and remote-
sensing studies were sufficiently advanced to conclude that all non-floodplain wetlands were 
unequivocally interconnected with stream and river networks. See, e.g., Marton et al. 2015, Cohen et al. 
2016, Rains et al. 2016, Calhoun et al. 2017, Creed et al. 2017. They further noted that connectivity of 
non-floodplain wetlands and open waters occurs along a gradient (see also Science Report at 1-4) and:  

“varies in frequency, duration, magnitude, and timing [and that this] complex landscape-scale 
connectivity, in turn, affects water and material fluxes — the resultants of substantial 
hydrological, physical, and chemical functioning in NFWs [non-floodplain wetlands] — that 
modify the characteristics and function of downstream waters…”  

Lane et al. 2018 at 363. 

The findings noted in the cited literature above plus the literature we reviewed for this evidentiary 
summary (published in or after 2014) demonstrate that non-floodplain wetlands, particularly when 
analyzed in the aggregate, are connected to and can exert a substantive and important influence on the 
integrity of downstream waters through notable functions affecting downgradient systems including 
hydrological lag and storage functions (i.e., affecting baseflow and stormflows/flood-hazards in stream 
systems) and biogeochemical functions (i.e., microbial, physical, or chemical functions transforming 
compounds, such as denitrification, carbon mineralization, and phosphorus sequestration).  

Similarly, in a 2018 peer-reviewed review paper, Schofield et al. (2018) provided an updated 
analysis of the biological connectivity and effects of non-floodplain wetlands (e.g., serving as refugia, 
migratory “stepping-stones,” resting and feeding habitats, and breeding habitats). They concluded that 
biota connected streams and non-floodplain wetlands, part of the landscape-scale “freshwater ecosystem 
mosaic,” through the lateral active or passive movements of organisms and propagules. Our analysis of 
the current literature supports these findings. For instance, Michelson et al. (2018) noted that tree 
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swallows (Tachycineta bicolor), an avian insectivore, specialized in feeding on emergent aquatic insects 
in non-floodplain wetland dominated landscapes. Kappas et al. (2017) hypothesized that avian species 
providing passive transportation between relatively isolated non-floodplain wetland and open waters were 
one potential reason fairy shrimp (Streptocephalus torvicornis) were genetically panmictic, or expressed 
high genetic diversity suggesting abundant genetic transmission across landscapes in a European study. 
Likewise, Mushet et al. (2013) noted that northern leopard frogs (Lithobates pipiens) were found to use 
the streams, non-floodplain wetlands, and other available habitat throughout the breadth of their 68-
kilometer North Dakota study area, with high genetic diversity suggesting abundant population 
connectivity. However, distance between available wetland (and stream) habitats is important for many 
species (e.g., Uden et al. 2014), such as the reticulated flatwoods salamander (Ambystoma bishopi) of the 
Southeastern United States. Wendt et al. (2021) reported that migration between wetland habitats >400 
meters was low, limiting population interactions. However, distances from streams (i.e., increased aquatic 
“isolation”) can often limit fish presence in non-floodplain open waters and wetlands. The lack of 
amphibian predators can positively affect certain species. For instance, Davis et al. (2017) reported that 
the ornate chorus frog (Pseudacris ornata), an “ephemeral wetland specialist” responded positively to 
drought conditions as fish were excluded. Coupling the hydrological and biogeochemical functions noted 
above (and further discussed below), it is evident that across all three connectivity and effect types (i.e., 
physical, chemical, and biological), some benefits of non-floodplain wetlands are due to their relative 
isolation rather than their connections. Creed et al. 2017. 

Non-floodplain wetlands are the flow-generating origins of many downgradient systems. By 
providing water to downgradient systems, non-floodplain wetlands maintain and affect the physical, 
chemical, and biological integrity of those systems. In a chloride-tracer study across 260 North American 
catchments, Thorslund et al. (2018) determined that non-floodplain wetlands generated surface runoff 
contributing to downstream systems at ~1.2 times the catchment averages (i.e., they were watershed-scale 
sources of water). Nearly 90% of Florida’s headwaters are sourced by non-floodplain wetlands. White 
and Crisman 2016; Lane et al. 2018. Brooks et al. (2018) conducted an isotopic analysis of a North 
Dakota watershed dominated by non-floodplain wetlands and found that surface water originating in 
wetlands contributed significant amounts of water to the perennial stream across high- to low-flow 
conditions. Vanderhoof et al. (2016) reported that surface-water expansion (e.g., increased stream flows 
coupled with wetland filling, merging, and spilling) resulted in increased wetland and stream connections, 
in some cases connecting over 90-1,400 meters. Ameli and Creed (2017) modeled non-floodplain wetland 
interactions with draining networks in Alberta and found quantifiable contributions from non-floodplain 
wetlands occurred up to 30-kilometers from the stream, further indicating non-floodplain wetlands have 
the potential to impart substantial flow affecting downstream systems and flow-synchrony. Similarly, at 
the maximum expansion of the spatially variable contributing source area, non-floodplain wetlands (i.e., 
vernal pools and swales) in the Central Valley of California were fully surface-water connected into – and 
hence contributing to – an integrated and hydrologically dynamic headwater drainage network, often for 
months (Rains et al. 2006). Likewise, Vanderhoof et al. (2017) found that spring expansion of the 
hydrologic network in Maryland and Delaware connected streams and depressional wetlands, increasing 
hydrologic interactions (and likely material exchanges) by 12-93% by area and 12-60% by count.  

In contrast to their flow-generating properties, non-floodplain wetlands can also act as flow-
dampening systems, attenuating surface flow through storage functions and providing watershed-scale 
resilience to hydrologic disturbances. Rains et al. 2016; Cohen et al. 2016. The watershed-scale effects 
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provided by surface-water and groundwater “disconnected” non-floodplain wetlands is demonstrated 
throughout the literature. Shaw et al. (2012) noted 61% of a studied watershed’s wetlands were 
disconnected from overland flow paths, hence serving as so-called flow gate-keepers (i.e., holding back 
and thereby dampening stream flow and modifying the aquatic network until a flow-threshold is crossed 
and flow-connections occur; Leibowitz et al. 2016). Shook et al. (2021) reported that depressional 
(wetland) water storage was found to control the fraction of the watershed that contributes flow to 
downgradient stream systems. The effects of depressions varied – when there were few extant 
depressions, their size and location on the landscape was most important. In systems with greater 
depression abundance, depressions still controlled the relationship between water storage and the fraction 
of the watershed contributing surface flow downgradient, but the spatial location within the watershed 
decreased in importance. Nasab and Chu (2020) analyzed flows in the Red River (North Dakota, South 
Dakota, Minnesota), finding that non-floodplain wetlands controlled flow, most dramatically in the early 
spring months (e.g., preventing rain-on-snow events from creating down-stream deluges). Similarly, 
Shook et al. (2015) reported depressions in the Canadian Prairie Pothole Region controlled precipitation 
and runoff (e.g., through storage and lag functions), directly altering stream flows. Nasab et al. (2017) 
reported gate-keeper effects of non-floodplain wetlands predominated at low flows, whereas non-
floodplain wetlands increased streamflow during high precipitation events (e.g., as the network wetted up 
and the watershed became increasingly connected). Yeo et al. (2019) found that non-floodplain wetlands 
of coastal Maryland and Delaware functioned in the aggregate to control (attenuate) streamflow and 
reduce flood magnitudes. Golden et al. (2016) analyzed non-floodplain wetlands in North Carolina, 
concluding that increased water storage associated with non-floodplain wetlands decreased streamflows. 
Rajib et al. (2020) modeled the effects of 455,000 non-floodplain wetlands in the Upper Mississippi River 
Basin, reporting that streamflow simulations showed statistically significant changes in 70% of the basins 
when non-floodplain wetland storages were incorporated into the model—meaning wetland storage was 
an important control on downstream flows. Similar findings were reported by Mekonnen et al. (2016) in 
the Prairie Pothole Region. Green et al. (2019) found that drained non-floodplain wetlands and open 
waters in Iowa could (still) store over 900 million m3 of runoff, enough to contain a one-year, 24-hour 
rainfall event. Evenson et al. (2018) modeled a 1.3 to 2.8-fold increase in runoff-contributing areas 
affecting stream flow when non-floodplain wetlands and their cumulative water-retention capacities were 
lost from the landscape. This increase produced higher flood peaks and greater flow velocities in modeled 
downgradient systems. Similarly, modeled hydrological retention in non-floodplain wetlands was found 
to decrease peak stream flows by 7 to 16% (Fossey and Rousseau 2016). Wang et al. (2019) analyzed the 
influence of small, spatially distributed surface depressions (i.e., non-floodplain systems inferred to be 
Prairie Pothole wetlands and open waters) in North Dakota, with model results demonstrating that 
depressions in the aggregate retained precipitation, demonstrably preventing excessive downgradient 
storm flows. Ameli and Creed (2019) reported wetlands closer to streams performed greater peak-flow 
attenuation than distal non-floodplain wetlands, while both types regulated baseflow (i.e., dampened 
baseflow variance). 

Non-floodplain wetlands and open waters are frequently connected to their local and regional 
aquifers, and hence to the stream networks, through groundwater flows (Nitzsche et al. 2017, Neff and 
Rosenberry 2018). For instance, Park et al. (2020) found groundwater discharge (in)to studied non-
floodplain wetlands in the Southeastern United States, and that the groundwater contributing area 
increased during drier periods (which may in effect retard stream baseflow). Like Brooks et al. (2018) in 
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the Prairie Pothole Region, Bugna et al. (2020) used isotopic analyses in Florida and demonstrated 
groundwater connectivity between non-floodplain wetlands and a nearby sinkhole. Lewis and Feit (2015) 
reported surface-water and groundwater connectivity in a regional aquifer in Florida, noting that increased 
groundwater withdrawals changed biogeochemical dynamics in groundwater-connected non-floodplain 
wetlands. Bam et al. (2020) demonstrated that not only do non-floodplain wetlands connect to and 
recharge local and regional groundwaters (providing water to farm and rural communities), but that 
ephemerally inundated non-floodplain wetlands were the dominant recharge source. Sampath et al. (2015) 
demonstrated that an “isolated” Michigan fen was connected to local and regional groundwater, other 
regional fens, as well as a nearby pond through a groundwater “pipeline.” Ameli and Creed (2017) noted 
that non-floodplain wetlands have “fast” surface-water and slow groundwater connections and that 
groundwater connected non-floodplain wetlands from throughout the watershed (while storm events 
connected the system via surface waters). Neff and Rosenberry (2018) noted that geologic heterogeneity 
can either promote or prevent groundwater connectivity and synchrony between wetlands and 
downstream waters because of variations in bedrock properties (e.g., composition and associated 
permeability). McLaughlin et al. 2014 simulated the regional hydraulic effects of non-floodplain 
wetlands, which were likened to a capacitor – dampening the effects of hydrologic disturbances to the 
aquatic network by modulating surficial aquifer dynamics and buffering stream baseflow. In their study, 
non-floodplain wetlands functioned as groundwater sinks during wet periods and water sources during 
drier periods. McLaughlin et al. (2014) further emphasized “that the role these [non-floodplain wetlands] 
play in buffering surficial dynamics and downstream base flow is realized even where water in these 
systems may never physically reach downstream systems.”  

Non-floodplain wetlands are bioreactors (sensu Marton et al. 2015) performing important sink 
and transformation functions affecting downgradient waters, which is well-supported in the literature. 
Bernal and Mitsch 2013; Biggs et al. 2017; Cheng and Basu 2017; Creed et al. 2017; Lane et al. 2018; 
Leibowitz et al. 2018; Golden et al. 2019. Non-floodplain wetland biogeochemical functions emerge from 
the convolution of aerobic and anaerobic microbial processes (e.g., denitrification), plant uptake, physical 
processes (e.g., settling, photo-degradation), and residence time in the wetland. These processes are 
controlled, in part, by hydrologic connectivity and isolation (i.e., degrees of “disconnectivity”) 
characteristics (Cohen et al. 2016), which affect transformation, sequestration, and transport rates. Reddy 
and DeLaune 2008; Baron et al. 2013; Evenson et al. 2018. For instance, Senar et al. (2018) noted 
watershed-scale carbon dynamics were controlled by microbial biogeochemical processing within non-
floodplain wetlands and via precipitation-mediated transport to nearby headwater streams and on to 
downgradient systems. Excessive carbon export from non-floodplain wetlands with increasing drought 
and deluge cycling (allowing for carbon build up during drought followed by rapid flushing events) and 
temperature-mediated microbial activity could result in “brownification” (Monteith et al. 2007) of 
downstream waterbodies and concomitantly change aquatic metabolism (and hence affect aquatic 
integrity) by blocking light affecting primary productivity. Senar et al. 2018. Enanga et al. (2016; 2017) 
similarly noted watershed-scale nitrogen dynamics were controlled by microbial biogeochemical 
processing within non-floodplain wetlands and via precipitation-mediated transport to headwater streams 
and on to downgradient systems.  

Storage, sequestration, and processing within non-floodplain wetlands and open waters are 
substantive. For example, Marton et al. (2015) reviewed the scientific literature, estimating that non-
floodplain wetlands sequestered or processed 21-317 g carbon m-2 yr-1, 0.01-5.0 g phosphorus m-2 yr-1, 
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and 0.8-2.0 g nitrogen m-2 yr-1. In a synthesis of over 600 articles, Cheng and Basu (2017) determined that 
the first-order reaction rate constants for nitrogen and phosphorus were inversely proportional to wetland 
water residence times, a result that implies that >50% of the nitrogen removal across all water bodies 
occurs in small wetlands (<325 m2). Cohen et al. (2016) found that most non-floodplain wetlands were 
“unambiguously small,” suggesting an out-sized role in landscape nutrient dynamics. Evenson et al. 
(2018) modeled wetland water residence times at the watershed scale, noting a 75% decrease in residence 
time (and hence opportunities lost for biogeochemical processing) when smaller non-floodplain wetlands 
were removed from the landscape. Incorporating non-floodplain wetlands into a watershed model by 
Golden et al. (2019) resulted in a 7% average annual decrease in the nitrate yield to downgradient 
systems. A recent model analyses of the nearly 500,000 km2 Upper Mississippi River Basin determined 
cumulative restoration of ~2% of the area to non-floodplain wetlands would result in ~12% nitrate 
reduction (Evenson et al. 2021). Martin et al. (2019) analyzed farmed non-floodplain wetlands, reporting 
that their study wetlands reduced nitrate levels in 85% of the multi-day inundation events while serving as 
downstream phosphorus sources from phosphorus absorbed onto agricultural soils. Denver et al. (2014) 
found that farmed non-floodplain wetlands in Delaware and Maryland improved water quality through 
nutrient processing (i.e., transformation and sink functions). Similarly, Flint and McDowell (2015) 
reported headwater non-floodplain wetlands decreased nitrate and increased dissolved organic carbon, 
while seasonally affecting downstream total dissolved nitrogen concentrations. 

The abstracts that were reviewed provide additional evidence that non-floodplain wetlands and 
open waters substantively affect downgradient streams, rivers, lakes, and other aquatic systems through 
variable connections which support diverse functions that improve downstream waters. Non-floodplain 
wetlands and open waters exist along physical, biogeochemical, and biological connectivity continuums 
that affect downstream waters at all points along those continuums. Many of the functions of non-
floodplain wetlands and open waters are most readily discerned and quantified in the aggregate (e.g., 
flood-magnitude attenuation, excessive nutrient mitigation, groundwater recharge, support for 
metapopulation dynamics). Importantly, many of the functions performed by non-floodplain wetlands and 
open waters that affect downstream waters result from the disconnections (often hydrological, e.g., 
surface water storage) that create and maintain conditions conducive to the performance of beneficial 
functions (frequently hydrological and biogeochemical, e.g., mitigation of flood peak flows, sequestration 
of contaminants).  

iv. Abstracts Noted in the Screening Process to Disagree with the Major 
Conclusions of the Science Report 

The Science Report concluded that the scientific evidence unequivocally demonstrates that 
streams, including ephemeral, intermittent, and perennial streams and rivers are physically, chemically, 
and biologically connected to downstream rivers via channels and associated alluvial deposits. The 
Science Report similarly concluded that floodplain wetlands and open waters are physically, chemically, 
and biologically integrated with rivers via functions that improve downstream water quality. Further, the 
Science Report noted non-floodplain wetlands and open waters affect the integrity of downstream waters 
through numerous functions, including storage of floodwater; recharge of ground water that sustains river 
baseflow; retention and transformation of nutrients, metals, and pesticides; export of organisms or 
reproductive propagules to downstream waters; and habitats needed for stream species. Despite ample 
evidence that non-floodplain wetlands provide hydrologic, chemical, and biological functions that affect 
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material fluxes to downstream waters, few scientific studies explicitly addressing connections between 
non-floodplain wetlands and river networks had been published in the peer-reviewed literature – with 
notable exceptions. For example, the Science Report concluded that non-floodplain wetlands affect 
downstream waters when they intercept flowpaths and runoff emanating from pollution sources.  

The evidence presented in the overwhelming majority of the scientific papers addressing the 
connectivity and effects of the three systems analyzed led ORD subject-matter experts to confirm that 
recent research reinforces the findings from the Science Report, and that substantive scientific advances 
in or after 2014 have expanded scientific knowledge regarding the mechanisms of connectivity and 
quantitative effects of these systems. For instance, when sufficient information was provided in the 
abstract to make a determination, 100% of the scientific publications specific to ephemerally and 
intermittently flowing stream systems screened (n=57) were found to support the Science Report that 
ephemeral and intermittent streams are connected to and significantly affect downgradient systems. Non-
floodplain wetlands and open waters were found to connect to and/or perform functions substantively 
affecting downgradient systems in 99% of the sufficiently descriptive papers screened (131 of 133). The 
Science Report concluded that floodplain wetlands and open waters were integrated to river networks, 
performing important functions affecting downgradient waters. The literature screened similarly 
incontrovertibly supports that finding, with 99% (n=292 of 298) papers with floodplain wetlands and 
open waters types discerned marked in support of the 2015 Science Report conclusions.  

Papers noted as both supporting and refuting, or outright refuting the findings were rarely found. 
Screeners noted six stream papers of 515 with a refuting conclusion determination (1%); of those two 
were noted as both supporting and refuting (Milner et al. 2019; Richardson 2019) and four stream papers 
were noted as refuting the findings (Fryirs and Gore 2014; Laughlin et al. 2016; Schmidt et al. 2018; 
Anderson et al. 2020). However, of those papers, only Richardson (2019) and Anderson et al. (2020) 
were noted as addressing a focal stream type (headwater stream and perennial stream, respectively); the 
other four stream papers were marked by screeners as “stream type not discernible.”  

Ten screened and included floodplain wetland and open water papers of 449 (2%) were noted as 
both supports and refutes (Azinheira et al. 2014; Puttock et al. 2017; Kasak et al. 2018; Wegener et al. 
2018; Gulbin et al. 2019; Redder et al. 2021; Leuthold et al. 2021; n=7) refuting and cannot be discerned 
(Quin et al. 2015, Beesley et al. 2020), and refuting (Painter et al. 2015). Riverine (within-channel) 
systems were noted as the focal ecosystem type for Painter et al. (2015), Puttock et al. (2017); and Kasak 
et al. (2018). Quin et al. (2015) was noted as wetland type not discernible, whereas Gulbin et al. (2019) 
was noted as addressing multiple wetland types and/or spatial locations (e.g., floodplain, riverine, non-
floodplain wetland, etc.). Azinheira et al. (2014), Wegener et al. (2018), and Beesley et al. (2020) were 
noted as conducting research on both floodplain (or riparian system) and riverine (i.e., within-channel) 
systems, while Redder et al. (2021) and Leuthold et al. (2021) addressed floodplain wetlands and open 
waters.  

Five non-floodplain wetland and open water papers of 230 (2%) were noted as both supporting 
and refuting (Sullivan et al. 2019a, Acreman et al. 2021) or refuting (Quin et al. 2015; Arheimer and Pers 
2017; Johnston and McIntyre 2019). The focal system under study was not discernible for Arheimer and 
Pers (2017). Both Quin et al. (2015) and Acreman et al. (2021) were marked as addressing multiple 
wetland types and/or spatial locations noted (e.g., non-floodplain wetlands, floodplain wetlands, streams, 
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etc.). Only Johnston and McIntyre (2019) and Sullivan et al. (2019a) were noted by the screener to be 
papers explicitly about a known non-floodplain wetland type (e.g., geographically isolated wetland, non-
floodplain wetland, etc.).  

1. Ephemeral, Intermittent, and Perennial Stream Systems 

Examining stream abstracts, a screener reported that Schmidt et al. (2018, p.320) found subtle 
population genetic structure in a common fish (Leiopotherapon unicolor) that disperses widely in arid 
Australian river systems. However, the same species in a tropical river system was found to have small 
but detectable genetic differences between upstream and downstream populations. This suggests that for 
this species, dispersal between tributaries and the mainstem of the river itself is more limited in the 
tropical system, possibly due to differences in migratory patterns. Laughlin et al. (2016, p.1808) analyzed 
stable isotopes from the otoliths of channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus 
furcatus) between the middle Mississippi River and tributaries. Though differences in river water 
constituents were found between the main channel and tributaries, otolith characteristics suggested that 
channel and blue catfish were “primarily recruited from the large rivers (Missouri and Mississippi)…with 
minimal contributions from smaller tributaries.” Fryirs and Gore (2014) analyzed sediment movement 
between a tributary and a mainstem river. This paper was noted as refuting the Science Report findings as 
the tributary in this study was found to not provide any sediment because the main stem river had created 
a sediment block that prevented sediments from reaching the main river. Anderson et al. (2020) assessed 
the effects of a high-head dam along the perennially flowing Upper Mississippi River, finding similarity 
in upgradient and downgradient assemblages (a “supporting” statement) while also noting certain 
migratory species, such as skipjack herring (Alosa chrysochloris) were not present above the dam (a 
“refuting” statement regarding upstream/downstream connectivity). 

Two stream paper abstracts were noted as both supporting and refuting the Science Report. 
Richardson (2019) wrote a scientific review that was marked in the screening process as both supporting 
and refuting the Report’s findings. The abstract notes that headwaters are the (hydrologic) source of all 
stream networks, a supporting statement. Conversely, the screener noted that the abstract also stated that a 
characteristic of some headwaters was “isolation,” implying a limited of lack of connectivity to 
downgradient systems (i.e., two ends of a connectivity gradient). Lastly, Milner et al. (2019) analyzed 
macroinvertebrate assemblages of dammed and free-flowing stream tributaries in the Sierra Nevada 
Mountains in California, finding that macroinvertebrate diversity was higher in the tributaries on the free-
flowing river (a supporting claim) but that there were no differences in macroinvertebrate diversity 
downgradient of tributary junctions nor differences in diversity within the dammed river (a refuting 
claim).  

An examination of these abstracts points to these papers, which focused on very specific kinds of 
connections and effects (e.g., of species responses to their environments), as exceptions to the general 
rules summarized in Major Conclusions 1, 2, and 3 of the Science Report. Their findings are consistent 
with the Science Report’s Major Conclusion 4, that variations in the type, degree and downstream effects 
of connections are determined by characteristics of the physical, chemical, and biological environments 
and by human activities, and that these variations support different ecosystem functions. As discussed in 
section I.A.i above, connectivity of streams to downstream waters occurs along a continuum that can be 
described in terms of the frequency, duration, magnitude, timing, and rate of change of water, material, 
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and biotic fluxes to downstream waters. These connectivity descriptors characterize the range over which 
streams and wetlands vary and shift along the connectivity gradient in response to changes in natural and 
anthropogenic factors and, when considered in a watershed context, can be used to predict probable 
effects of different degrees of connectivity over time.  

2. Floodplain Wetland and Open Water Systems 

A screener marked that Painter et al. (2015) refuted the floodplain wetland and open water 
findings of the Science Report. The refutation in this case hinged on the data in the abstract demonstrating 
that mercury from sediments in the systems studied (beaver ponds within a riparian zone) was 
transformed (methylated) in the floodplain open waters and subsequently incorporated into the aquatic 
food web, demonstrating both chemical and biological connection. But, in this case, the connection 
resulted in degrading water quality (though through transformation functions affecting downgradient 
waters). However, this paper also supports the Report’s conclusion that floodplain wetlands and waters 
serve as an important part of the food web for species that also utilize downstream waters. Beesley et al. 
(2020) and Quin et al. (2015) were papers marked as both refute and “cannot be discerned.” Beesley et al. 
(2020) reported that local biofilms within floodplain habitats supported fish during inundation periods 
(i.e., fish fed in connected floodplain habitats when inundated) but articulated that large-bodied fish 
(specifically) of a northern Australian river were not found to transport carbon from the floodplain and 
return it to the river. Quin et al. (2015) conducted a statistical modeling approach analyzing the effects of 
wetlands and other features on downstream pollutant retention. They found that the main effects were 
distance the pollutant traveled before reaching the coastal waters and the presence of major lakes; wetland 
contributions to pollution abatement were not detected. The screener marked this paper as both refuting 
and “cannot be discerned” and noted that the specific wetland type (e.g., floodplain wetland and open 
water) was not detailed in the abstract. 

Seven papers were noted during the screening process as both supporting and refuting the Science 
Report’s major conclusions for floodplain wetlands and open waters. Azinheira et al. (2014, p.6168) 
modeled floodplain solute retention, finding that modeled “inset” floodplains were inundated ~1% of the 
year (a supporting statement regarding connectivity), yet the flow amount residence times were too short 
and hence this paper was also marked as refuting the major conclusions, as there was no “substantial 
impact on dissolved contaminants flowing downstream.” Puttock et al. (2017, p.430) found riparian 
beaver activity substantively increased floodplain wetland and open water storage, sedimentation, 
nitrogen and phosphorus retention, and flow attenuation, resulting “in lower diffuse pollutant loads in 
water downstream.” A screener noted that these riparian open waters also increased dissolved organic 
carbon contributions, which was perceived by the screener as deleterious to downstream water quality. 
Kasak et al. (2018, p.1) reported a two-year old constructed “in-stream free surface flow” wetland 
removed annually 14% of phosphate (improving water quality, a supporting claim) but was a source of 
total nitrogen (a pollutant in excess, a refuting claim). Wegener et al. (2018) analyzed nitrate dynamics in 
riparian areas of mountainous stream reaches in Colorado, finding that studied riparian zones were 
sources of nitrate (noted as a refuting claim) while one wider zone was also a nitrate sink at high flows 
(marked as a supporting statement). Gulbin et al. (2019) developed a hydrologic model of the endorheic 
Devils Lake in North Dakota, finding that given the climate drivers affecting the region wetland 
restoration does not change the current flood risk (perceived as a refuting statement) but restoration would 
provide complimentary flood-mitigation benefits under modified climate scenarios. Both Redder et al. 
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(2021) and Leuthold et al. (2021) addressed the movement of nitrogen from riparian systems to streams, 
indicating connectivity between floodplain wetlands and open waters. Redder et al. (2021) noted that 
groundwater seeps in riparian areas were connecting to downgradient waters (supporting phrase), 
providing nutrients that may end up degrading water quality (the refuting clause). Similarly, Leuthold et 
al. (2021) found riparian wetlands connected with downgradient systems through a late-winter flush of 
mineralized nitrogen (a supporting point regarding connectivity), a potential pollutant (refuting point). 

An examination of these abstracts suggests that the results of the studies are consistent with the 
Science Report’s finding that the floodplain wetlands and open waters function as a source, sink, and 
transformer of materials, including nutrients. Regardless of the perceived benefit (e.g., nutrient sink) or 
detriment (e.g., nutrient source), the connection between the floodplain and the downstream water effect 
remains. The Report noted that these functions are not mutually exclusive; for example, the same wetland 
can be both a source of one nutrient and a sink for another nutrient. The presence or absence of these 
functions, which depend on the biota, hydrology, and environmental conditions in a watershed and can 
change over time. Some of the “refuting” papers also likely support the conclusion that connectivity 
occurs on a continuum, as discussed in section I.C.iv.1. 

3. Non-Floodplain Wetland and Open Water Systems 

Three papers screened for non-floodplain wetland and open water systems were noted as refuting 
the major conclusions of the Science Report. Quin et al. (2015; also noted immediately above in the 
floodplain wetlands and open water section (section I.C.iv.2)), determined that wetland contributions to 
pollution retention were not detected in their study (though specific wetland type, such as a non-
floodplain wetland or open water, was not described or noted by the screeners). Arheimer and Pers (2017) 
conducted a study in Sweden of over 1,574 constructed wetlands, demonstrating that their effects on 
nutrient reductions were minor (i.e., 0.2% for nitrogen and 0.5% for phosphorus); this was marked as a 
refuting paper, though it should be noted that wetland type was not discernable and that the reductions 
though minor were nonetheless found to reduce the pollutant loads to the seas. Johnston and McIntyre 
(2019) conducted a study on the effects of grassland-to-cropland conversion on various geospatial metrics 
of non-floodplain wetland (prairie pothole) connectivity in North and South Dakota. They found that 
wetland area across the study system decreased by 25%, wetland size decreased by ~0.4 ha, and wetland 
density decreased by 16%, largely due to splitting of large wetlands into smaller wetlands and reduction 
in the area of smaller wetlands. Their analysis of landscape connectivity metrics, however, found that the 
geospatial connectivity of remaining wetlands remained intact, and could still support metapopulation 
dynamics for some species (e.g., waterfowl).  

Acreman et al. (2021) explored the effectiveness of nature-based solutions to water issues in 
Africa; this paper was screened and noted as both supporting and refuting the Science Report’s major 
conclusions for non-floodplain wetlands and open waters. This review paper addressed multiple wetland 
types and determined that floodplain wetlands can improve water quality and reduce flood risk, whereas 
headwater (non-floodplain) wetlands were only found to positively affect water quality (and not affect 
flood risk). Sullivan et al. (2019a) analyzed non-floodplain wetlands that had been ditched, drained, and 
converted to agricultural production until they were restored; this paper was noted as both refuting and 
supporting the major conclusions of the Science Report. The legacy agricultural nutrients 
(“agrochemicals”) in the wetlands were noted to be threats to downgradient waters (a refuting statement), 
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with wetlands closer to streams and conveyances having a greater threat potential. Wetlands further from 
the stream network would be expected to better retain the agrochemicals (a supporting statement).  

The abstracts described in this section focus on research pertaining to two findings in the Science 
Report: (1) connectivity and associated effects occur along discernable gradients and (2) non-floodplain 
wetland functions are not mutually exclusive (e.g., a wetland can improve water quality, attenuate floods, 
or both (see, e.g., Evenson et al. 2018), as further discussed in sections I.C.iv.1 and 2. The Science Report 
found that gradients of non-floodplain connectivity can be described in terms of the frequency, duration, 
magnitude, timing, and rate of change of water, material, and biotic fluxes to downstream waters. As 
discussed in section I.A.i, these descriptors are influenced by factors such as climate, geology, and terrain, 
which interact with other factors such as the magnitudes of the various functions within wetlands (e.g., 
amount of water storage or carbon export) and their proximity to downstream waters to determine where 
wetlands occur along the connectivity gradient. Recognizing these complexities, the Science Report noted 
that evaluations of individual wetlands or groups of wetlands, however, could be possible through case-
specific analysis. 

 

v. Screening Benefits and Limitations  

There are two main approaches to screening scientific literature for review, that of a “brute-force” 
approach wherein hundreds to thousands of papers are read and summarized, and an active-screening 
approach used here, with machine-learning models prioritizing papers to be screened. The brute-force 
approach is laborious and time-consuming. However, by reading the full paper, its context as well as 
specifics necessary to answer important questions on the findings can often be discerned. Conversely, the 
active-screening approach allows for thousands of papers to be screened expeditiously, but the screening 
consists only of an abstract, and important contextual details are often missing.  

Furthermore, while screeners were all presented with the same instructions as to include or 
exclude a paper and to complete the additional information section, experiential and perceptual 
differences between screeners exist, nonetheless. Thus, these differences may result in different 
characterizations of some abstracts. The screening was also conducted such that each abstract was only 
screened by one person rather than two or more persons screening (and then requiring unanimity to 
“accept” an abstract for inclusion). There was a necessary trade-off between the number of papers to be 
screened and measured concordance between screeners.  

Due to the available time for this review and the number (>17,000) of abstracts to review, only 
abstracts were read. The active-screening approach calculated that screeners reviewed between 81-90% of 
the relevant scientific literature. But, like any review, some relevant papers were likely missed during the 
screening process. The screening population is established early, and papers that end up being missed by 
the forward-citation mapping (e.g., papers that are published subsequent to the mapping process) are not 
presented to the screeners as those papers are simply not part of the population of papers to be screened 
(e.g., Crabot et al. 2021; Evenson et al. 2021; Golden et al. 2021a). Further limitations include some 
assumptions that may have been made. For instance, abstracts exploring the effects of “depressions” (e.g., 
Wang et al. 2019) were typically assumed to be depressional wetlands (e.g., Lewis and Feit 2015). 
Floodplain ecosystems include wetlands and open waters, as well as non-wetland systems. 
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Biogeoochemical processing, such as denitrification, often requires anoxic or reduced soil conditions 
typically found in wetlands and open waters. Hence, in references where biogeochemical processing was 
noted to occur within floodplains, it was assumed to be occurring within floodplain wetlands and open 
waters (unless material in the abstract characterized the study differently). A complete read of each paper 
would likely obviate many uncertainties but was beyond the scope of this review. However, given that the 
scientific papers published in or after 2014 and reviewed by the team provided overwhelming support 
substantiating the findings and conclusions of the Science Report, the limitations of the approach are 
unlikely to affect the main findings reported here. 

In late October 2021, ORD reviewers additionally identified another 37 scientific papers the 
initial effort had not captured since their review began in mid-June 2021 (e.g., scientific manuscripts 
accepted or published since the screening process began or missed by the original screening; see 
Appendix C3 for the 37 papers). Some of these papers were identified because the ORD reviewers were 
co-authors of the papers, while others were found in part by reviewing scientific journal tables of contents 
or by Google Scholar queries.  

vi. Review of Additional Literature 

As part of the notice and comment process, the agencies solicited comment on the scientific 
literature contained in Appendix C of the Technical Support Document for the Proposed Rule and 
requested from the public additional scientific literature and references relevant to the Science Report’s 
conclusions on the connectivity and effects of streams, floodplain wetlands and open waters, and non-
floodplain wetlands and open waters on the chemical, physical, and biological integrity of larger 
downstream waters. Several commenters provided additional literature to the agencies.  

The agencies reviewed those citations submitted as part of the notice and comment process along 
with the 37 scientific papers noted above for relevance to the report. Some of the references provided by 
public commenters were already included in Appendix C of the Technical Support Document for the 
Proposed Rule and were not reviewed because they had already been screened by the agencies, as 
described further in section I.C.i. Other submitted references were determined to not meet the agencies’ 
criteria (i.e., they were not published in or after 2014, they were not peer-reviewed, or the agencies could 
not ascertain if the references had undergone peer review). Other references were determined to not be 
relevant to the conclusions of the Science Report (i.e., the findings of the paper were outside the context 
described in section I.C). The agencies have considered such references for relevance to other aspects of 
this Technical Support Document and have included such relevant references where appropriate (e.g., 
where they were relevant to implementation of the final rule).  

In total, the agencies reviewed and read 80 additional peer-reviewed scientific papers published in 
or after 2014 to determine if their findings are relevant to the conclusions of the Science Report. This 
included the 37 scientific papers that the agencies had identified in October 2021 (see Appendix C2ii) as 
well as 43 peer-reviewed citations published in or after 2014 that were submitted to and assessed by the 
agencies as part of the public comment process. Thirty papers were found to have sufficient information 
to draw conclusions regarding the most up-to-date and submitted literature on the findings of the Science 
Report. In all cases, the conclusions of the Science Report were substantiated by these scientific 
references. See Appendix C3 for additional information.  
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vii. Summary and Conclusions  

After analyzing the available abstracts of 12,659 scientific peer-reviewed papers published in or 
after 2014 and additional literature published during that period (see section I.C.vi), the evidence 
reviewed is conclusive: ephemerally, intermittently, and perennially flowing streams, floodplain wetlands 
and open waters, and non-floodplain wetland and open waters are hydrologically, biologically, 
chemically, and functionally connected to downstream systems and substantively and definitively affect 
down-gradient aquatic systems. This conclusion echoes the findings relative to streams and floodplain 
systems, while updating the non-floodplain wetland and open water findings of the Science Report. 
ORD’s review across all three systems found overwhelming evidence from the abstracts that were 
screened conclusively supporting the connectivity and down-gradient effects of stream, floodplain, and 
non-floodplain wetland and open water systems.  

Furthermore, science has substantively advanced since 2014 regarding, in particular, the 
downstream connectivity and effects of non-floodplain wetlands and open waters, with many examples of 
consequential effects in the Discussion section (section I.C.iii) above. Those advances include evidence 
from a study by Rains et al. (2016) titled “Geographically isolated wetlands are part of the hydrological 
landscape” that analyzed how non-floodplain wetlands (geographically isolated wetlands, or GIWs, in 
their parlance) were nodes in hydrologic networks that had aquatic network-scale effects (e.g., through 
lag, sink, and source functions). Non-floodplain wetlands were the dominant source of groundwater 
recharge, replenishing groundwaters for farm and rural communities in an isotopic study by Bam et al. 
(2020). Isotopic analyses, a relatively recently applied tool for hydrologic studies, have conclusively 
demonstrated surface-water connectivity between non-floodplain wetlands and stream systems. See, e.g., 
Brooks et al. 2018. An additional large spatial-scale hydrological analysis of 260 non-floodplain wetland 
catchments across 10 study regions throughout North America by Thorslund et al. (2018) found that non-
floodplain wetlands were watershed sources to downgradient systems. Importantly, Thorslund et al. 
(2018) noted there was no specific relationship between landscape position (e.g., linear distance vis-à-vis 
a stream network) and the hydrologic connectivity of the non-floodplain wetland catchments. They 
reported the following:  

Significant positive correlations between GIW [geographically isolated wetland] subcatchment 
runoff generation and distance measures…were observed in only 2 of 53 investigated cases. We 
therefore conclude with regard to Research Question 3 [how well can runoff generation of GIW 
subcatchments be predicted from simple geographic characteristics (e.g., distance and elevation 
relative to the stream network)?] that runoff generation is poorly predicted by simple geography. 
This contradicts the contention that GIWs are less hydrologically connected when further away 
from the stream network. The absence of distance, or indeed any consistent linear predictive 
associations, provides support for the explanation that runoff generation controls are specific to 
local topography (e.g., spill elevations), vegetation (impacting ET [evapotranspiration] and 
infiltration), and geology (impacting groundwater conveyance). 

Thorslund et al. 2018 at 5. Golden et al. (2016, p. 21) found that more distal geographically isolated 
wetlands may be less frequently connected to downstream waters than wetlands that are closer to the 
stream network, but that can still have hydrologic impacts downstream (“The further GIWs are from a 
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stream, the greater their capacity to increase streamflow due to the physiographic setting, hypothesized 
transit times, and sequencing of watershed hydrologic connectivity in the study area.”) 

The presence of hydrologic heterogeneity in wetland connectivity – which includes varying 
degrees of disconnection – across the landscape is important for biological, biogeochemical, and 
hydrological functions cumulatively affecting downgradient systems. According to Cohen et al. (2016, 
p.1978), the heterogenous hydrologic connectivity of non-floodplain wetland systems (i.e., the presence 
of a connectivity continuum) is “precisely what enhances some GIW [geographically isolated wetland] 
functions and enables others.” Marton et al. (2015) conducted a review of the biogeochemical functions 
of non-floodplain wetlands, determining that non-floodplain wetlands were “biogeochemical reactors” on 
the landscape due to their chemical processing rates and sequestration functions that influence and effect 
water quality (i.e., sink and transformation functions). Marton et al. (2015, p.408) note that non-
floodplain wetlands are “integral to biogeochemical processing on the landscape and therefore [to] 
maintaining the integrity of US waters.” Cohen et al. (2016, p.1978) conclude that “sustaining landscape 
functions requires conserving the entire continuum of wetland connectivity, including GIWs.” This is 
echoed by Creed et al. (2017), who also note that “vulnerable waters” such as headwater streams and non-
floodplain wetlands provide $15.7 trillion and $673 billion, respectively, in ecosystem services in the 
conterminous United States annually. These findings and others were summarized by Lane et al. (2018) 
in an updated and peer-reviewed state-of-the-science on the connectivity and effects of non-floodplain 
wetlands and open waters. They concluded (p. 363) all non-floodplain wetlands “are interconnected with 
streams and river networks” and that the emergent heterogeneity of those convoluted connections and 
disconnections affect the hydrological, biogeochemical, and physical functions of non-floodplain 
wetlands, “modify[ing] the characteristics and function[s] of downstream waters.”  

It is evident that the conclusions of the Science Report have been bolstered by scientific advances 
published since 2014. The science demonstrates that the aquatic systems analyzed in the Science Report 
and in subsequent publications are dynamically connected laterally, longitudinally, vertically, and over 
time with other surface waters, with groundwater, and with the landscapes in which they function. These 
connections exist on gradients that vary across space and time from highly connected to highly 
disconnected streams, wetlands, and open waters. Similarly, the functions that affect downgradient waters 
also occur along connectivity gradients, from functions that predominate during highly connected periods 
to those that occur more so at periods of lower or no connectivity. Disconnections (i.e., less connected or 
“isolated” conditions) such as stream-network surface-flow fragmentation (e.g., as can occur with 
ephemeral or intermittent reaches), wetland perched on clay substrates within a floodplain, or non-
floodplain wetlands embedded in uplands, often provide the optimal conditions for biogeochemical, 
hydrological, and biological functions of streams, wetlands, and open waters that substantively affect 
down-gradient waters.  

D. Closing Comments on the Science Report and Updated Literature 

This section updates the Closing Comments from the Executive Summary of the Science Report 
with information from the scientific literature published since the Report’s release, including the literature 
reviewed and discussed in section I.C.  

The structure and function of downstream waters highly depend on materials—broadly defined as 
any physical, chemical, or biological entity—that originate outside of the downstream waters. Most of the 
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constituent materials in rivers, for example, originate from aquatic ecosystems located upstream in the 
drainage network or elsewhere in the drainage basin, and are transported to the river through flowpaths 
illustrated in the introduction to this report. Thus, the effects of streams, wetlands, and open waters on 
rivers are determined by the presence of (1) physical, chemical, or biological pathways that enable or 
inhibit the transport of materials and organisms to downstream waters; and (2) functions within the 
streams, wetlands, and open waters that alter the quantity and quality of materials and organisms 
transported along those pathways to downstream waters. 

The strong hydrologic connectivity of river networks is apparent in the existence of stream 
channels that form the physical structure of the network itself. Given the evidence reviewed in the 
Science Report and in more recent literature, it is clear that streams and rivers are much more than a 
system of physical channels for efficiently conveying water and other materials downstream. The 
presence of physical channels, however, is a compelling line of evidence for surface-water connections 
from tributaries, or water bodies of other types, to downstream waters. Physical channels are defined by 
continuous bed-and-banks structures, which can include apparent disruptions (such as by bedrock 
outcrops, braided channels, flow-through wetlands) associated with changes in the material and gradient 
over and through which water flows. The continuation of bed and banks downgradient from such 
disruptions is evidence of the surface connection with the channel that is upgradient of the perceived 
disruption.  

Although the peer-reviewed literature available at the time of the Science Report’s publication 
(January 2015) did not provide information to categorically identify types of non-floodplain wetlands that 
have the types of connections or disconnections that confer important functional effects to downstream 
waters, the evidence did support the conclusion that non-floodplain wetlands provide these functions and 
that additional information (e.g., from field assessments, analysis of existing or new data, reports from 
local resource agencies) could be used in combination with evidence from literature in case-specific 
analysis. The Science Report also concluded that information from emerging research on functions 
occurring along the gradients of connectivity observed in non-floodplain wetlands, including studies of 
the types identified in Section 4.5.2 of the Science Report, could close some of the existing data gaps in 
the near future:  

Recent scientific advances in the fields of mapping, assessment, modeling, and landscape 
classification indicate that increasing availability of high-resolution data sets, promising 
new technologies for watershed-scale analyses, and methods for classifying landscape 
units by hydrologic behavior can facilitate and improve the accuracy of connectivity 
assessments. Emerging research that expands our ability to detect and monitor 
ecologically relevant connections at appropriate scales, metrics to accurately measure 
effects on downstream integrity, and management practices that apply what we already 
know about ecosystem function will contribute to our ability to identify waters of 
national importance and maintain the long-term sustainability and resiliency of valued 
water resources. 

Science Report at ES-15. 

ORD’s update of relevant literature published since 2014-2015 shows that scientific 
understanding of the watershed functions of non-floodplain wetlands has substantively advanced in recent 
years. The results of recent research confirm that functions provided by these systems support water 
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quality and availability in streams, rivers, lakes, reservoirs, coastal waters, and aquifers and increase the 
resilience of communities and ecosystems to a changing climate by mitigating for effects of floods and 
droughts. The research described in section I.C of this document provides new insights into the factors 
governing the types and degrees of connectivity that confer functional effects downstream, including 
evidence supporting the Science Report’s finding that spatial distance must be considered in context with 
other factors such as topography, vegetation, soils, geology and climate, to determine the magnitude of 
downstream effects of non-floodplain wetland systems.  

 

E. Other Scientific Support 

In preparation for this final rule, the agencies considered scientific and technical information 
other than the Science Report and the literature updating the Report discussed in section I.C. This 
includes peer-reviewed published literature, other publications, and other information that was outside the 
scope of the Science Report. The agencies also reviewed and considered other data and information 
including jurisdictional determinations, relevant agency guidance and implementation manuals, federal 
and state reports, letters and commentary from the SAB on past rulemaking efforts, comment letters 
received on previous rulemaking efforts, consultation comment letters for this rule, letters received to the 
pre-proposal recommendations docket, and timely comments and associated scientific literature provided 
as part of the public comment period. This additional technical and scientific support is cited throughout 
this technical support document. 

 

F. Emerging Science 

As the agencies work to finalize and then implement the rule, they will be guided by the 
transparent review and application of the best available science that further informs and underpins 
regulatory decisions and fills data gaps on connectivity and effects across stream systems, floodplain 
wetlands and open waters, and non-floodplain wetlands and open waters. Examples of recent advances 
include quantifying the probability of perennial stream flow (e.g., Jaeger et al. 2019), quantifying 
streamflow responses to shifts in future climates (e.g., Jaeger et al. 2014), mapping stream systems (e.g., 
Allen et al. 2018; Hafen et al. 2020), isotopically analyzing material exchange between floodplain 
wetlands and adjoining stream networks (e.g., Tetzlaff et al. 2014; Sánchez-Carrillo and Álvarez-Cobelas 
2018), and incorporating high temporal and high spatial resolution data into coupled floodplain and 
stream models (e.g., Hansen et al. 2018; Jensen and Ford 2019).  

Emerging scientific advances since 2015 have continued to inform the connectivity and effects of 
non-floodplain wetlands and open waters, in particular when assessed at the watershed-scale. As stated in 
Conclusion 3 of the Science Report, the connectivity and effects of wetlands and open waters that are not 
hydrologically linked to other water resources by surface water or by stream channels and their lateral 
surface extensions into riparian areas and floodplains are more difficult to address solely from evidence 
available in peer-reviewed studies at the time of the report’s publication. However, as discussed in section 
I.C, advances have been made since then that can help inform case-specific significant nexus 
determinations. The currently available scientific literature on non-floodplain wetlands and open waters 
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shows that these systems have important hydrologic, water-quality, and habitat functions that can affect 
the integrity of downstream waters. The Science Report noted these effects were particularly evident 
where (a) connections from the non-floodplain wetlands and open waters to the downstream waters exist, 
(b) when non-floodplain wetlands and open waters intersect flow paths from known point or non-point 
sources, or (c) when considered cumulatively with other non-floodplain wetlands and open waters. The 
current scientific literature supports these findings, and also provides additional examples of the direct 
effects of non-floodplain wetland and open water “isolation” on downstream water integrity, e.g., through 
attenuating flood peaks and mitigating excessive nutrient levels. Currently available peer-reviewed 
literature and scientific wetland classification systems clearly document the importance of natural 
variation in the types and degrees of connectivity in non-floodplain wetlands and open waters, and the 
effects of that natural variation on the types of ecosystem functions and services such wetlands provide.  

The body of peer-reviewed scientific literature regarding the watershed functions of non-
floodplain wetlands and open waters and their cumulative effects on downstream waters continues to 
grow since the publication of the Science Report (e.g., Marton et al. 2015; Rains et al. 2016; Cohen et al. 
2016; Creed et al. 2017; Alexander et al. 2018; Mushet et al. 2019; Mengistu et al. 2020; Evenson et al. 
2021; Golden et al. 2021a). Importantly, data from ongoing and emerging research not yet published in 
the peer-reviewed literature could close perceived data gaps in the near future. Scientific advances in the 
fields of mapping (e.g., Heine et al. 2004; Tiner 2011; Lang et al. 2012; Wu et al. 2014b; Wu et al. 2015; 
Wu and Lane 2016; Lane and D’Amico 2016; Wu and Lane 2017; Allen et al. 2018, Colvin et al. 2019; 
Vanderhoof and Lane 2019; Borja et al. 2020; Fesenmyer et al. 2021), assessment (e.g., McGlynn and 
McDonnell 2003; Gergel 2005; McGuire et al. 2005; Ver Hoef et al. 2006; Leibowitz et al. 2008; 
Moreno-Mateos et al. 2008; Lane and D’Amico 2010; Ver Hoef and Peterson 2010; Shook and Pomeroy 
2011; Powers et al. 2012; McDonough et al. 2015; Harvey et al. 2019; Schmadel et al. 2019; Ali and 
English 2019; Harvey et al. 2021), modeling (e.g., Golden et al. 2013; McLaughlin et al. 2014; Fossey 
and Rousseau 2016; Jones et al. 2018a; Rajib et al. 2020; Evenson et al. 2021; Golden et al. 2021a), and 
landscape classification (e.g., Wigington et al. 2013; White and Crisman 2016; Klammler et al. 2020) 
indicate that increasing availability of high-resolution data sets, promising new technologies for 
watershed-scale analyses, and methods for classifying landscape units by hydrologic behavior can 
facilitate such individual and cumulative functional characterizations by broadening their scope and 
improving their accuracy. Id. at 6-13. Emerging research that expands the ability to detect and monitor 
chemically, physically, and biologically relevant connections at appropriate scales, metrics to accurately 
measure effects on downstream integrity, and management practices that apply what is already known 
about non-floodplain wetlands and open water functioning, will contribute to advance the ability to 
maintain the long-term sustainability and resiliency of valued water resources. Scientific inventories of 
wetlands and wetland functions or ecosystem systems are likely to continue to expand the understanding 
of the benefits non-floodplain wetland and open water ecosystem functions and services provide to 
humans and the environment.  

G. SAB Review of the Proposed Rule 

The agencies also engaged with the SAB on several occasions during the development of this 
rule. As discussed in section I.B., the SAB was established in 1978 to provide independent scientific and 
technical advice to the EPA Administrator on the technical basis for agency positions and regulations.  
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On January 28, 2022, during the public comment period, the agencies met with the SAB Work 
Group for Review of Science Supporting EPA Decisions to explain the proposed rule, including its basis, 
and to address the SAB Work Group’s initial questions. On February 7, 2022, the SAB Work Group 
signed a memorandum recommending that the Chartered SAB should review the adequacy of the science 
supporting the proposed rule. SAB 2022a. On March 7, 2022, during the public meeting of the Chartered 
SAB, the Chartered SAB unanimously voted to review the scientific and technical basis of the proposed 
rule. The SAB has similarly reviewed the technical and scientific basis of other past rulemakings revising 
the definition of “waters of the United States.” See SAB 2014b; SAB 2020. The SAB formed a Work 
Group of its chartered members which issued a draft review on May 9, 2022, and the Chartered SAB held 
a public meeting on the matter on May 31 and June 2, 2022. The SAB issued their final review on July 5, 
2022. SAB 2022b (hereafter 2022 SAB Review). All materials related to the 2022 SAB Review are 
available in the docket for this rule and on the SAB’s website. 

The SAB’s review of the proposed rule was overall supportive of the science underpinning the 
proposed rule, including the Technical Support Document, and the discussion of shallow subsurface flow. 
The SAB made some recommendations on the discussion of climate change. The SAB’s 
recommendations relevant to the final rule were also raised during the public comment period and have 
been considered by the agencies during their drafting of this Technical Support Document. A 
memorandum summarizing the agencies’ interactions with the SAB and the SAB’s review of the 
proposed rule and its supporting documents is available in the docket for this rule.  

H. Other Scientific Information 

i. Ecosystem Services 

Streams, wetlands, lakes, ponds, and other types of aquatic resources are well-known to provide a 
variety of functions that translate into ecosystem services. See, e.g., Creed et al. 2017. Ecosystem services 
are benefits that humans obtain from ecosystems, including provisioning, regulating, cultural, and 
supporting ecosystem services. Millennium Ecosystem Assessment 2005. Provisioning services relate to 
the food, water, timber, fiber, and other resources provided by wetlands and other aquatic resources that 
are consumed. Id. Regulating services affect climate, floods, disease, wastes, and water quality. Id. 
Cultural services include all non-material benefits obtained from ecosystems and can include recreational, 
aesthetic, educational, and spiritual benefits. Id. Supporting services are necessary for the production of 
other ecosystem services and include nutrient cycling, photosynthesis, and soil formation. Id. 

Wetlands are recognized as one of the most valuable ecosystems in the planet. Costanza et al. 
1997; Mitsch et al. 2015. For example, wetlands provide a wide range of ecosystem services that are 
directly used or appreciated by humans. See, e.g., Brander et al. 2012a; Brander et al. 2012b; 
Chaikumbung et al. 2016; De Groot et al. 2018; Ghermandi et al. 2010; McLaughlin and Cohen 2013; 
Mitsch and Gosselink 2007; Mitsch et al. 2015. Provisioning services provided by wetlands include the 
maintenance of fisheries and wildlife for consumption, the production of rice for food, fuel sources (such 
as peat), medicines and pharmaceuticals derived from wetland plants and animals, ornamental resources 
(e.g., animal and plant products used as ornaments or for landscaping), and surface and groundwater 
supply. See, e.g., Millennium Ecosystem Assessment 2005. Regulating services include flood protection 
(Ameli and Creed 2019; Evenson et al. 2018; Lawrence et al. 2019; Martinez-Martinez et al. 2014; Tang 
et al. 2020; Taylor et al. 2022; Watson 2016; Wu et al. 2008), water purification (Ewel 1997; Ghermandi 
et al. 2010), erosion control/sediment retention (Hopkins et al. 2018; Richardson et al. 2011), 
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groundwater recharge (Cowdery et al. 2019; Harvey et al. 2004; Williams et al. 2015), carbon 
sequestration (Nag et al. 2017; Nahlik et al. 2016; Mitsch et al. 2013; Tangen et al. 2020), and natural 
hazard regulation (e.g., the role coastal wetlands play in reducing the damage of hurricanes) (Millennium 
Ecosystem Assessment 2005). Some of these services have been monetarily valued, as discussed further 
in the Economic Analysis. For example, Lawrence et al. (2019) and Watson (2016) both provide 
examples of monetized flood protection benefits via avoided property damages. Additionally, Hopkins et 
al. (2018) provides an example of monetized sediment-bound nitrogen retention benefits. Cultural 
services provided by wetlands include cultural diversity; spiritual and religious values; educational 
values; inspiration for art, folklore, national symbols, architecture, and advertising; aesthetic values (e.g., 
parks, scenic viewpoints); social relations; sense of place; cultural heritage values (including culturally 
significant species); and recreation and ecotourism. Millennium Ecosystem Assessment 2005. Supporting 
services provided by wetlands include soil formation, photosynthesis in wetland plants, primary 
production, nutrient cycling, and water cycling. Id. Some ecosystem services like erosion control can be 
categorized as both a supporting and a regulating service, depending on the time scale and how 
immediately humans benefit from the ecosystem service. Id.  

 Similarly, streams, including headwater streams, provide many ecosystem services to society. 
This includes water supply, water quality benefits (for example, via nitrogen transformation and 
phosphorus sequestration), and climate regulation (for example, via carbon sequestration). Creed et al. 
2017. Streams provide of the same provisioning, regulating, cultural, and supporting services that 
wetlands provide to society.  

Ephemeral streams and their associated wetlands, wetlands that did not meet the 2020 NWPR’s 
revised adjacency criteria, and other aquatic resources not protected by the 2020 NWPR provide 
numerous and critical ecosystem services, as discussed in the Science Report. See also Sullivan et al. 
2020 (“Removal of federal protection [of ephemeral streams and non-floodplain wetlands] is likely to 
diminish numerous ecosystem services, such as safeguarding water quality and quantity, reducing or 
mitigating flood risk, conserving biodiversity, and maintaining recreationally and commercially valuable 
fisheries”). This is echoed by Creed et al. (2017), who also note that “vulnerable waters” such as 
headwater streams and non-floodplain wetlands provide $15.7 trillion and $673 billion, respectively, in 
ecosystem services in the conterminous United States annually. These findings and others were 
summarized by Lane et al. (2018) in an updated and peer-reviewed state-of-the-science on the 
connectivity and effects of non-floodplain wetlands and open waters.  

 As discussed further in section III.E.iv, a significant nexus analysis is limited to an assessment of 
only those functions that have a nexus to the chemical, physical, or biological integrity of traditional 
navigable waters, the territorial seas, or interstate waters. Therefore, there are some important functions 
provided by wetlands, tributaries, and waters evaluated under paragraph (a)(5) that translate into 
ecosystem services that benefit society that will not assessed in a significant nexus analysis under the final 
rule because they do not relate to the chemical, physical, or biological integrity of traditional navigable 
waters, the territorial seas, and interstate waters. There are also a wide variety of functions that streams, 
wetlands, and open waters provide that translate into ecosystem services that benefit society that would 
not be assessed in a significant nexus analysis under this rule. These include provision of areas for 
personal enjoyment (e.g., fishing, hunting, boating, and birdwatching areas), ceremonial or religious uses, 
production of fuel, forage, and fibers, extraction of materials (e.g., biofuels, food, such as shellfish, 
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vegetables, seeds, nuts, rice), plants for clothes and other materials, and medical compounds from wetland 
and aquatic plants or animals. While these types of ecosystem services can contribute to the economy, 
they are not relevant to the chemical, physical, or biological integrity of paragraph (a)(1) waters and 
would not be considered in a significant nexus analysis under this rule. See also section III.E.iv for a 
discussion of functions that can be considered as part of the significant nexus analysis. 

 The Economic Analysis for the Final Rule also discusses ecosystem services, with a focus on the 
monetized benefits of ecosystem services provided by wetland areas protected due to Clean Water Action 
section 404 mitigation requirements. 

 

II. Executive Order 13990 and Review of the Navigable Waters 
Protection Rule 

A. Executive Order 13990 

On January 20, 2021, President Joseph R. Biden, Jr. signed Executive Order 13990, entitled 
“Executive Order on Protecting Public Health and the Environment and Restoring Science to Tackle the 
Climate Crisis,” which provides that “[i]t is, therefore, the policy of my Administration to listen to the 
science; to improve public health and protect our environment; to ensure access to clean air and water; to 
limit exposure to dangerous chemicals and pesticides; to hold polluters accountable, including those who 
disproportionately harm communities of color and low-income communities; to reduce greenhouse gas 
emissions; to bolster resilience to the impacts of climate change; to restore and expand our national 
treasures and monuments; and to prioritize both environmental justice and the creation of the well-paying 
union jobs necessary to deliver on these goals.” 86 FR 7037 (published January 25, 2021, signed January 
20, 2021). The order “directs all executive departments and agencies (agencies) to immediately review 
and, as appropriate and consistent with applicable law, take action to address the promulgation of Federal 
regulations and other actions during the last 4 years that conflict with these important national objectives, 
and to immediately commence work to confront the climate crisis.” Id. at section 2(a). “For any such 
actions identified by the agencies, the heads of agencies shall, as appropriate and consistent with 
applicable law, consider suspending, revising, or rescinding the agency actions.” Id. The order also 
specifically revoked Executive Order 13778 of February 28, 2017 (Restoring the Rule of Law, 
Federalism, and Economic Growth by Reviewing the “Waters of the United States” Rule), which had 
initiated development of the Navigable Waters Protection Rule (2020 NWPR). 

 After completing the review mandated by the Executive Order and reconsidering the record for 
the 2020 NWPR, on June 9, 2021, the agencies announced their intention to revise or replace the rule. The 
agencies’ decision was based on consideration of the text of the Clean Water Act; Congressional intent 
and the objective of the Clean Water Act; Supreme Court precedent; the current and future harms to the 
chemical, physical, and biological integrity of the nation’s waters due to the 2020 NWPR; concerns raised 
by stakeholders about the 2020 NWPR, including implementation-related issues; the principles outlined 
in the Executive Order; and issues raised in ongoing litigation challenging the 2020 NWPR. EPA and the 
Army concluded that the 2020 NWPR did not appropriately consider the effect of the revised definition of 
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“waters of the United States” on the integrity of the nation’s waters, and that the rule threatened the loss 
or degradation of waters critical to the protection of traditional navigable waters, among other concerns.  

The agencies’ review of the 2020 NWPR consistent with Executive Order 13990, as well as 
consideration some of the other directives of the Order are discussed in the sections below. The agencies 
also believe that they have fulfilled the Order’s directive to “listen to the science,” as is appropriate, and 
their consideration of the science is discussed in more detail in sections I and III.  

 

B. Review of the 2020 NWPR 

Pursuant to the direction in Executive Order 13990, the agencies reassessed the administrative 
record and basis for the 2020 NWPR and have a number of serious concerns about the 2020 NWPR. The 
agencies are concerned about the rule’s failure to consider the statutory objective in determining the scope 
of “waters of the United States,” including through its elimination of the significant nexus standard and 
the absence of any alternative standard that would protect the chemical, physical, and biological integrity 
of the nation’s waters. The 2020 NWPR is also inconsistent with scientific information about protecting 
water quality, and indeed, it drastically reduced the numbers of waters protected by the Clean Water Act, 
including waters that significantly affect the integrity of downstream traditional navigable waters, the 
territorial seas, and interstate waters. Finally, implementing the 2020 NWPR posed significant technical 
challenges for federal, state, and tribal agency staff as well as stakeholders because foundational concepts 
of the rule are confusing and not reasonably implementable, resulting in arbitrary outcomes. 

i. Impacts of the 2020 NWPR 

The failure of the 2020 NWPR to advance the objective of the Clean Water Act, as well as its 
inconsistency with science and the challenges it presents in implementation, have had real-world 
consequences. The agencies have found that substantially fewer waters are protected by the Clean Water 
Act under the 2020 NWPR compared to previous rules and practices. It is important to note that the 
definition of “waters of the United States” affects most Clean Water Act programs designed to restore and 
maintain water quality—including not only the section 402 NPDES and section 404 dredged and fill 
permitting programs, but water quality standards under section 303, identification of impaired waters and 
total maximum daily loads under section 303, section 311 oil spill prevention, preparedness, and response 
programs, and the section 401 Tribal and State water quality certification programs—because the Clean 
Water Act provisions establishing such programs use the term “navigable waters” or “waters of the 
United States.” While the 2020 NWPR was promulgated with the expressed intent to decrease the scope 
of federal jurisdiction, the agencies now are concerned that the actual decrease in water resource 
protections was more pronounced than the qualitative predictions in the 2020 NWPR preamble and 
supporting documents anticipated and acknowledged to the public. These data support the agencies’ 
conclusion that the 2020 NWPR is not a suitable alternative to the final rule.  
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Through an evaluation of jurisdictional determinations completed by the Corps between 2016 and 
2021,7 EPA and the Army have identified consistent indicators of a substantial reduction in waters 
protected under the Clean Water Act by the 2020 NWPR. See section II.B.i for discussion on methods and 
results of the agencies’ analyses. These indicators include an increase in the number and proportion of 
jurisdictional determinations completed where aquatic resources were found to be non-jurisdictional, an 
increase in determinations made by the Corps that no Clean Water Act section 404 permit is required for 
specific projects, and an increase in requests for the Corps to complete approved jurisdictional 
determinations (AJDs), rather than preliminary jurisdictional determinations (PJDs) which treat a feature 
as jurisdictional. These trends all reflect the narrow scope of jurisdiction in the 2020 NWPR’s definitions. 
Additionally, the agencies find that these indicators likely account for only a fraction of the 2020 
NWPR’s impacts, because many project proponents did not seek any form of jurisdictional determination 
for waters that the 2020 NWPR categorically excluded, such as ephemeral streams, and the Corps would 
not have knowledge of or ability to track such projects. A closer look at each of these indicators will help 
demonstrate some of the more pronounced impacts of the 2020 NWPR on traditional navigable waters, 
the territorial seas, and interstate waters than were identified for the public in the 2020 NWPR and its 
supporting documents. As explained in detail above and in the final rule’s preamble, when a water falls 
outside the scope of the Clean Water Act, that means, among other things, that no federal water quality 
standards will be established, and no federal permit will be required to control the discharge of pollutants, 
including dredged or fill material, into such waters unless the pollutants reach jurisdictional waters. And 
since many entities did not believe that they would need to seek a jurisdictional determination under the 
2020 NWPR, it is impossible to fully understand the scope of degradation the 2020 NWPR’s definition 
caused to traditional navigable waters, the territorial seas, and interstate waters. 

1. Review of Jurisdictional Determinations and Permit Data 

Consistent with Executive Order 13390, EPA and Army staff conducted four assessments on the 
effects of the 2020 NWPR on jurisdictional determinations and related individual aquatic resources using 
data sourced from the Corps’ internal regulatory management database, Operation and Maintenance 
Business Information Link, Regulatory Module (referred to as the ORM2 database). See supra note 7. 
The aim of these assessments is to identify any noticeable trends relating to jurisdictional findings under 

 
7 A jurisdictional determination is a written Corps determination that a water is subject to regulatory jurisdiction 
under section 404 of the Clean Water Act (33 U.S.C. 1344) or a written determination that a waterbody is subject to 
regulatory jurisdiction under section 9 or 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 401 et seq.). 
Jurisdictional determinations are identified as either preliminary or approved, and both types are recorded in 
determinations through an internal regulatory management database, called Operation and Maintenance Business 
Information Link, Regulatory Module (ORM2). This database documents Department of the Army authorizations 
under Clean Water Act section 404 and Rivers and Harbors Act section 10, including permit application processing 
and jurisdictional determinations. This database does not include aquatic resources that are not associated with a 
jurisdictional determination or that are not associated with alternatives to jurisdictional determinations (such as 
delineation concurrences or “No jurisdictional determination required” findings, where the Corps finds that a 
jurisdictional determination is not needed for a project), or permit request or resource impacts that are not associated 
with a Corps permit or enforcement action. An approved jurisdictional determination (AJD) is an official Corps 
document stating the presence or absence of “waters of the United States” on a parcel or a written statement and 
map identifying the limits of “waters of the United States” on a parcel. A preliminary jurisdictional determination 
(PJD) is a non-binding written indication that there may be “waters of the United States” on a parcel; an applicant 
can elect to use a PJD to voluntarily waive or set aside questions regarding Clean Water Act jurisdiction over a 
particular site and thus move forward assuming all waters will be treated as jurisdictional without making a formal 
determination. 
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the 2020 NWPR compared to prior regulatory practice—in particular, the implementation of 1986 
definitions8 of “waters of the United States” consistent with relevant caselaw and associated guidance 
documents.9 This implementation will be referred to as pre-2015 practice for brevity, even though the 
regulatory regime was in place after 2015 (both in light of litigation surrounding the 2015 Clean Water 
Rule and due to finalization of the 2019 Repeal Rule, which intended to restore pre-2015 practice).  

Trends in jurisdictional findings are assessed nationally and in two states within the arid West – 
Arizona and New Mexico. The arid West is assessed in order to determine if the 2020 NWPR is having 
geographically unequal impacts across the nation. A further analysis of trends in number of actions that 
did not require Clean Water Act section 404 permits due to definitions of “waters of the United States” is 
carried out at the national scale.  

The four assessments use the following metrics: 

• Total number of approved jurisdictional determinations (AJDs) and preliminary jurisdictional 
determinations (PJDs) by given time period (see Methods). 

o The above metric was further broken down by total number of AJDs that included 
jurisdictional and non-jurisdictional determinations.10 

• Total number of individual aquatic resources found to be jurisdictional and non-jurisdictional 
within AJDs by given time period. 

o The above metric was further broken down for individual aquatic resource types found to 
be jurisdictional and non-jurisdictional under the 2020 NWPR – in particular, wetlands 
and streams are enumerated.11 

• Total number of individual aquatic resources tied to AJDs, PJDs, delineation concurrences and 
findings of no JD required in two states in the arid West, Arizona and New Mexico, that were 
found to be jurisdictional and non-jurisdictional. This was further broken down by stream 
resources.12 

 
8 EPA and the Corps have separate regulations defining the statutory term “waters of the United States,” but their 
interpretations were substantially similar and remained largely unchanged between 1977 and 2015. See, e.g., 42 FR 
37122, 37144 (July 19, 1977); 44 FR 32854, 32901 (June 7, 1979). For convenience, in this document and in the 
preamble the agencies will generally cite the Corps’ longstanding regulations and will refer to them as “the 1986 
regulations,” “the pre-2015 regulations,” or “the regulations in place until 2015.” These references are inclusive of 
EPA’s comparable regulations that were recodified in 1988 and of the exclusion for prior converted cropland, which 
both agencies added in 1993.   
9 As implemented in the time period under these assessments, the 1986 regulations were bolstered by multiple 
memorandums and guidance documents, including guidance related to Supreme Court decisions. This included the 
Rapanos Guidance. See U.S. EPA and U.S. Army Corps of Engineers. Clean Water Act Jurisdiction Following the 
U.S. Supreme Court’s Decision in Rapanos v. United States and Carabell v. United States (Dec. 2, 2008) (“Rapanos 
Guidance”), available at https://www.epa.gov/sites/default/files/2016-
02/documents/cwa_jurisdiction_following_rapanos120208.pdf.    
10 The 2020 NWPR AJD data entry in ORM2 allows for and is often used to compile determinations about both 
jurisdictional and non-jurisdictional aquatic resources together for a single project site; under prior regulatory 
regimes, data entry in ORM2 restricted project managers to entering AJDs in separate entries for jurisdictional and 
non-jurisdictional resources on the same project site.  
11 Individual aquatic resources were only assessed under the 2020 NWPR because jurisdictional determinations 
carried out under prior regimes had less clear differentiation between types of aquatic resources. For example, a lake 
under prior regimes could have been classified as a tributary, an impoundment, a traditional navigable water, an 
interstate water, and sometimes even an adjacent water or adjacent wetland.  
12 Arizona and New Mexico were assessed because the ecosystems in these states are predominantly desert. 

https://www.epa.gov/sites/default/files/2016-02/documents/cwa_jurisdiction_following_rapanos120208.pdf
https://www.epa.gov/sites/default/files/2016-02/documents/cwa_jurisdiction_following_rapanos120208.pdf
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• Total number of projects that resulted in ‘No Permit Required’ closure methods.  

The ORM2 database was deployed to all of the Corps’ 38 districts in 2008 and has been 
continuously improving since that time. Because of changes to regulatory practice and tracking priorities, 
the data are most reliable from the year 2016 to present.13  

a. Background 

The Operation and Maintenance Business Information Link, Regulatory Module (ORM2) is the 
Corps’ internal database that documents Clean Water Act section 404 application and permit data, 
including information on jurisdictional determinations (JDs).14 JDs are identified as either preliminary or 
approved, and both types are recorded in ORM2. An AJD is an official Corps document stating the 
presence or absence of “waters of the United States” on a parcel or a written statement and map 
identifying the limits of “waters of the United States” on a parcel. A PJD is a non-binding written 
indication that there may be “waters of the United States” on a parcel; an applicant can elect to use a PJD 
to voluntarily waive or set aside questions regarding Clean Water Act jurisdiction over a particular site 
and thus move forward assuming all waters will be treated as jurisdictional without making a formal 
determination.15 

b. Methods 

In the ORM2 database, an AJD can contain one or multiple aquatic resources. For this reason, the 
agencies assessed data on the AJD-level and at the individual aquatic resource level (i.e., total number of 
individual aquatic resources). Similarly, PJD data was assessed at both the PJD-level and at the aquatic 
resource level, although information on the type of aquatic resource is not defined for PJDs. For arid west 
(Arizona and New Mexico) data, delineation concurrences and findings of “no JD required” were also 
included to give scale to the total number of resources considered in those states. Delineation 
concurrences and findings of “no JD required” are excluded from the national assessments due to 
differences in application by Corps staff at the district level and potential error in how resources were 
denoted when these methods were used. Additionally, a separate permitting dataset was provided by the 
Corps, which provided information on when AJDs and PJDs had permits associated with them and details 
on projects that are deemed to not require permits.  

(i) Data Quality Assurance and Control 

2020 NWPR AJD Data from ORM2 was refined to account for foundational differences in how 
AJD information is reported under the 2020 NWPR compared to prior regulatory regimes. Because a 

 
13 ORM2 was not created for the purposes of assessing trends in jurisdiction; rather, it exists as a project 
management tool for the Corps. As such, the tool has updated over time, with changes to how data is entered into the 
system. Database rules associated with required field entries changed in 2016 which made data more consistent.  
14 The public interface for the Corps’ ORM2 Database is available at: https://permits.ops.usace.army.mil/orm-public.  
15 When the Corps provides a PJD, or authorizes an activity through a general or individual permit relying on a PJD, 
the Corps is not making a legally binding determination of any type regarding whether jurisdiction exists over the 
particular aquatic resource in question even though the applicant or project proponent proceeds as though the 
resource were jurisdictional. A PJD is “preliminary” in the sense that a recipient of a PJD can later request and 
obtain an AJD if that becomes necessary or appropriate during the permit process or during the administrative 
appeal process. See 33 CFR 331.2. 

https://permits.ops.usace.army.mil/orm-public
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single AJD in ORM under the 2020 NWPR can contain both jurisdictional and non-jurisdictional 
determinations, the instances of these “mixed” AJD forms had to be split in two.16 To explain, when 
totaling whether an AJD was for a jurisdictional or non-jurisdictional resource, if an AJD under the 2020 
NWPR contained both jurisdictional and non-jurisdictional resources, it was counted in both categories 
(i.e., a tally would be added under the jurisdictional category and the non-jurisdictional category). This 
refinement was made on 1,631 AJDs and thus normalized the 2020 NWPR AJDs so that it could be 
compared to AJDs conducted under the prior regulatory regimes. Additionally, any AJDs that were 
conducted on drylands/uplands or Rivers and Harbors Act section 10 waters only were excluded from this 
analysis, as they are either excluded from the definition of “waters of the United States” or do not fall 
under the joint jurisdiction of the EPA and Corps under the Clean Water Act. This led to 1,354 AJDs 
from ORM2 being excluded from this analysis under the 2020 NWPR timeframe and a range of 1,163 to 
2,479 AJDs being excluded from these analyses under the pre-2015 practice timeframes analyzed.17 If 
and when PJD, delineation concurrence and “no JD required” data were used, data that was found to be 
erroneous were removed.18 

The agencies also assessed actions from 2016 to 2021 associated with the Corps’ “No Permit 
Required” closure method within ORM2, looking specifically at closure methods for “Activities that 
occur in waters that are no longer WOTUS under the 2020 NWPR” and “Activities that do not occur in 
WOTUS.” “Activity does NOT occur in WOTUS” relates to a finding of “no permit required” that is 
based on that activity occurring entirely outside of any “water of the United States.” While there may be 
aquatic resources on the site, the activity will not touch those resources. “Activities that occur in waters 
that are no longer WOTUS under the 2020 NWPR” is a new closure method created by the Corps for the 
ORM2 database following implementation of the 2020 NWPR that helps track actions that were pending 
or in progress when the 2020 NWPR came into effect and would have required a permit prior to the 2020 
NWPR, but that no longer required a permit due to the 2020 NWPR’s revised definition of “waters of the 
United States and therefore needed to be denoted as not requiring a permit in ORM2. However, as 
implementation methods and training were still in development through much of the 2020 NWPR 
implementation period, this closure method was not uniformly used across the Districts and by Corps 
project managers and thus likely undercounts the number of projects that would have required a permit 
prior to the 2020 NWPR but that no longer did while the 2020 NWPR was implemented.19  

Time frames considered 

 
16 Under the pre-2015 regulatory regime and the 2015 Clean Water Rule, AJDs in ORM could contain only 
jurisdictional features or only non-jurisdictional features. 
17 June 22, 2016 – June 21, 2017: 2,479 AJDs removed; June 22, 2017 – June 21, 2018: 2,112 AJDs removed; 
December 23, 2019- June 21, 2020: 1,163 AJDs removed.  
18 Features associated with PJDs and these delineation alternatives are presumed jurisdictional; however, there were 
certain aquatic resources that were denoted as being non-jurisdictional in this data; thus, they were removed. This 
was an insubstantial amount of data removed.  
19 This closure method did not exist until July 20, 2020, a month after the 2020 NWPR was implemented. This 
closure method also can only be used when all resources in a given AJD are found to be non-jurisdictional. Under 
the 2020 NWPR, in ORM2, AJD entries can have both non-jurisdictional and jurisdictional individual aquatic 
resources; in those cases, the permit(s) associated with the jurisdictional resources would prevent the ‘no permit 
required’ closure method from being selected. Finally, the use of this new closure method could simply have been 
overlooked by staff if they had not gone through training on its use.  
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In comparing overall AJD and PJD trends at the national scale, the following timeframes were used: 

• June 22, 2020 to June 21, 2021 for the 2020 NWPR: one year of data associated with 
implementation of the 2020 NWPR;  

• The three most recent periods (broken into years with the same calendar dates as feasible) in 
which the definition of “waters of the United States” under the 1986 regulations, implemented 
consistent with relevant caselaw and associated guidance documents, were in use nationwide.  

o June 22, 2016 to June 21, 2017 
o June 22, 2017 to June 21, 2018 
o December 23, 2019 to June 21, 202020  

In order to assess significance of changes under the 2020 NWPR, a further assessment was 
carried out on data separated by years using the calendar dates of June 22 to June 21 for the years of 2016 
to 2021. These significance tests were carried out using pre-2015 practice data compared to the 2020 
NWPR, and using both pre-2015 practice and 2015 Clean Water Rule data compared to the 2020 NWPR 
(Section II.B.i.b.ii: Statistics).  

In looking at trends in Arizona and New Mexico and looking at the “No Permit Required” 
analysis, year by year comparisons were carried out during the calendar dates of June 22 to June 21 for 
the years of 2016 to 2021. In Arizona and New Mexico, all determinations data were derived from either 
pre-2015 practice or the 2020 NWPR (no determinations were carried out under the Clean Water Rule in 
these states). The “No Permit Required” analysis uses data from all regulatory regimes (including pre-
2015 practice and the 2015 Clean Water Rule regime) in order to capture the volume of these findings 
over time.  

(ii) Statistics 

Because data within ORM2 are imperfect in nature—due to varying regulatory regimes, spatial 
distribution of determinations, and economic and development trends, and general human error related to 
data entry—the assessment carried out is summary in nature. Cursory statistics on significance have been 
run through comparing the 2020 NWPR data to the 95% confidence interval calculated via annual data 
from 2016-2020. This was done for the following comparisons: 

• Proportion of AJDs and PJDs carried out under the 2020 NWPR compared to pre-2015 practice; 
• Proportion of non-jurisdictional findings for total number of individual resources via AJDs under 

the 2020 NWPR compared to AJDs under pre-2015 practice from 2016 to 2020 (using only pre-
2015 practice data limits the assessment to the proportion of resources being found to be 
jurisdictional or non-jurisdictional); 

• Proportion and total number of non-jurisdictional findings for total number of individual 
resources via AJDs under the 2020 NWPR compared to all AJDs from 2016 to 2020 (using both 
pre-2015 practice and 2015 Clean Water Rule data allows for assessing the 95% confidence 
interval based on overall volume (i.e., total number by year) as well as proportion of resources 
being found to be jurisdictional or non-jurisdictional); 

 
20 December 23, 2019, was the day in which the 2019 Rule went into effect, which recodified the 1986 regulations.  
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• Total number of AJD individual aquatic resources and PJD and delineation alternative21 
individual aquatic resources (with a further non-jurisdictional breakdown by both proportion and 
total number) in New Mexico and Arizona under the 2020 NWPR compared to pre-2015 practice 
from 2016 to 2020; and 

• Total number of No Permit Required findings under the 2020 NWPR compared to pre-2015 
practice.  

At the national scale, rather than comparing total numbers between different time periods, it is 
more telling to compare percentages. This allows for a comparison between the 2020 NWPR and pre-
2015 practice, even when time frames considered are not equal in length.  

One test of significance based on total numbers of individual aquatic resources was carried out at 
the national scale which included the 2015 Clean Water Rule data in order to compare volume of 
resources assessed over time. For the Arizona and New Mexico analysis and the “No Permit Required” 
analysis, total numbers of findings are compared on a year-by-year basis. While there are external trends 
that can impact the overall quantity of AJDs and individual aquatic resources reviewed under AJDs, year 
by year comparisons of total numbers in these specific data show a substantial shift under the 2020 
NWPR that the agencies believe are tied directly to definitions of “waters of the United States.”  

For all analyses, while exact numbers are not obtainable from the data there is more than 
sufficient volume and accuracy of the data to demonstrate clear trends. 

c. Results and Discussion 

(i) AJDs and PJDs over time  

Rather than comparing jurisdictional determinations under the 2020 NWPR to all prior 
jurisdictional determinations, the analyses here looked specifically at the pre-2020 NWPR determinations 
defined by the 1986 regulations and associated guidance documents that were issued following Supreme 
Court decisions (i.e., under pre-2015 practice).  

Of the 14,143 jurisdictional determinations carried out as either AJDs or PJDs under the 2020 
NWPR from June 22, 2020, to June 21, 2021, 66.5% were carried out as AJDs (Table 1, Figure 1).22 
Under the various timeframes considered for pre-2015 practice, the percentage of determinations carried 
out as AJDs ranged from 15.6% to 23.4%. In comparing the two regimes, there has been a 183% to 326% 
increase in the percent of determinations carried out as AJDs under the 2020 NWPR. Proportionally fewer 
PJDs indicate that fewer project proponents are requesting that aquatic resources on their project site be 
treated as if they are jurisdictional. This has two implications: under the 2020 NWPR, project proponents 
were requesting AJDs rather than PJDs and/or they were simply not notifying the Corps of their activities 
that might result in the discharge of dredged or fill material into aquatic resources because they believed 
those resources were not jurisdictional under the 2020 NWPR. The lower rates of PJD requests under the 

 
21 “Delineation alternatives” refers to delineation concurrences and “No JD required” findings. These are similar to 
PJDs in that projects on sites with such findings would move forward with permitting as if the associated resources 
on these sites are jurisdictional.  
22 PJDs are not formal determinations and aquatic resources addressed through a PJD are treated as jurisdictional for 
the purposes of any associated permit action. 
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2020 NWPR may be the most striking metric for how trends in jurisdiction have changed. When looking 
at individual resources associated with jurisdictional determinations, this comparison between overall 
numbers considered as part of AJDs versus as part of PJDs is even more dramatic, with a 4-fold to 5-fold 
increase in the percent of aquatic resources assessed through AJDs under the 2020 NWPR (Table 1, 
Figure 2). In order to test for the significance of this shift, a further analysis was carried out, splitting pre-
2015 practice data from June 22, 2016, to June 21, 2020, by calendar year, calculating the percent of 
AJDs and PJDs carried out for each year, and comparing the 95% confidence interval for those years to 
the percent found for the 2020 NWPR. The test of significance on the proportion of AJDs and PJDs 
carried out under the 2020 NWPR compared to pre-2015 practice shows that this shift towards more 
AJDs and fewer PJDs is in fact significant and outside the bounds of the 95% confidence interval for pre-
2015 practice data (Table 2).  

The agencies found within the AJDs completed under the 2020 NWPR, the probability of finding 
resources to be non-jurisdictional increased precipitously. Of the 9,399 AJDs completed by the Corps 
under the 2020 NWPR during the first 12 months in which that rule was in effect,23 the agencies found 
approximately 75% of AJDs completed had identified non-jurisdictional aquatic resources and 
approximately 25% of AJDs completed identified jurisdictional waters (Table 1, Figure 3).24 Conversely, 
during similar one-year intervals when the 1986 regulations and applicable guidance were in effect 
(including following the 2019 recodification of those regulations), substantially more jurisdictional waters 
were identified in AJDs on average per year than compared to the first twelve months of the 2020 NWPR. 
During similar one-year calendar intervals when the 1986 regulations and applicable guidance were in 
effect, approximately 28% to 45% of AJDs completed identified non-jurisdictional aquatic resources, and 
56% to 72% of AJDs completed identified jurisdictional resources.25 Although the percentages varied 
during these periods, the change from a range of 28% to 45% non-jurisdictional AJD findings prior to the 
2020 NWPR to 75% non-jurisdictional findings after issuance of the 2020 NWPR indicates that 
substantially fewer waters were protected by the Clean Water Act under the 2020 NWPR. This constitutes 
a 69% to 171% increase in the percent of AJDs resulting in non-jurisdictional findings (Table 1). 
Similarly, when individual aquatic resources associated with AJDs are reviewed by jurisdictional 
findings, there was an increase of 28% to 94% in the percent of resources being found to be non-
jurisdictional under the 2020 NWPR (Table 1). Again, as commenters on the proposed rule noted, these 

 
23 These AJDs were completed by the Corps between the 2020 NWPR’s effective date of June 22, 2020, and June 
21, 2021. Data were extracted from ORM2 in September 2021. 
24 This excludes dry land AJDs and waters identified as jurisdictional only under section 10 of the Rivers and 
Harbors Act. In addition, under the 2020 NWPR, a single AJD in the Corps’ database can include both affirmative 
and negative jurisdictional determinations. Under prior regulatory regimes, the Corps’ database was structured such 
that a single AJD could be either affirmative, or negative, but not both. To account for this change in the structure of 
the database, a 2020 NWPR jurisdictional determination that includes both affirmative and negative jurisdictional 
resources was normalized and counted as two separate AJDs, one affirmative and one negative. The total number of 
AJDs considered after this process was carried out was 9,399. Prior to this normalization, the total number of AJDs 
considered was 7,769.  
25 The time periods evaluated were June 22, 2016, to June 21, 2017; June 22, 2017, to June 21, 2018; and December 
23, 2019, to June 21, 2020. The date ranges here constitute periods of time when the 1986 regulations (including the 
2019 Repeal Rule’s recodification of those regulations) and applicable guidance were in effect nationally. Thus, 
2015 Clean Water Rule determinations were not part of this analysis. Data were extracted from ORM2 in September 
2021. 
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numbers do not account for the many entities that did not seek AJDs because they knew their features 
were excluded under the 2020 NWPR. 

In evaluating how the 2020 NWPR’s non-jurisdictional values compare to the distribution of non-
jurisdictional findings from prior years, the percent of non-jurisdictional findings at the individual aquatic 
resource level under pre-2015 practice from 2016 to 2020 were used (separated by the June 22 – June 21 
calendar year) (Table 3). The percent of non-jurisdictional findings for individual aquatic resources under 
the 2020 NWPR were outside the bounds of the 95% confidence intervals calculated for the 2016 to 2020 
data, indicating that the Corps was significantly more likely to find projects did not require section 404 
permits with these closure methods under the 2020 NWPR compared to pre-2015 practice. Within the 
time frame of 2016 to 2020, pre-2015 practice and the 2015 Clean Water Rule were both in effect; as 
such, the annual distribution of total number of non-jurisdictional resources could not be compared. A 
separate comparison was carried out using the total number of non-jurisdictional findings at the individual 
aquatic resource level as associated with all AJDs from 2016-2020 (pre-2015 practice and 2015 Clean 
Water Rule AJDs) (Table 4). In this case, both the percent of non-jurisdictional findings and the total 
number of individual resources found to be non-jurisdictional under the 2020 NWPR were outside of the 
bounds of the 95% confidence intervals calculated from those datasets. The proportion and scale of non-
jurisdictional findings at the individual aquatic resource level under the 2020 NWPR is significantly 
higher than the proportion and scale of non-jurisdictional findings from prior years.  

Together, there were proportionally fewer PJDs and more AJDs being carried out under the 2020 
NWPR, there were fewer resources being found to be jurisdictional when AJDs were being carried out, 
and there were elevated findings of no section 404 permits being needed for projects based on the 
definition of “waters of the United States” under the 2020 NWPR.  
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Table 1: Jurisdictional determinations over time 
JDs: PJDs vs AJDs         

Regulatory Regime Pre-2015 Practice 2020 NWPR 

Time period June 22, 2016-
June 21, 2017 

June 22, 2017 - 
June 21, 2018 

Dec. 23, 2019 - 
June 21, 2020 

June 22, 2020 - 
June 21, 2021 

PJD              21,383                13,459                4,539                  4,744  

PJD Resources              92,010                81,998              60,578                26,712  

AJD                3,957                  3,505                1,390                  9,399  

AJD Resources              11,978                14,267                6,603                48,313  

Total JDs              25,340                16,964                5,929                14,143  

% AJD 15.6% 20.7% 23.4% 66.5% 

% Change in % AJD 326% 222% 183%   

Total JD Resources            103,988                96,265              67,181                75,025  

% AJD Resources 11.5% 14.8% 9.8% 64.4% 

% Change in % AJD 
Resources 459% 335% 555%   

AJDs: Jurisdictional vs. Non-jurisdictional 

Regulatory Regime Pre-2015 Practice 2020 NWPR 

Time period 
June 22, 2016-
June 21, 2017 

June 22, 2017 - 
June 21, 2018 

Dec. 23, 2019 - 
June 21, 2020 

June 22, 2020 - 
June 21, 2021 

Jurisdictional AJDs                2,858                  2,120                    771                  2,335  

Non-jurisdictional AJDs                1,099                  1,385                    619                  7,064  

Jurisdictional AJD Resources                7,343                  5,903                3,781                11,929  

Non-jurisdictional AJD 
Resources                4,635                  8,364                2,822                36,384  

Total AJDs                3,957                  3,505                1,390                  9,399  

% Jurisdictional AJDs 72.2% 60.5% 55.5% 24.8% 

% Non-jurisdictional AJDs 27.8% 39.5% 44.5% 75.2% 
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% Change in % Non-
jurisdictional AJDs 171% 90% 69%   

Total AJD Resources              11,978                14,267                6,603                48,313  

% Jurisdictional AJD 
Resources 61.3% 41.4% 57.3% 24.7% 

% Non-jurisdictional AJD 
Resources 38.7% 58.6% 42.7% 75.1% 

% Change in % non-
jurisdictional AJD Resources 

94% 28% 76% 
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Table 2: The 2020 NWPR compared to prior years of implementation under pre-2015 practice 
(AJD/PJD) 

  Pre-2015 Practice 
2020 
NWPR 

  2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 

AJD         3,957          3,505          1,971          2,172          9,399  

PJD       21,383        13,459          7,024          7,478          4,744  

Percent AJD 16% 21% 22% 23% 66% 

Percent PJD 84% 79% 78% 77% 34% 

  Pre-2015 Practice Summary Stats   

  Mean Standard 
Deviation 95% Confidence Interval   

Percent AJD 20% 3% 14% 26%   

Percent PJD 80% 3% 74% 86%   

 

 

Table 3: The 2020 NWPR compared to prior years of implementation under pre-2015 practice 
(jurisdictional/non-jurisdictional) 

  Pre-2015 Practice 
2020 
NWPR 

  2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 

Jurisdictional Resources 7,343 5,903 5,010 5,736 12,537 

Non-jurisdictional 
Resources 4,635 8,364 3,486 4,161 37,799 

Percent non-jurisdictional 39% 59% 41% 42% 75% 

  Pre-2015 Practice Summary Stats   

  Mean Standard 
Deviation 95% Confidence Interval   

Percent non-jurisdictional 45% 9% 27% 63%   
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Table 4: The 2020 NWPR compared to prior years of pre-2015 practice and 2015 Clean Water 
Rule implementation (jurisdictional/non-jurisdictional) 

  Pre-2020 NWPR 
2020 

NWPR 

  2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 

Jurisdictional Resources 7,343 5,903 6,532 6,819 12,537 

Non-jurisdictional 
Resources 4,635 8,364 5,277 5,754 37,799 

Percent non-jurisdictional 39% 59% 45% 46% 75% 

Pre-2020 NWPR Summary Statistics 

  
Mean Standard 

Deviation 
95% Confidence Interval 

  

Jurisdictional Resources 6,649 600 5,473 7,826   

Non-jurisdictional 
Resources 

6,008 1,637 2,800 9,215 
  

Percent non-jurisdictional 47% 8% 31% 63%   
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Figure 1: AJD and PJD (percentages). The number of determinations being carried out under the 2020 
NWPR as PJDS has decreased compared to pre-2015 practice, while the number of AJDs has increased. 
These data exclude both “RHA-only” AJDs and “Dry Land” AJDs as well as data from implementation of 
the 2015 Clean Water Rule. Data have been normalized. 
 

 

Figure 2: AJD and PJD resources (percentages). The number of resources tied to determinations being 
carried out under the 2020 NWPR as PJDs has decreased compared to pre-2015 practice, while the 
number of resources tied to AJDs has increased. This data excludes both Rivers and Harbors Act only 
(“RHA-only”) AJDs and “Dry Land” AJDs as well as data from implementation of the 2015 Clean Water 
Rule.  
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Figure 3: AJD findings (percentages). Breakdown of AJDs (by percentages) that found jurisdictional 
and non-jurisdictional waters for each of the four periods of record. These data exclude both “RHA-only” 
AJDs and “Dry Land” AJDs as well as data from implementation of the 2015 Clean Water Rule. Data 
have been normalized. 
 

 

Figure 4: AJD Findings by Resource (Percentages). Percentage of AJD resources that were found to be 
jurisdictional and non-jurisdictional for each of the four periods of record. This data excludes both “RHA-
only” AJDs and “Dry Land” AJDs as well as data from implementation of the Clean Water Rule. Data 
have been normalized. 
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(ii) Individual Aquatic Resources Associated with 2020 
NWPR AJDs 

When evaluating the effect of the 2020 NWPR on the number of jurisdictional individual aquatic 
resources (as opposed to the number of AJDs completed), the agencies found a similar significant 
reduction in protections. The Corps’ ORM2 database contains AJDs that evaluated 48,313 individual 
aquatic resources under the 2020 NWPR between June 22, 2020, and June 21, 2021; of these individual 
aquatic resources, approximately 75% were found to be non-jurisdictional by the Corps (Table 1). 
Specifically, 70% of streams and wetlands were found to be non-jurisdictional, including 11,044 
ephemeral features (mostly streams) and 15,675 wetlands that did not meet the 2020 NWPR’s revised 
adjacency criteria (and thus are non-jurisdictional under the 2020 NWPR). Ditches were also frequently 
excluded (4,706 individual exclusions). When looking at the total number of aquatic resources considered 
under the 2020 NWPR versus under the pre-2015 regulatory regime (assessed by data split by calendar 
year from June 22 to June 21 for the years of 2016 to 2020), the percent of non-jurisdictional findings 
under the 2020 NWPR (75%) was significantly higher than the percent of non-jurisdictional findings 
under pre-2015 practice (average annual non-jurisdictional finding: 45%) (Table 3).  
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Table 5: Specific Resources found Non-Jurisdictional under the 2020 NWPR 

Resource Type 
Wetlands and 

streams Wetland Stream 

All resources considered 38,611 21,824 16,787 

Jurisdictional  11,364 6,062 5,302 

Non-Jurisdictional 27,247 15,762 11,485 

Percent Non-jurisdictional 71% 72% 68% 

 

(iii) Arid West AJDs 

2020 NWPR AJDs in Arizona and New Mexico were found to be dominated by non-
jurisdictional ephemeral channelized features (Table 6). The number of stream features that were found 
non-jurisdictional in Arizona and New Mexico under the first year of 2020 NWPR implementation totaled 
1,784.26 Comparatively, nationally, there were 11,485 stream reaches found to be non-jurisdictional under 
the first year of the 2020 NWPR implementation. 15.5% of all non-jurisdictional streams across the 
nation in the first year of 2020 NWPR implementation were in Arizona and New Mexico.27 This 
represents a geographic inequality in the implications of implementation of the 2020 NWPR.  

The number of individual aquatic resources - in particular, streams - being considered under 
AJDs in the past year of data under the 2020 NWPR in Arizona and New Mexico is significantly higher 
than has occurred in recent years, with the total number of non-jurisdictional individual streams under the 
2020 NWPR exceeding the 95% confidence interval for annual non-jurisdictional findings on individual 
streams from 2016-2020 data for both Arizona and New Mexico (Table 7, Figures 5 and 6). The total 
number of individual streams being assessed via AJDs in these states is significantly higher than the total 
number of individual streams that were assessed in the pre-2015 practice time frame considered here.  

Looking at all types of aquatic resources and comparing non-jurisdictional AJD findings under 
the 2020 NWPR to prior years of implementation under pre-2015 practice (averaged over four years), 
there has been more than a 10-fold increase in non-jurisdictional findings on individual aquatic resources 
in both Arizona and New Mexico (Table 6). When individual streams considered under AJDs are 
inspected in this manner, there was more than a 10-fold increase in non-jurisdictional findings for 
individual streams in Arizona and more than a 30-fold increase in non-jurisdictional findings for 
individual streams in New Mexico under the 2020 NWPR (Table 5). Additionally, the number of stream 
resources considered under PJDs and other alternatives to AJDs (i.e., Delineation Concurrences and No 

 
26 The 2020 NWPR water types included within this calculation included (a)(2) tributaries, (b)(1) surface water 
channel that does not contribute surface water flow directly or indirectly to an (a)(1) water in a typical year, and 
(b)(3) ephemeral streams. There are other water types associated with 2020 NWPR AJDs, such as (a)(1) Traditional 
Navigable Waters and Territorial Seas, which can contain streams but were not included in the total. Note that the 
numbering of the water types in this footnote are associated with the numbering in the 2020 NWPR and not with this 
rule.  
27 The next highest rate of non-jurisdictional findings (11%) for AJDs conducted under the 2020 NWPR is in the 
state of Utah, which similarly contains vast areas of arid West ecosystems.  
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JD required closure methods) decreased by a range of 75% to 100% under the 2020 NWPR (Table 6, 
Figures 7, and 8). In all years, the majority of resources considered were ephemeral streams. Under the 
2020 NWPR, wetlands adjacent to ephemeral streams are also not jurisdictional, whereas under pre-2015 
practice could have been considered for jurisdiction under a case-specific significant nexus analysis; thus, 
this decrease in jurisdiction and assumed jurisdiction could have cascading effects on multiple types of 
resources if the 2020 NWPR were reinstated.  

The arid West, as exemplified by Arizona and New Mexico, experienced a comparatively higher 
share of non-jurisdictional findings on stream reaches than the nation as a whole did under the 2020 
NWPR. The number of non-jurisdictional stream reaches is significantly elevated compared to prior 
years, and simultaneously, the number of PJDs and other AJD alternatives has decreased compared to 
prior years. The agencies thus believe that the 2020 NWPR caused disproportionate and more severe 
impact on aquatic resources in the arid West.  
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Table 6: Arizona and New Mexico Impacts to Scope of “Waters of the United States” under the 
2020 NWPR (2020-2021) Compared to Pre-2015 Practice (2016-2017, 2017-2018, 2018-2019, 2019-
2020) 

ALL Resources 

 
Arizona New Mexico 

Delineation type 

AJD 

PJD 
NoJD 
and 
DC* 

AJD 

PJD 

NoJD 
and 
DC* 

Juris 
Non-
Juris Juris 

Non-
Juris 

2016-2017 0 17 562 5 0 17 203 71 

2017-2018 5 233 386 22 4 17 309 96 

2018-2019 16 261 669 25 2 18 25 99 

2019-2020 17 42 2,145 32 0 4 0 49 

2016-2020 avg 10 138 941 21 2 14 134 79 

2020-2021 4 1,538 52 0 2 280 35 0 

% change from 
avg to 2020 

NWPR 
-58% 1,012

% -94% -100% 33% 1,900% -74% -100% 

Stream resources 

 
Arizona New Mexico 

Delineation type 

AJD 

PJD 
NoJD 
and 
DC* 

AJD 

PJD 
NoJD 
and 
DC* Juris 

Non-
Juris Juris 

Non-
Juris 

2016-2017 0  17  547  5  0  7  193  69  

2017-2018 5  231  378  16  4  15  301  83  

2018-2019 16  261  658  17  2  2  24  91  

2019-2020 17  42  2,113  29  0  4  0  46  

2016-2020 avg 10 138 924 17 2 7 130 72 

2020-2021 4  1,521  45  0  0  263  33  0  
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% change from 
avg to 2020 

NWPR 
-58% 1,004

% 
-95% -100% -100% 3,657% -75% -100% 

Ephemeral resources 

 
Arizona New Mexico 

Delineation type 

AJD 

PJD 
NoJD 
and 
DC* 

AJD 

PJD 
NoJD 
and 
DC* Juris 

Non-
Juris Juris 

Non-
Juris 

2016-2017 0  17  547  0  0  7  193  43  

2017-2018 4  231  378  15  4  15  301  32  

2018-2019 16  261  658  11  1  2  24  26  

2019-2020 17  42  2,113  26  0  3  0  11  

2016-2020 avg 9 138 924 13 1 7 130 28 

2020-2021 4  1,518  45  0  0  263  33  0  

% change from 
avg to 2020 

NWPR 
-57% 1,002

% -95% -100% -100% 3,796% -75% -100% 

*NoJD and DC refer to No JD Required and Delineation Concurrence closure methods within ORM. 
These are equivalent to delineation substitutes. They are included here because the data associated with 
these categories in these specific states were not erroneous, and they show a more complete picture of 
how resources have been reviewed by the Corps.  
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Table 7: Test of statistical significance for 2020 NWPR compared to prior years of implementation 
under pre-2015 practice for stream resources in Arizona and New Mexico. 

ARIZONA 

  Pre-2015 Practice 
2020 

NWPR 

  
2016-
2017 

2017-
2018 

2018-
2019 

2019-
2020 

2020-
2021 

All AJD resources 17  236  277  59  1,525  

Jurisdictional AJD resources 0  5  16  17  4  

Non-jurisdictional AJD resources 17  231  261  42  1,521  

PJD and Alternatives to AJDs resources 552  394  675  2,142  45  

Percent non-jurisdictional resources 100.0% 97.9% 94.2% 71.2% 99.7% 

Pre-2015 Practice Summary Statistics 

  Mean SD 95% CI   

All AJD resources 147 128 -104 399   

Jurisdictional AJD resources 10 8 -7 26   

Non-jurisdictional AJD resources 138 126 -109 385   

PJD and Alternatives to AJDs resources 941 809 -645 2,526   

Percent non-jurisdictional resources 91% 13% 65% 117%   

NEW MEXICO 

  Pre-2015 Practice 
2020 

NWPR 

  
2016-
2017 

2017-
2018 

2018-
2019 

2019-
2020 

2020-
2021 

All AJD resources 7 19 4 4 263 

Jurisdictional AJD resources 0 4 2 0 0 

Non-jurisdictional AJD resources 7 15 2 4 263 

PJD and alternatives to AJDs resources 262  384  115  46  33  
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Percent non-jurisdictional resources 100.0% 78.9% 50.0% 100.0% 100.0% 

Pre-2015 Practice Summary Statistics 

  Mean SD 95% CI   

All AJD resources 9  7  (5) 22    

Jurisdictional AJD resources 2  2  (2) 5    

Non-jurisdictional AJD resources 7  6  (4) 18    

PJD and alternatives to AJDs resources 202  151  (95) 498    

Percent non-jurisdictional resources 82.2% 23.7% 35.8% 128.6%   

Note: No 2015 Clean Water Rule determinations were carried out during these years in these states. 

 

 

Figure 5: Individual aquatic resources found to be non-jurisdictional in Arizona over the past five 
years. Under the 2020 NWPR (2020-2021), there has been over a 10-fold increase in non-jurisdictional 
findings for individual aquatic resources in both Arizona and New Mexico. 
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Figure 6: Individual aquatic resources found to be non-jurisdictional in New Mexico over the past 
five years. Under the 2020 NWPR (2020-2021), there has been over a 10-fold increase in non-
jurisdictional findings for individual aquatic resources in both Arizona and New Mexico. 
 

 

Figure 7: Arizona Individual Aquatic Resources Tied to PJDs and Determination Substitutes by 
Year. Under the 2020 NWPR (2020-2021), there has been more than a nine-fold decrease in individual 
aquatic resources reviewed through PJDs and determination substitutes in Arizona. Note that in 2020, 
there was a single transmission line project that was related to the majority of the individual resources tied 
to PJDs in that year.  
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Figure 8: New Mexico Individual Aquatic Resources Tied to PJDs and Determination Substitutes 
by Year. Under the 2020 NWPR (2020-2021), there has been more than a seven-fold decrease in 
individual aquatic resources reviewed through PJDs and determination substitutes in New Mexico. Note 
that in 2017, there was a single transmission line project that was related to the majority of the individual 
resources tied to PJDs in that year. 
 

(iv) No Permit Required based on AJDs only 

Based on an assessment of the two specific “No Permit Required” closure methods in ORM2 
related to projects associated with AJDs, under the 2020 NWPR there has been more than a 150% 
increase in projects that do not require Clean Water Act section 404 permits as compared to what was 
reported under the previous regulatory regimes (Table 8, Figure 9).28 Even when the new reporting field 
of “Activity occurs in waters that are no longer WOTUS under the 2020 NWPR” is excluded, the total 
number of projects that do not require Clean Water Act section 404 permits under the 2020 NWPR 
exceeds the 95% confidence interval for values from the 2016 to 2020 timeframe. Given that this closure 
method, “Activities that occur in waters that are no longer WOTUS under the 2020 NWPR,” has not been 
used uniformly by all Corps project managers across the United States, it is likely that the overall number 
of projects that fit into this category are under-represented. 

 

 
28 This is a revised calculation that updates the prior assessment of No Permit Required data presented within the 
Declarations of Radhika Fox and Jaime A. Pinkham, filed in Conservation Law Found. et al. v, EPA et al., 20-cv-
10820-DPW (D. Mass. Jun. 9, 2021) as well as in every other district court challenge to the NWPR. The revised 
calculation is based on additional data spanning a longer time period and corrected underlying calculations of the 
percent change between the number of projects that do not require Clean Water Act section 404 permits under the 
NWPR compared to prior time periods. 
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Table 8: No Permit Required test of significance for 2020 NWPR compared to prior years of 
implementation under pre-2015 practice 

  Pre-2015 Practice 
2020 

NWPR 

  
2016-
2017 

2017-
2018 

2018-
2019 

2019-
2020 

2020-
2021 

Activity does NOT occur in WOTUS 414 452 294 355 769 

Activity occurs in waters that are NO longer 
WOTUS under the 2020 NWPR 

- - - - 368 

Total 414 452 294 355 1,137 

 Percent change between given year and 2020 
NWPR for Activity does NOT occur in 

WOTUS 
86% 70% 162% 117% 

  

Percent change between given year and 2020 
NWPR for Total 175% 152% 287% 220%   

Pre-2015 Practice Summary Statistics 

  Mean SD 95% CI   

Activity does NOT occur in WOTUS 379 69 243 514   
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Figure 9: Actions Not Requiring Permits Under Pre-2015 Practice and 2020 NWPR. This figure 
presents the number of actions (i.e., projects) with “No permit required” closure methods of ‘“Activities 
that do not occur in WOTUS” and “Activities that occur in waters that are no longer WOTUS under the 
2020 NWPR.” 
 

d. Data Limitations 

While ORM2 contains data on individual aquatic resources that the Corps has determined are or 
are not jurisdictional on a site-specific basis, JDs are typically conducted at the request of the landowner 
or project proponent. In other words, they usually represent where landowners or project proponents want 
to know if jurisdictional waters are located within their properties or project sites, including but not 
limited to for purposes of conducting dredged or fill activities. Thus, some aquatic resource types may be 
over- or underrepresented in the population of PJDs and AJDs.  

The agencies recognize that these PJDs and AJDs may not be uniformly distributed across the 
country. There may be selection bias in terms of where the Corps has available information on JDs. A 
landowner or applicant can decide whether they would like an AJD – meaning the Corps makes an 
official determination of whether an aquatic resource is jurisdictional – or whether they would prefer to 
voluntarily waive or set aside questions regarding jurisdiction with the use of a PJD). In addition, Corps 
Districts across the country vary in their receipt of requests for AJDs versus PJDs, with some Districts 
primarily being requested to complete PJDs, particularly prior to the 2020 NWPR. Because PJDs do not 
make an official determination of the jurisdictional status of an aquatic resource (e.g., it cannot conclude 
that an aquatic resource is not a “water of the United States”), and in light of the reduction in jurisdiction 
under the 2020 NWPR, the use of PJDs has appeared to decrease.  

The states of New Jersey and Michigan have assumed administration of the Clean Water Act 
section 404 permit program for certain waters within their state boundaries. On December 17, 2020, 
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Florida became the third state to receive approval to assume administration of the program. The Corps, 
however, retains administration of the section 404 permitting program for specific waters listed under the 
parenthetical of Clean Water Act section 404(g)(1) within states which have assumed the section 404 
permitting program. Thus, the Corps conducts JDs for only a subset of waters within New Jersey, 
Michigan, and Florida, which have been included in the analysis of ORM2 data where available. In 
Florida, the number of 2020 NWPR JDs conducted by the Corps will be limited compared to the number 
of JDs in that state conducted under the prior regulatory regimes, as EPA’s approval for the state to 
assume administration of the section 404 program occurred a few months after the effective date of the 
2020 NWPR. 

The new ORM closure method “Activities that occur in waters that are no longer WOTUS under 
the 2020 NWPR” was not uniformly used across the Districts and by Corps project managers and was 
added one month after implementation of the 2020 NWPR, and thus likely undercounts the number of 
projects that would have required a Clean Water Act section 404 permit prior to the 2020 NWPR but that 
no longer do. However, it serves as the best available indicator of projects that were tracked and no longer 
required a section 404 permit in light of the 2020 NWPR’s reduction in Clean Water Act jurisdiction.  

Despite these limitations, the agencies have concluded that assessing the ORM2 data associated 
with the 2020 NWPR is a reasonable way to evaluate the effects of that rule. The data represent the best 
national-level information on the resources that were called non-jurisdictional under the 2020 NWPR 
prior to its vacatur, and the agencies have concluded that it is reasonable to compare the 2020 NWPR data 
from 2020-2021 with data from the same time period in prior years that are associated with 
determinations made under the 2015 Clean Water Rule and the pre-2015 regulatory regime, which was 
reestablished with the 2019 Rule.  

ii. Stakeholder Concerns 

The agencies have heard concerns from a broad array of stakeholders, including states, tribes, 
scientists, and non-governmental organizations, that corroborated the agencies’ data and indicated that the 
2020 NWPR’s reduction in the jurisdictional scope of the Clean Water Act resulted in significant 
environmental harms. As discussed in the Economic Analysis for the Final Rule, many Tribes and States 
do not regulate waters more broadly than the Clean Water Act. See Economic Analysis for the Final Rule, 
Chapter II; 2020 NWPR EA at 30-31. While some Tribes and States have authority to regulate “waters of 
the Tribe” or “waters of the State” more broadly than the federal government under their own laws, 
projects also proceeded in newly non-jurisdictional waters on Tribal lands and in States that do not and 
sometimes cannot regulate waters beyond those covered by the federal Clean Water Act.29 Based on 

 

29 Even if a tribe has the legal authority to regulate “waters of the tribe” more broadly than the federal government, 
the agencies have heard from many tribes that they lack the resources and expertise to do so as a practical matter, 
and therefore rely on Clean Water Act protections. See, e.g., 85 FR 22336-22337 (“many Tribes may lack the 
capacity to create a tribal water program under tribal law, to administer a program, or to expand programs that 
currently exist. Other tribes may rely on the Federal government for enforcement of water quality violations”). In 
their Tribal consultation comment letter for this rulemaking the Southern Ute Indian Tribe noted, “Unlike some 
states where waters that are not classified as WOTUS can be protected by state-only water quality laws, the 
checkerboard nature of the Reservation and the division of jurisdiction means the Tribe’s water quality laws alone 
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available information, the agencies therefore expect that these projects could have resulted in discharges 
without any regulation or mitigation from federal, Tribal, or State agencies. Contrary to the predictions 
made in the 2020 NWPR Economic Analysis, during the year in which the 2020 NWPR was in effect, the 
net change made by States was deregulatory in nature. Two States which had previously protected state 
waters beyond the scope of “waters of the United States” removed these expansive protections, and no 
States that lacked these broader protections established them. See 2020 NWPR EA at 39-41 (estimating 
that some States are likely to continue their current permitting practices for dredged and fill material) and 
the Economic Analysis for the Final Rule Chapter II (indicating that two of those States reduced the scope 
of State clean water protections after the 2020 NWPR was finalized, and none of them formerly expanded 
protections as a direct result of the 2020 NWPR); see also preamble section IV.B.3.  

Given the limited authority of many Tribes and States to regulate waters more broadly than the 
federal government, a narrowing of federal jurisdiction would mean that discharges into the newly non-
jurisdictional waters would no longer be subject to regulation, including permitting processes and 
mitigation requirements designed to protect the chemical, physical, and biological integrity of the nation’s 
waters. Ephemeral streams and their associated wetlands, wetlands that do not meet the 2020 NWPR’s 
revised adjacency criteria, and other aquatic resources not protected by the 2020 NWPR provide 
numerous ecosystem services, as discussed in the Science Report and this document. See also Sullivan et 
al. 2020. The absence of protections for such resources and any subsequent unregulated and unmitigated 
impacts to such resources would have caused cascading, cumulative, and substantial downstream harm, 
including damage connected to water supplies, water quality, flooding, drought, erosion, and habitat 
integrity. The removal of protections from the nation’s waters, and resulting detriment to the services they 
provide, undermines the objective of the Clean Water Act, as discussed in section IV.A.2 of the preamble 
to this final rule. Such effects on the chemical, physical, and biological integrity of the nation’s waters 
were inadequately considered during the 2020 NWPR rulemaking process. See Pascua Yaqui v. EPA, no. 
4:20-cv-00266-TUC-RM, slip op. at 9-10 (citing evidence that the agencies and plaintiffs provided of a 
“substantial reduction in waters covered under the 2020 NWPR” as demonstrating “the possibility of 
serious environmental harm” that weighed in favor of vacating the rule.); see also Navajo Nation v. 
Regan, no. 2:20-cv-00602, slip op. at 6-7 (citing the same reduction particularly “‘an increase in 
determinations by the Corps that waters are non-jurisdictional,’ including excluded ephemeral resources, 
‘and an increase in projects for which CWA Section 404 permits are no longer required,’” as weighing in 
favor of vacatur.). 

iii. Scientific and Technical Review 

1. 2020 NWPR 

Science plays a critical role in understanding how to protect the integrity of the nation’s waters. 
The agencies have carefully reviewed the 2020 NWPR and its administrative record and found that the 
2020 NWPR did not properly consider the extensive scientific evidence demonstrating the 

 
might not be effective at protecting water quality within the entire Reservation. In other words, unlike states, the 
Tribe cannot easily enforce a definition of “tribal waters” that is broader than the EPA and Corps’ definition of 
WOTUS and any attempt to do so could trigger lengthy and expensive jurisdictional litigation. Therefore, given the 
jurisdictional uncertainties of the scope of the Tribe and the State of Colorado’s independent authority to protect all 
waters of the Reservation, the EPA and Corps current, more narrow definition of WOTUS [the 2020 NWPR] 
disadvantages the Reservation and leaves certain Reservation waters unprotected.” Baker 2021. 
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interconnectedness of waters and their downstream effects, thereby undermining Congress’s objective to 
restore and maintain the chemical, physical, and biological integrity of the nation’s waters. The 2020 
NWPR’s definition of “waters of the United States” does not adequately consider the way pollution 
moves through waters or the way filling in a wetland affects downstream water resources.  

The 2020 NWPR’s exclusion of major categories of waters from the protections of the Act, 
specifically in the definitions of “tributary” and “adjacent wetlands,” runs counter to the scientific record 
demonstrating how such waters can affect the integrity of downstream waters. Specifically, its categorical 
exclusion of ephemeral features and large categories of wetlands is inconsistent with the scientific record 
before the agencies. In addition, the 2020 NWPR’s limits on the scope of protected wetlands to those that 
touch or demonstrate evidence of a regular surface water connection to other jurisdictional waters were 
counter to the ample scientific information demonstrating the effects of wetlands on downstream waters 
when they have other types of connections. 

This section will first describe how the 2020 NWPR’s treatment of tributaries and adjacent 
wetlands is inconsistent with the scientific understanding of these ecosystems, and then provide detailed 
explanations of those inconsistencies using specific examples from the 2020 NWPR preamble where the 
agencies indicated that they “considered scientific principles” in the definition of “waters of the United 
States.” 

The 2020 NWPR’s definition of “waters of the United States” runs counter to long-standing 
scientific understanding of tributaries, lakes, reservoirs, coastal waters, wetlands, and other types of 
waters. This is most evident by the 2020 NWPR’s (1) failure to recognize ecosystem functions, i.e., the 
processes by which aquatic ecosystems support fundamental needs, including good water quality and 
safe, reliable supplies of fresh water for communities, industry, and agriculture; (2) failure to 
accommodate the cumulative effects of headwaters, non-perennial flows, and wetlands on downstream 
water integrity, and (3) exclusion of ephemeral streams, many floodplain wetlands, and most non-
floodplain wetlands in its definition of “waters of the United States.” 

Variations represented as hydrological, biogeochemical, and biological connectivity gradients 
operate in all aquatic ecosystems, and at all spatial and temporal scales. These variations are necessary to 
maintain the full range of functions by which upstream waters affect (i.e., have consequences for) 
downstream water integrity. Such functions include short- and long-term storage of water, nutrients, and 
sediment in wetlands (e.g., Jacques and Lorenz 1988; Vining 2002; Gleason et al. 2003; McEachern et al. 
2006; Gleason et al. 2007; Fossey and Rousseau 2016; Golden et al. 2016; Mekonnen et al. 2016; 
Evenson et al. 2018; Green et al. 2019; Wang et al. 2019; Yeo et al. 2019; Nasab and Chu 2020; Rajib et 
al. 2020; Shook et al. 2021), transformation or sequestration of contaminants, removal or transformation 
of excess nutrients in temporary wetlands and non-perennial headwaters (e.g., Reddy et al. 1999; Kao et 
al. 2002; Boon 2006; Jordan et al. 2007; Mitsch and Gosselink 2007; Reddy and DeLaune 2008; Kadlec 
and Wallace 2009; Cheesman et al. 2010; Marton et al. 2015; Cheng and Basu 2017; Golden et al. 2019; 
Martin et al. 2019), provision of habitat for aquatic and semiaquatic species in wetlands and headwater 
streams (e.g., Scrivener et al. 1994; Curry 1997; Pires et al. 1999; Bradford et al. 2001; Meyer and 
Wallace 2001; Meyer et al. 2004; Cairns et al. 2005; Huryn et al. 2005; Wigington et al. 2006; Woodford 
and McIntosh 2010), recharge of river baseflow (e.g., Goodrich et al. 1997; Baillie et al. 2007; Callegary 
et al. 2007; Izbicki 2007; Brooks et al. 2018; Min et al. 2020), and provision of drinking water for 
humans and wildlife from variably connected surface waters of all types (e.g., Levick et al. 2008; Lohse 
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et al. 2020). Connections with low values for some descriptors of hydrologic connectivity (e.g., low-
frequency, short-duration flooding) can have important downstream effects when values for other 
descriptors are high (e.g., large-magnitude downstream transfer of floodwaters, sediment, large woody 
debris, and organisms). At the other end of the frequency gradient, high-frequency, low-magnitude 
vertical and lateral flows contribute to aquatic biogeochemical processes, including nutrient and 
contaminant transformation and organic matter accumulation. See, e.g., Brunke and Gonser 1997; Karwan 
and Saiers 2012; Lawrence et al. 2013; Dwivedi et al. 2018; Evenson et al. 2018. These and other 
functions discussed in depth above and in the Science Report are absent from the 2020 NWPR’s 
definition of “waters of the United States.” 

As the discussion of the agencies’ scientific record also makes clear, the cumulative effects of 
upstream aquatic ecosystems on downstream water integrity should be considered in three ways: 

o First, when evaluating the effect of an individual stream or wetland, all the contributions 
and functions that the stream or wetland provides must be considered. For example, the 
same stream can transport water, remove excess nutrients, mitigate flooding, and provide 
refuge for fish when conditions downstream are unfavorable; ignoring any of these 
functions would underestimate the overall effect of that stream. Note that these different 
functions may not all occur simultaneously, but all contribute over time. See Science 
Report. 

o Second, effects of multiple streams and wetlands and the watersheds they drain are 
fundamentally cumulative in how those watersheds are formed and maintained. Excess 
precipitation that is not evaporated, taken up by organisms, or stored in soils and geologic 
layers moves downgradient as overland or subsurface flow or through channels, which 
concentrates flows and carries sediment, chemical constituents, and organisms. Flows 
from headwater tributaries longitudinally connect with other parts of the network, and 
their confluence with larger-order streams can have profound effects on the receiving 
system due to the abrupt increase in water, sediment, wood, and other entrained 
materials. As flows from numerous headwater channels combine in larger channels, the 
volume and effects of those flows accumulate as they move downstream through the river 
network. As a result, the incremental contributions of individual streams and wetlands 
accumulate in the downstream waters. Important cumulative effects are exemplified by 
ephemeral flows, which are key sources of baseflow for downgradient waters in arid and 
semi-arid regions (Schlesinger and Jones 1984; Baillie et al. 2007; Izbicki 2007), and by 
the high rates of denitrification in headwater streams (Fritz et al. 2018; Science Report). 
The amount of nutrients removed by any one stream over multiple years or by all 
headwater streams in a watershed in a given year can have substantial consequences for 
hypoxia and eutrophication in downstream waters (Alexander et al. 2007; Alexander et 
al. 2009; Böhlke et al. 2009; Helton et al. 2011). Similarly, a single pollutant discharge 
could be negligible, but the cumulative effect of multiple unregulated discharges can and 
has degraded the integrity of jurisdictional waters. Thus, the overall probability of a 
large-magnitude transfer of materials is higher when considered for all headwater streams 
in a watershed—that is, there is a high-frequency connection when considered 
cumulatively at the watershed scale, compared with probabilities of transport for streams 
individually. See Science Report.  
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o Third, evaluating cumulative contributions over time is critical in streams and wetlands 
with variable degrees of connectivity. For example, denitrification in a single headwater 
stream in any given year might not affect downstream waters; over multiple years, 
however, this effect accumulates. Western vernal pools provide another example of 
cumulative effects over time. These pools typically occur as complexes in which the 
hydrology and ecology are tightly coupled with the local and regional geological 
processes that formed them. When seasonal precipitation exceeds wetland storage 
capacity and wetlands overflow into the river network through swales and shallow 
subsurface flows that generate streamflow, the vernal pool basins, swales, and seasonal 
streams function as a single surface-water and shallow ground-water system connected 
through the river network. See Science Report. 

The definition of the term “tributary” in the 2020 NWPR categorically excluded ephemeral 
streams from the regulatory protections of the Act, contrary to scientific information emphasizing the 
vital role these streams can play in protecting the integrity of downstream waters. The 2020 NWPR’s 
definition of the term “tributary” states that the agencies “relied on the available science to help inform 
where to draw the line of federal jurisdiction over tributaries,” and that the “agencies’ decisions in support 
of this final rule have been informed by science.” 85 FR 22288 (April 21, 2021). The science, however, is 
clear that aggregate effects of ephemeral streams “can have substantial consequences on the integrity of 
the downstream waters” and that the evidence of such downstream effects is “strong and compelling,” as 
discussed above. Science Report at 6-10, 6-13. The SAB in their review of the draft Science Report 
explains that ephemeral streams “are no less important to the integrity of the downgradient waters” than 
perennial or intermittent streams. SAB 2014a at 22-23, 54 fig. 3. While in the arid Southwest, features 
flow into downstream waters less frequently than they do in the wetter East, the Science Report 
emphasizes that short duration flows through ephemeral streams can transport large volumes of water to 
downstream rivers. Science Report at 6-10. For instance, the report notes that ephemeral streams supplied 
76% of flow to the Rio Grande following a large rainstorm. Science Report at 3-8. The SAB emphasizes 
that the “cumulative effects” of ephemeral flows in arid landscapes can be “critical to the maintenance of 
the chemical, physical, and biological integrity” of downstream waters. SAB 2014a at 22.  

Similarly, the 2020 NWPR’s definition of “adjacent wetlands” excluded many categories of 
wetlands that can play a vital role in protecting the integrity of waters to which they are connected, 
including traditional navigable waters. In defining “adjacent wetlands,” the 2020 NWPR limited the scope 
of wetlands protected by the Clean Water Act’s regulatory programs to those that either abut or have 
evidence of certain surface water connections to other protected waters in a typical year. 85 FR at 22340. 
Specifically, the rule encompassed wetlands that (i) abut, meaning to touch, another jurisdictional water; 
(ii) are flooded by a jurisdictional water in a typical year; (iii) are separated from a jurisdictional water 
only by a natural feature, such as a berm, which provides evidence of a direct surface hydrological 
connection with that water; or (iv) are separated from a jurisdictional water only by an artificial structure 
so long as that structure allows for a direct hydrologic surface connection between the wetlands and the 
water in a typical year. Id. As with the tributary definition, the 2020 NWPR stated that the definition of 
“adjacent wetlands” is “informed by science.” Id. at 22314. Yet the 2020 NWPR’s limits on the scope of 
protected wetlands to those that touch or demonstrate evidence of a regular surface water connection to 
other jurisdictional waters were counter to the ample scientific information before the agencies 
demonstrating the effects of wetlands on downstream waters when they have other types of surface 
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connections, such as wetlands that overflow and flood jurisdictional waters or wetlands with less frequent 
surface water connections due to long-term drought; wetlands with shallow subsurface connections to 
other protected waters; or other wetlands proximate to jurisdictional waters. See Rapanos, 547 U.S. at 786 
(Kennedy, J., concurring in the judgment) (“[g]iven the role wetlands play in pollutant filtering, flood 
control, and runoff storage, it may well be the absence of a hydrologic connection (in the sense of 
interchange of waters) that shows the wetlands’ significance for the aquatic system.”). 

Indeed, the overwhelming scientific information before the agencies weighs decisively against 
repromulgating the definition of “adjacent wetlands” in the 2020 NWPR. Available scientific information 
demonstrates the significant effects of categories of newly excluded wetlands on the chemical, physical, 
and biological integrity of downstream traditional navigable waters. For example, whereas the 2020 
NWPR provided that wetlands flooded by jurisdictional waters are only protected if the flooding occurs in 
a “typical year,” the Science Report stated that wetlands that are “rarely” or “infrequently” flooded by 
streams and rivers can be “highly connected” to those waters and have “long-lasting effects” on them. 
Science Report at 4-39. The Science Report noted that effects “critical to maintaining the health of the 
river” result from large floods that provide “infrequent connections” with more distant wetlands. Id. 
Reflecting these concerns, the October 16, 2019 SAB Draft Commentary on the proposed 2020 NWPR 
stated that the narrow definition of “adjacent wetlands” in the 2020 NWPR as it was proposed “departs 
from established science.” The agencies have weighed these statements and in light of the information 
about the importance of “infrequently” flooded wetlands to downstream waters, the agencies believe that 
the 2020 NWPR’s exclusion of wetlands that lack the limited, specific types of surface water connections 
to other jurisdictional waters in a typical year lacked scientific support.  

The SAB’s assessment of the 2020 NWPR proposal recognized that the proposed rule was not 
consistent with the scientific information in the record, including the Draft Science Report that the SAB 
had previously reviewed. SAB 2020. The 2020 SAB Commentary emphasized that the proposal does not 
“fully incorporate the body of science on connectivity” that the SAB had reviewed in the Draft Science 
Report and offers “no scientific justification for disregarding the connectivity of waters accepted by 
current hydrological science.” Id. at 2.  

The 2020 NWPR stated that the “agencies’ decisions in support of this final rule have been 
informed by science.” 85 FR at 22288. However, the only scientific information the agencies provided in 
support of excluding ephemeral features and large categories of wetlands in the 2020 NWPR 
mischaracterized the scientific record before the agencies. For example, the scientific information that the 
2020 NWPR cited as a basis for excluding ephemeral tributaries is the concept of a “connectivity 
gradient.” Id., citing SAB 2014a at 3. The 2020 NWPR referred to the SAB’s recommendation in their 
review of the draft Science Report that the agencies recognize that connectivity occurs along a gradient 
allowing for variation in chemical, physical, and biological connections. Id. at 22288, citing SAB 2014a 
at 3. The 2020 NWPR asserted that there is a “decreased” likelihood that waters with “less than perennial 
or intermittent” flow, i.e., ephemeral streams, will affect the chemical, physical, and biological integrity 
of downstream waters. Id.  

 Upon careful review, however, the agencies have concluded the 2020 NWPR’s conclusion takes 
the SAB’s recommendation out of context and is inconsistent with the information in SAB 2014a as a 
whole and in the scientific record that was before the agencies. The agencies recognize that the SAB 
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explained that the connectivity gradient the 2020 NWPR cited was just a hypothetical example30 meant to 
illustrate just one aspect of connectivity— duration of surface hydrological, or physical connectivity—
and sheds no light on the many other ways that features connect to and affect downstream waters. See, 
e.g., Sullivan et al. 2019a at 11559 (“The near-exclusive emphasis of the proposed rule on hydrologic 
connectivity contradicts the CWA’s mandate to protect chemical and biological connectivity as well”). 
According to the SAB itself, the only scientific information the agencies provided in support of 
categorically excluding ephemeral features does not fully represent the discussion in the cited SAB 
review of the draft Science Report and runs counter to key elements of the scientific record before the 
agencies. SAB 2020. The SAB in their review of the draft Science Report noted that “low levels of 
connectivity” can have “meaningful” effects on the integrity of downstream waters. SAB 2014a at 2. In 
addition, members of the SAB Panel that reviewed the Draft Science Report (“SAB Panel members”) 
noted, “The agencies improperly used the [] figure from the SAB review to support removing federal 
protection for ephemeral streams and non-floodplain wetlands. The conceptual figure is meant to convey 
that connectivity between streams and wetlands and downstream waters is more appropriately represented 
by a connectivity gradient (A and B); this is not a binary property. Aggregate effects and low levels of 
connectivity can be important.” Sullivan et al. 2019a at 11560. Further, the SAB Panel members stated, 
“Although the connectivity gradient does suggest that certain ephemeral streams and non-floodplain 
wetlands may be comparably less connected to downstream waters than perennial streams and floodplain 
wetlands, the SAB affirmed that even low levels of connectivity can be important relative to impacts on 
the chemical, physical, and biological integrity of downstream waters.” Id. Similarly, Sullivan et al. 2020 
(at 766) noted, “such exclusions [of ephemeral streams and non-floodplain wetlands under the 2020 
NWPR] are inconsistent with evidence demonstrating that these waters are functionally connected to and 
support the integrity of downstream waters. Removal of federal protection is likely to diminish numerous 
ecosystem services, such as safeguarding water quality and quantity, reducing or mitigating flood risk, 
conserving biodiversity, and maintaining recreationally and commercially valuable fisheries.” 

In addition, several SAB Panel members have expressed that the 2020 NWPR as proposed 
“largely ignores or misrepresents several conclusions of the [Science] Report and SAB review.” Sullivan 
et al. 2019a at 11559. See also Sullivan et al. 2019b at 7 (“As members of the previous SAB panel that 
reviewed the Connectivity Report and the 2015 [Clean Water Rule (CWR)], we are intimately familiar 
with the science supporting the 2015 CWR and the critical role played by the CWA in protecting our 
Nation’s waters. We strongly oppose the proposed Rule, which we find to be inconsistent with science, 
based upon flawed logic, and too ambiguous for decision-making.”) Some SAB Panel members stated 
that the proposal was “inconsistent with the best-available science regarding scale, structural and 
functional connectivity, and consideration of the multiple dimensions of connectivity” and that “its 
exclusions are justified with information from the SAB review that has been misinterpreted or taken out 
of context.” Sullivan et al. 2019a at 11559, 11560. These SAB Panel members, along with other 
scientists, have similarly reviewed the 2020 NWPR as finalized and have concluded that the rule 
disregards or misinterprets the science. Sullivan et al. 2020; CASS 2021. Scientists have noted that “the 
2020 NWPR promotes regulations contrary to what science shows about effective water protection” (id. 

 
30 The figure cited is captioned in part as “Hypothetical illustration of connectivity gradient and potential 
consequences to downstream waters.” SAB Review at 54 (emphasis added). Nowhere in its review does the SAB 
review indicate that this is the actual or only connectivity gradient. 
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at 767) and “conflicts with the object of the CWA: to restore and maintain the ‘chemical, physical, and 
biological integrity of (the) Nation’s waters’” (Fesenmyer et al. 2021 at 252). 

The SAB (2014, at 22) emphasized that the “cumulative effects” of ephemeral flows in arid 
landscapes can be “critical to the maintenance of the chemical, physical, and biological integrity” 
of downstream waters. Contrary to the statements in the 2020 NWPR, the Science Report made clear that 
the aggregate effects of ephemeral streams “can have substantial consequences on the integrity of the 
downstream waters” and that the evidence of such downstream effects is “strong and compelling.” 
Science Report at 6-13; id. at ES-7.  

The record thereby contains robust scientific information demonstrating the importance 
of ephemeral streams to the integrity of the Nation’s waters. The SAB’s assessment of the 2020 NWPR 
proposal recognized that the proposed rule was not consistent with the scientific information in the record, 
including the Draft Science Report that the SAB had previously reviewed. SAB 2020. The SAB 
emphasized that the proposal does not “fully incorporate the body of science on connectivity” that the 
SAB had reviewed in the Draft Science Report and offers “no scientific justification for disregarding the 
connectivity of waters accepted by current hydrological science.” Id. at 2. According to the SAB itself, 
the only scientific information the agencies provided in support of categorically excluding ephemeral 
features does not fully represent the discussion in the cited SAB Review and runs counter to key elements 
of the scientific record before the agencies. Id. The 2020 NWPR did not explain how the agencies 
reconciled that information with their decision to categorically exclude ephemeral streams from the 
definition of “tributaries,” and thus failed to articulate “a rational connection between the facts found and 
the choice made.” State Farm, 463 U.S. at 43; see also District Hosp. Partners, L.P. v. Burwell, 786 
F.3d at 59. 

The 2020 NWPR also stated that the line it draws between regulated and non-regulated wetlands, 
which excludes large categories of wetlands previously covered by the Act, is “informed by science.” 85 
FR at 22314. The 2020 NWPR cited statements from the SAB’s review of the Draft Science Report to the 
effect that wetlands situated alongside other types of waters are likely to be connected to those waters, 
whereas “those connections become less obvious” as the distance “increases.” Id. citing SAB 2014a at 55; 
see also id. at 22314, citing SAB 2014a at 60 (“[s]patial proximity is one important determinant” 
influencing the connections between wetlands and downstream waters”). In addition, the 2020 NWPR 
cited a statement in the Science Report that explained, “areas that are closer to rivers and streams have a 
higher probability of being connected than areas farther away.” Id. at 22314, citing the Science Report at 
ES-4.31  

Despite these citations, the 2020 NWPR’s definition of adjacent is not based on proximity, but 
instead on factors that are distinct from proximity – i.e., a “direct hydrologic connection,” a “continuous 
surface [water] connection.” See id. at 22340. Thus, the 2020 NWPR’s definition of “adjacent wetlands” 
may exclude wetlands a dozen feet away from jurisdictional waters (therefore proximate under any 
interpretation of the term) if they are separated by a levee that does not convey flow in a typical year, but 
include wetlands much further away so long as they are inundated by flooding from the jurisdictional 

 
31 This excerpt in the NWPR omits the end of the sentence in the Science Report, which qualifies the cited phrase: 
“...when conditions governing the type and quantity of flows—including soil infiltration rate, wetland storage 
capacity, hydraulic gradient, etc.—are similar”. Science Report at ES-4. 
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water in a typical year. In addition, the statements the 2020 NWPR cites, addressing the importance of 
proximity, are taken out of context. 

The 2020 NWPR preamble cites four examples where the agencies “considered scientific principles” 
in the definition of “waters of the United States:”  

1. Use of streamflow duration classification in the definition of “tributary” 
2. Definition of “adjacent” wetlands 
3. Discussion of a hypothetical gradient of streamflow 
4. A standard for assessing “normal” precipitation conditions (“typical year”) 

The first three examples use scientific terminology in their discussion rebutting public comments that 
the 2020 NWPR definitions and exclusions are not supported or informed by science but fail to apply the 
underlying scientific principles. Id. at 22271, 22288. The fourth example (“typical year”) is informed by 
the traditional international standard for estimating “climate normals” but has significant flaws in its 
approach to evaluating “normal” precipitation conditions for assessing streamflow. The 2020 NWPR’s 
inconsistent treatment or misapplication of long-standing scientific understanding in each of these four 
examples is described below. 

a. Use of streamflow duration classification in the 2020 NWPR’s 
regulatory definition of “tributary”  

The 2020 NWPR includes many streams and reaches characterized by intermittent or perennial 
flows, but excludes all streams and reaches characterized by ephemeral flows as defined in that rule, 
stating that “this definition effectively furthers both the objective of the [Clean Water] Act to “restore and 
maintain the chemical, physical, and biological integrity of the nation’s waters” and the “policy of 
Congress to recognize, preserve, and protect the primary responsibilities and rights of States to prevent, 
reduce, and eliminate pollution [and] to plan for the development and use (including restoration, 
preservation, and enhancement) of land and water resources . . . .” 33 U.S.C. 1251(b); see also Rapanos, 
547 U.S. at 737 (Scalia, J., plurality).” Id. at 22287-22288. The 2020 NWPR’s assertion that limiting 
jurisdiction over tributaries to those that have at least intermittent flow in a “typical year” furthers the 
objective to “restore and maintain the chemical, physical, and biological integrity of the nation’s waters” 
is not supported by science and represents a misuse of long-standing scientific principles. 

The scientific principle of hydrologic connectivity, or the water-mediated transfer of matter, 
energy, and/or organisms within or between elements of the hydrologic cycle (Pringle 2003) applies to all 
streams. Streamflow duration is a fundamental component of hydrologic connectivity, and has been 
classified by the terms ephemeral, intermittent, and perennial. Hedman and Osterkamp 1982; Hewlett 
1982. However, the importance of flows (i.e., the functions and effects associated with flow) and the 
significance of their contributions to downstream waters, cannot be inferred from flow duration alone. 
Science Report.  

Stream classification in the 2020 NWPR merely identifies three classes of flow duration – 
perennial, intermittent, and ephemeral. It says nothing about the functions or downstream effects of a 
given streamflow duration class. In applying this approach, the 2020 NWPR excludes relevant scientific 
information to the question of how those three classes of streamflow affect the integrity of downstream 
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waters that would be considered jurisdictional, and the mechanisms by which different degrees of 
hydrologic connectivity influence aquatic ecosystem function (further discussed above in this section).  

Ward (1989) summarized the hydrologic connectivity of river ecosystems along four dimensions: 
longitudinal, lateral, vertical (surface-subsurface), and temporal connections. Degrees of hydrologic 
connectivity (i.e., a hydrologic gradient) in a river network are established in each dimension by 
variations in the frequency, duration, magnitude, timing, and rate of change of flow. Poff et al. 2007. For 
example, functional methods for classifying streamflow consider the timing and magnitude of short-
duration surface flows that transport large volumes of water and organic materials (e.g., sediment) 
downstream (Nolan et al. 1987; Reid et al. 1995); changes in the frequency and duration of flow in 
response to regional climate, landscape, land use, and water use (Fritz et al. 2020); or the influence of 
water withdrawals, impoundments, and other human activities on shifting patterns of flow (e.g., from 
perennial to intermittent or ephemeral) (Datry et al. 2014). For example, Gallo et al. (2020) quantified 
hydrologic discontinuities in streamflow and stream water presence in Arizona and found that, on a 
regional scale, stream channel density is a better predictor of streamflow and water presence than rainfall 
alone. In addition, their results showed that water presence as soil moisture and/or surface ponding can be 
4–33 times greater than the duration of streamflow at the driest sites, which has important implications for 
biogeochemical processes in arid river systems. Gallo et al. 2020.  

Hydrological connections along longitudinal (upstream-downstream), lateral (channel-to-
floodplain or non-floodplain wetlands) and vertical (exchanges between surface and hyporheic flow) 
gradients are the physical backbone of healthy river networks. Direct evidence of hydrologic connectivity 
throughout river networks is apparent in the existence of stream channels that form the physical structure 
of the network itself. Science Report. Transitions in flow duration shape and re-form channels, distribute 
materials throughout the stream network, provide habitat for a wide diversity of plants and animals, and 
establish functional linkages between stream, wetland, and terrestrial ecosystems across space and 
through time. Datry et al. 2014. In addition to efficient transport of water and materials, infiltration from 
ephemeral flows recharges local aquifers that support riparian vegetation and animals (Science Report; 
Zimmer and McGlynn 2017) and regional aquifers that support baseflow in intermittent and perennial 
rivers (Min et al. 2020). Ephemeral flows also are important for survival and dispersal of aquatic 
organisms, including native fish species, during dry periods. De Jong et al. 2015. In the western U.S., 
89% of streams are ephemeral or intermittent (Gallo et al. 2020) but even in forested watersheds, field-
based surveys have shown that ephemeral channels can comprise the majority (up to 71%) of headwater 
stream miles (Hansen 2001; Fritz et al. 2013) based on physical channel extent. By categorically 
excluding an entire class of stream flows (ephemeral) from jurisdiction, the 2020 NWPR disaggregates 
flow-integrated stream networks, imposing arbitrary breaks in longitudinal, lateral, and vertical 
connections that support water quality, biodiversity, and ecosystem functioning in larger downstream 
waters.  

Another line of evidence in the arbitrariness of the 2020 NWPR’s definition of “tributary” is the 
inclusion of intermittent and perennial reaches upstream of ephemeral reaches when the connecting 
ephemeral reach flows at least once per year in a “typical year.” Here the argument is that ephemeral 
reaches that flow at least once per year do provide a meaningful stream connection to downstream waters 
if the water and material could pass through a perennial or intermittent reach first, though the ephemeral 
reaches themselves continue to be excluded under the rule. The preamble attempts to “re-assemble” 
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portions of the stream network via the hydrologic connectivity established by ephemeral flows, while the 
rule text excludes all ephemeral streams that are instrumental in shaping and defining the river network 
from headwater sources.  

 Scientific methods for classifying flow duration (e.g., as ephemeral, intermittent, perennial) 
assign conceptual transitions along the temporal gradient of channelized surface flows through a river 
network. Fritz et al. 2020. They support a variety of research and management objectives in river systems, 
which are characterized by time-varying flows that support different but equally important functions. 
Bracken et al. 2013; Science Report. The scientific principles used to develop flow classification methods 
do not support the notion that flows of one flow duration class are more ecologically important to 
downstream water integrity than flows in other classes.  

There are many slight variations in the definitions of intermittent flow developed and used by 
scientists (see, e.g., Busch et al. 2020), including those that specify ranges of flow duration (Fritz et al. 
2020). None of the scientific definitions of flow duration class are based on effects on downstream water 
integrity. Rather, they reflect differences in application and characteristics of the location (e.g., regional 
climate, geology, topography). Having defined durations of surface flow enables the use of USGS 
streamflow gage and other continuously monitored datasets for informing classifications. Because there 
are only three classes, most reaches will fall within specified ranges, but because flow duration itself is a 
gradient and the factors driving flow duration and its temporal variation are complex, there will be some 
reaches that fall near the interface between two flow duration classes and will be above a specified 
threshold one year but below it for another year, even when both years are considered “typical years.” 
This interannual variation in streamflow permanence means that a given stream can appear to have 
ephemeral flow in one “typical year” and intermittent flow in a different “typical year.” The 2020 NWPR 
does not address how to account for such interannual variation for assessing jurisdiction. 

The 2020 NWPR’s definition of “tributary” disproportionately excludes headwater streams, 
which are the major sources of water to river networks. Science Report. Intermittent and ephemeral 
streams conservatively account for 59% of the total length of streams in the contiguous United States, 
most of which are comprised of headwater networks. Nadeau and Rains 2007; see also Science Report at 
2-29 (citing id.). A recent global model by Messager et al. (2021) estimated that 44-53% of stream reach 
length dries for at least 1 month per year, and that the wettest climate zone still had up to 30% of stream 
length being non-perennial whereas the driest climate zone had 99% of stream length being non-
perennial. Non-perennial flows activated during rainfall or snowmelt events are efficient at transporting 
water and materials (including permitted discharges) that accumulate in dry stream channels to 
downstream waters.  

Changes in the spatial extent of stream networks due to expansion in response to precipitation and 
snowmelt and contraction during dry periods are most pronounced in the arid and semiarid Southwest, 
where more than 80% of all streams are intermittent or ephemeral. Levick et al. 2008. Godsey and 
Kirchner (2014) demonstrated the dynamism of headwater networks, mapping a 2.6 to 7.5-fold increase 
in both flowing network lengths and drainage densities in four drainages between fall (dry conditions) and 
spring (wet conditions). The dominant sources of water to a stream can shift during river network 
expansion and contraction in response to precipitation or snowmelt. Malard et al. 1999; McGlynn and 
McDonnell, 2003; McGlynn et al. 2004; Malard et al. 2006. The larger the rainfall or snowmelt event, the 
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more ephemeral streams flow, increasing the total length of channels contributing water and materials 
throughout the river network. Ephemeral flows cease within days after rainfall or snowmelt, and the 
flowing portion of the river network seasonally shrinks as the spatial extent of aquifers in contact with 
streams contract, precipitation-evapotranspiration balance shifts, and intermittent streams dry. In many 
river systems across the United States, stormflow comprises a major portion of annual streamflow. 
Hewlett et al. 1977; Miller et al. 1988; Turton et al. 1992; Goodrich et al. 1997; Vivoni et al. 2006. In 
these systems, intermittent and ephemeral streams are major sources of river water. Science Report at 2-
18. 

The propagation of stormflow through river networks also provides clear evidence of hydrologic 
connectivity between ephemeral, intermittent, and perennial headwater streams to rivers, particularly 
when an intense storm occurs over only the headwater portions of a river network. The contribution of 
tributaries to rivers during widespread floods manifests as stepped increases in discharge immediately 
below confluences, as water flows accumulate through a river network. Science Report at 3-7. Such 
propagation was recorded following a monsoonal storm event through an arid network of ephemeral 
channels in the watershed of the Rio Puerco River, a semiarid tributary to the Río Grande River, in the 
early 2000s. Vivoni et al. 2006. A storm dropped approximately 18−25% of annual rainfall on the Rio 
Puerco’s approximately 16,000 square kilometer (approximately 6,200 square miles) drainage area over a 
two-day period. Discharge recorded at two USGS gages on the Rio Puerco and three USGS gages on the 
Río Grande downstream of the confluence illustrated sequential time lags in peak flows from the 
upstream gage to the downstream gage, demonstrating the downstream transfer of flows from headwaters, 
and increases during peak flows at least 127 km (approximately 79 miles) downstream. Id. Stormflow 
contributions from the ephemeral Rio Puerco accounted for 76% of flow at the Río Grande during this 
event, although just 3.6% of rainfall resulted in tributary runoff. A total of 49% of the flood volume 
recharged shallow aquifers in the mainstem of the river and the remainder entered the reservoir at the 
outlet. Id.; Science Report at 3-7, 3-8. However, this river, if it meets the 2020 NWPR’s definition of 
ephemeral, would have been excluded under the 2020 NWPR despite the large quantity of flow that is 
provided downstream to the Río Grande during a storm event that is likely to occur annually.  

The 2020 NWPR is inconsistent in its consideration of physical indicators of flow. 85 FR 22292. 
As noted above, physical indicators can be evidence of flows that provide important functions to larger 
downstream waters, including traditional navigable waters, the territorial seas, and interstate waters. The 
channel form and other fluvial geomorphic features are physical indicators of the recurrent, concentrated 
surface flow of water through the stream network to downstream waters. Without the recurrent transport 
of water and materials, terrestrialization (soil development, terrestrial vegetation colonization/growth) 
transforms channels to uplands, making them indistinguishable from the surrounding landscape. The 2020 
NWPR preamble notes the value of physical indicators as a line of evidence but excludes them on the 
basis that they cannot be used to evaluate flow duration under “typical year” conditions (see section 
II.B.iv.1 for discussion of the 2020 NWPR’s use of “typical year”). As noted above, flow magnitude (e.g., 
flooding, transfer of stored materials in high-magnitude, short-duration events) can have large effects on 
downstream waters. Physical indicators often reflect transport magnitude to a stronger degree than 
transport duration because indicators of intermediate and lower magnitude flows are often effaced by 
higher flows. In addition to representing responses, physical indicators can be hydrologic drivers and be 
represented at not only the local, reach scale, but larger scales (e.g., watershed, regional). Costigan et al. 
2016.  



Page 120 of 564 

If the scientific justification for limiting jurisdiction to intermittent and perennial reaches is that 
they are fed primarily by groundwater or snowpack meltwater – as the 2020 NWPR’s definition of 
“tributary” indicates – the 2020 NWPR fails to address two essential points: (a) all three of the 2020 
NWPR’s streamflow duration classes convey stormflow and materials downstream, and (b) individual 
streams often transition longitudinally between flow duration classes, from ephemeral to intermittent to 
perennial, creating patchworks of ephemeral, intermittent, and perennial reaches within a single segment 
or tributary of a stream network. Science Report. The 2020 NWPR preamble states that the “regular and 
predictable” hydrologic behavior—i.e., intermittent and perennial flows within a “typical year,” however 
they are distributed within and across tributaries—qualifies them for Clean Water Act jurisdiction. 85 FR 
22278. By its regulatory definition of jurisdictional streams (i.e., “tributaries”) based on flow classes, the 
2020 NWPR attests that the scope of the Clean Water Act is therefore determined largely by conditions 
that reflect snowpack and groundwater inputs to streamflow. In effect, the 2020 NWPR preferentially 
regulates streams in those locations having climate and landscape conditions that support persistent or 
seasonal flow or inundation—conditions that do not exist nationally and that are subject to predictable 
changes in climate patterns over the next 30+ years. It also favors protection for streams in human-
dominated watersheds that receive a significant proportion of their baseflow from municipal and 
industrial wastewater effluent discharges, stormwater detention basins, and irrigation return flow, all of 
which are more likely to be impaired than streams without such augmented source water and would 
otherwise be non-perennial (and many of which, particularly in the arid West, would otherwise by 
ephemeral and excluded under the 2020 NWPR). Streams whose instream flows are entirely dependent on 
effluent discharges are called effluent-dependent streams, whereas those that receive most, but not all, of 
their flow from effluent are called effluent-dominated streams. Brooks et al. 2006. About 25% of 
permitted effluent discharges in the United States enter streams with mean annual flows incapable of 
diluting effluents by more than 10-fold. This percentage of permitted effluent discharges entering streams 
incapable of diluting effluents by more than 10-fold increases to 60% when low-flow discharge is 
considered. Brooks et al. 2006; Science Report at 3-12, 3-13. While effluent-dependent or effluent-
dominated streams can have unique water quality characteristics (Brooks et al. 2006), there is also no 
scientific justification to regulate them and to not also regulate ephemeral streams, as the 2020 NWPR 
does. 

 

b. Definition of “adjacent wetlands” 

The 2020 NWPR preamble incorrectly cites the Science Report by quoting partial sentences out of 
context. For example, the 2020 NWPR preamble notes that “areas that are closer to rivers and streams 
have a higher probability of being connected than areas farther away” Id. at 22314 (citing the Science 
Report at ES-4). However, the complete sentence text in the Report is: “In addition, although areas that 
are closer to rivers and streams have a higher probability of being connected than areas farther away when 
conditions governing the type and quantity of flows—including soil infiltration rate, wetland storage 
capacity, hydraulic gradient, etc.—are similar, information to determine if this similarity holds is 
generally not provided in the studies we reviewed.” Science Report at ES-4. The Science Report states 
elsewhere that, “All factors being equal, wetlands closer to the stream network will have greater 
hydrologic and biological connectivity than wetlands located farther from the same network.” Id. at 2-40 
(emphasis added). However, proximity is not a factor in the 2020 NWPR’s definition of “adjacent 
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wetlands.” Wetlands that are very close to the stream network are not considered “adjacent wetlands” 
under that rule unless they have the very specific hydrologic connections that the 2020 NWPR prescribes 
for “adjacent wetlands.”  

In the same section, the 2020 NWPR preamble also cites the SAB Review as saying that “[w]etlands 
that are situated alongside rivers and their tributaries are likely to be connected to those waters through 
the exchange of water, biota and chemicals. As the distance between a wetland and a flowing water 
system increases, these connections become less obvious.” 85 FR 22314 (citing SAB 2014a at 55) 
(emphasis added in 2020 NWPR preamble). In the SAB Review, this sentence opened the section in 
which the SAB discusses the importance of “less obvious” connections from less-proximal (i.e., non-
floodplain) wetlands that influence downstream waters.  

The 2020 NWPR preamble also quotes fragments of text from the Science Report and the SAB 
Review incorrectly and out of context in its discussion of limiting Clean Water Act jurisdiction to 
wetlands having a “near-permanent” hydrologic connection to a jurisdictional water in a “typical year.” 
The 2020 NWPR defines “adjacent wetlands” as wetlands that:  

(i) Abut, meaning to touch at least at one point or side of, a water identified in paragraph 
[traditional navigable water or territorial sea, tributary, or lake, pond, or impoundment of 
a jurisdictional water]; 
(ii) Are inundated by flooding from a [traditional navigable water or territorial sea, 
tributary, or lake, pond, or impoundment of a jurisdictional water] in a typical year; 
(iii) Are physically separated from a [traditional navigable water or territorial sea, 
tributary, or lake, pond, or impoundment of a jurisdictional water] only by a natural berm, 
bank, dune, or similar natural feature; or 
(iv) Are physically separated from a [traditional navigable water or territorial sea, 
tributary, or lake, pond, or impoundment of a jurisdictional water] only by an artificial 
dike, barrier, or similar artificial structure so long as that structure allows for a direct 
hydrologic surface connection between the wetlands and the [traditional navigable water 
or territorial sea, tributary, or lake, pond, or impoundment of a jurisdictional water] in a 
typical year, such as through a culvert, flood or tide gate, pump, or similar artificial 
feature. An adjacent wetland is jurisdictional in its entirety when a road or similar 
artificial structure divides the wetland, as long as the structure allows for a direct 
hydrologic surface connection through or over that structure in a typical year. 

Id. at 22338 (emphasis added). There is no scientific or conventional context in which proximity 
can be interpreted as having a direct or continuous surface water connection. When taken 
properly in context with scientific evidence, spatial proximity is one of multiple important 
physical factors influencing ecological exchanges of water, materials and biota between streams, 
wetlands, open waters, and downstream waters. Other factors cited in the Science Report and 
related publications are the individual size, number, climate, geology, terrain/slope, land use/land 
cover, distinctiveness, and intervening units. Fritz et al. 2018 at Table 2 (Key factors affecting 
connectivity from streams and riparian wetlands to downstream waters and its resulting effects). 
In addition, although the 2020 NWPR preamble cites the SAB Review as support for limiting 
jurisdiction to wetlands at close spatial proximity to “waters of the United States,” the rule makes 
no reference to spatial distance - the ordinary interpretation of spatial proximity - in its definition 
of “adjacent wetlands.” Under the 2020 NWPR, wetlands located at considerable distance from 
lakes or rivers could be jurisdictional, whereas more spatially proximate wetlands might not. For 
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example, under the 2020 NWPR, normal expansion of lakes in the Prairie Pothole Region that 
merge with previously disconnected wetlands via continuous surface water at distances up to 38 
km (Vanderhoof and Alexander 2016) could be jurisdictional whereas coastal, riparian, and 
floodplain wetlands that are in fact directly spatially proximal to “waters of the United States” 
have been found to be non-jurisdictional.  

Further, wetlands running alongside a tributary have been found to be non-jurisdictional on the 
basis of factors such as channel incision, build-up of bank materials from past floods that do not meet 
subjective criteria for a natural berm, or absence of evidence showing a single-point of “near continuous” 
surface connection to the tributary. This also contradicts the emphasis added in the 2020 NWPR preamble 
to the SAB Review’s comment about wetlands that run “alongside of rivers and their tributaries” cited 
above. 

The 2020 NWPR preamble states:  

The final rule also provides that wetlands separated from jurisdictional waters only by a natural 
berm, bank, dune, or other similar natural feature are adjacent wetlands. These natural features 
are indicators of a sufficient hydrologic surface connection between the jurisdictional water and 
the wetland, and the agencies conclude that wetlands that are separated from jurisdictional waters 
only by such features are inseparably bound up with the adjacent jurisdictional waters and are 
therefore “part of those waters.”  

Id. at 22280 (citing Rapanos, 547 U.S. at 740 (Scalia, J., plurality). The preamble goes on to say that 
“Physically remote isolated wetlands (i.e., wetlands that do not abut, are separated by more than a natural 
berm from, are not inundated by flooding in a typical year from, and do not have a direct hydrologic 
surface connection in a typical year to a jurisdictional non-wetland water) are not adjacent wetlands under 
the final rule.” Id. The 2020 NWPR consequently misapplies the term “physically remote” to wetlands 
that are not remote in any ordinary sense of the word, and/or not “isolated” in any scientific sense from a 
jurisdictional water. Marton et al. 2015; Fossey and Rousseau 2016; Rains et al. 2016; Cohen et al 2016; 
Creed et al. 2017, Evenson et al. 2018; Lane et al. 2018; Golden et al. 2019.  

Similar to streams, the occurrence and persistence of riparian/floodplain wetland and non-
floodplain wetland hydrologic connections with river networks, via surface water (both channelized and 
non-channelized) or shallow or deep groundwater, can be continuous, seasonal, or ephemeral, depending 
on the overall hydrologic conditions in the watershed. For example, a wetland might have a direct shallow 
subsurface connection with a river network during wet conditions but an indirect regional groundwater 
connection (via groundwater recharge) under dry conditions. Non-floodplain wetlands can be 
hydrologically connected to the river network via non-channelized surface flow (e.g., swales or overland 
flow) (see, e.g., Rains et al. 2006; Wilcox et al. 2011) or subsurface flows that support river baseflow 
(Science Report at 2-14, 4-2. Therefore, the assertion that they do not have a “direct hydrologic surface 
connection in a typical year to a jurisdictional non-wetland water” is erroneous. In fact, wetlands that 
outflow to streams seasonally through swales that likely would have met the definition of “waters of the 
United States” prior to the 2020 NWPR were no longer jurisdictional under the 2020 NWPR. However, in 
some cases the swales themselves – which formerly were not “waters of the United States”—were found 
to be jurisdictional under the 2020 NWPR. This example illustrates how jurisdiction based entirely on 
flow duration and flow direction and the application of 2020 NWPR categories of “adjacent wetlands” 
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run counter to scientific understanding of stream-wetland connectivity and function in ways that subvert 
the objective of the Clean Water Act. 

The 2020 NWPR’s preamble incorrectly claimed that the rule’s limits on wetlands that are 
jurisdictional were consistent with “longstanding practice.” 85 FR at 22280. The preamble claimed 
consistent with longstanding practice “wetlands can be jurisdictional only if they are adjacent to territorial 
seas or a traditional navigable water, tributary, lake, pound, or impoundment of a jurisdictional water but 
the rule’s definition of “waters of the United States” was not consistent with which categories of wetlands 
are regulated under the agencies’ pre-2015 regulatory regime. For example, the 2020 NWPR did not 
include interstate waters as a separate category of jurisdiction even though such waters had been regulated 
for decades prior to the 2020 NWPR. As a result, interstate wetlands were not included as “waters of the 
United States” unless they met one of the rule’s categories of jurisdictional waters. Similarly, wetlands 
adjacent to interstate waters were not be regulated under the 2020 NWPR unless they met one of the four 
paragraph (a) waters under that rule, which is also counter to longstanding practice. In addition, the 
definition of “adjacent wetlands” under the 2020 NWPR was modified to such an extent that even 
wetlands “running alongside” perennial streams and rivers were found to be non-jurisdictional under that 
rule. For example, in one approved jurisdictional determination, an area of pine flatwoods in the 
Mississippi Coastal Plain, the area of adjacent wetlands was reduced from 144 acres under the 2015 Clean 
Water Act to 9.5 acres under the 2020 NWPR. In another example, a heavy mineral sands mining project 
in Georgia withdrew its permit for development under the 2015 Clean Water Rule, which found 400 acres 
on the site near the Okefenokee NWR to be jurisdictional, and re-applied under the 2020 NWPR, which 
reduced the number jurisdictional wetlands acres to zero acres. At least one Corps district saw an eight-
fold increase in the number applications for Approved Jurisdictional Determinations (~50/year to 
~400/year) in the first year of 2020 NWPR implementation, and 3,300 acres of coastal plain wetlands 
were determined to be non-jurisdictional over that period. Although the agencies generally have not used 
paragraph (a)(3) of the pre-2015 regulations to assert jurisdiction over “other waters” since the decision in 
Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers, 531 U.S. 159 (2001) 
(SWANCC), the Supreme Court did not invalidate that regulation. To advance the objective of the Act, 
and in accordance with Supreme Court precedent and the agencies’ experience and expertise, the final 
rule provides that intrastate waters that do not meet the criteria set forth in paragraphs (a)(1) through 
(a)(4), (now listed under paragraph (a)(5) of the final rule) must meet either the relatively permanent 
standard or the significant nexus standard in order to be jurisdictional.  

c. The 2020 NWPR’s standard for assessing normal climate 
conditions (“typical year”) 

The 2020 NWPR’s concept of “typical year” is fundamental to jurisdiction in that some 
regulatory definitions (e.g., of a tributary, certain adjacent wetlands, and certain lakes, ponds, and 
impoundments of jurisdictional waters) apply only if flows are observed “when precipitation and other 
climatic variables are within the normal periodic range (e.g., seasonally, annually) for the geographic area 
of the applicable aquatic resource based on a rolling thirty-year period.” 85 FR 22274. Therefore, the 
2020 NWPR’s definition of “typical year” is a linchpin of jurisdictional decisions under the rule. 
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(i) Applicable Period of Record 

The 2020 NWPR definition of “typical year” draws from an international standard for calculating 
and reporting “climate normals” – i.e., a suite of statistics for temperature, precipitation, and other 
climatological variables from U.S. weather stations – established in the mid-1940s by the International 
Meteorological Organization (IMO; predecessor of the World Meteorological Organization (WMO)). A 
30-year averaging period was selected by IMO because at the time, only 30 years of global climate data 
were available. WMO 2017. In addition, 30 observations were considered sufficient for estimating 
average values under relatively stable climate conditions (stationarity, i.e., when temperature, 
precipitation, and other climate variables fluctuate seasonally or annually above or below a constant but 
do not show positive or negative trends) or when changes in climate patterns are small or slow-moving. 
WMO 2007; Wilks 2013.  

One drawback of relying only on a 30-year averaging period to estimate “typical” conditions is 
that climate conditions in the United States are not stable. Consistent regional and national trends in 
temperature, precipitation, and other climatological variables are rapidly shifting climate averages 
(NOAA a; data available at https://www.ncei.noaa.gov/access/monitoring/us-trends/), and climate 
extremes are becoming more intense, frequent, and/or persistent (data available at 
https://www.climate.gov/maps-data/dataset/severe-storms-and-extreme-events-data-table and 
https://www.ncei.noaa.gov/products/severe-weather). These trends have been apparent in records dating 
back to the start of the 20th century and have become more pronounced over the past 30 years. Steinacker 
2021. Both types of change – trends in temperature/precipitation and more frequent/intense climate 
extremes – invalidate assumptions of climate stationarity and increase error in estimation of “normals” 
based on 30-year averaging intervals. Arguez et al. 2019. While important as long-term benchmarks of 
climate change, in the early 2000s WMO 30-year climate normals were found to be “no longer generally 
useful for the design, planning, and decision-making purposes for which they were intended.” Livezey et 
al. 2007 at 1759. 

In response, the National Oceanic and Atmospheric Administration (NOAA) has developed 
several alternatives (optimal climate normals; OCN; Huang et al. 1996) to account for monotonic climate 
change. OCN include seasonal averages computed using 10-year annually-updated averaging periods for 
temperature and 15-year annually-updated averaging periods total precipitation. Arguez et al. 2019. In 
addition, NOAA OCN are adjusted for systematic interannual variability (e.g., El Niño–Southern 
Oscillation; ENSO) by conditioning climate normals on the phase and intensity of ENSO events in five 
sets of climate normals, thereby accounting for climate anomalies, as well as background climate trends, 
in estimates of temperature and precipitation “normals.” Id. 

In general, shorter periods and annual updating improve the performance of climate normals in 
the presence of rapid trends, although determining the “best” period of record over which trends are 
evaluated for any given location remains challenging because optimal intervals vary by effect (e.g., 
temperature, total precipitation) and time of year. Huang et al. 1996. In recent decades, NOAA has 
recommended that users of conventional benchmarks also consider alternative benchmarks estimated 
using annual updates over shorter fixed (5, 10, 15, 20-year) intervals or variable optimized intervals that 
are automatically adjusted to provide more accurate information for a particular time and location. NOAA 
2019. Starting in May 2021, NOAA began publishing 15-year NOAA climate normals in tandem with 30-

https://www.ncei.noaa.gov/access/monitoring/us-trends/
https://www.climate.gov/maps-data/dataset/severe-storms-and-extreme-events-data-table
https://www.ncei.noaa.gov/products/severe-weather


Page 125 of 564 

year WMO climate normals, now updated each decade, as a standard practice. NOAA 2021; NOAA 
2022b.  

The 2020 NWPR improves upon the historical WMO approach by using a rolling 30-year interval 
updated annually. The preamble states that the agencies “considered other alternative [averaging] time 
periods” for assessing “normalcy” but maintained the 30-year record because it was established “[n]early 
a century ago.” 85 FR 22274. The only justification given for retaining a 1940s-era standard is a reference 
to the NOAA webpage linking users to information about alternatives, including OCN, estimated over 
shorter averaging time periods to account for rapid changes in average climate conditions. Id. at 22274-
22275, citing NOAA 2019. While the 2020 NWPR’s approach is slightly preferable to the historical 
WMO approach, a more flexible approach that allows for the use of 10-year or 15-year climate normals, 
such as those published by NOAA, would generally be better in light of rapidly changing climatic 
conditions in certain parts of the country 

 

(ii) Accuracy of Prediction Based on Historical Precipitation 
Quantiles 

While agreeing that precipitation is just one of many important drivers of streamflow and wetland 
inundation, the 2020 NWPR preamble uses precipitation total as the sole basis for quantifying a “typical 
year” by relying on “the normal range of precipitation,” estimated for given location as follows: “The 
agencies evaluate normal precipitation conditions based on the three 30-day periods preceding the 
observation date. For each period, a weighted condition value is assigned by determining whether the 30-
day precipitation total falls within, above, or below the 70th and 30th percentiles for totals from the same 
date range over the preceding 30 years. The agencies make a determination of ‘normal,’ ‘wetter than 
normal,’ or ‘drier than normal’ based on the condition value sum.” Id. at 22274. The preamble provides 
no justification for using this method to assess normalcy, except that it draws from methods developed by 
the National Resource Conservation Service (NRCS) and the Corps for assessments of wetland 
hydrology.  

To the agencies’ knowledge, the “typical year” concept had not been validated for accuracy 
(reliability) of predicted assessments of precipitation, or the effects of precipitation on stream hydrology 
for that location prior to finalization of the 2020 NWPR. Other key factors driving variations in 
streamflow include evapotranspiration, temperature, available water capacity in soils, snowpack 
conditions, groundwater conditions, and water withdrawals, all of which vary interannually but are 
unaccounted for in the 2020 NWPR definition of “typical year.” A recent study by the Corps found that 
precipitation normalcy (as calculated based on the methodology described in the preamble to the 2020 
NWPR) was neither a reliable predictor of streamflow normalcy, nor was it a precise predictor of 
streamflow percentiles, in an analysis of watersheds across the United States. Sparrow et al. 2022. 

Further, the 2020 NWPR provides no evidence to support its assumption that “normal 
precipitation” across the country is accurately captured by the middle 40% of the precipitation totals 
recorded over the 90-day date range of interest over the 30-year period of record. Nor does it provide 
evidence to justify the exclusion of 60% of precipitation events because they are assumed to be “too wet” 
or “too dry” for jurisdiction. Id. The uncertainty associated with the 2020 NWPR “typical year” 
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guidelines is particularly high for areas currently facing rapid changes in climate variables (e.g., including 
in the Midwest, where 100-year floods occur with more frequency in a “typical year”) or climate 
anomalies caused by cyclic events (e.g., ENOS) create conditions in which emphasis on the middle range 
of precipitation totals is particularly prone to over- or under-estimation of normal conditions. Given the 
2020 NWPR’s heavy reliance on “typical year” for Clean Water Act jurisdiction, the 2020 NWPR could 
have required that estimates of uncertainty associated with weighting the middle 40% of precipitation 
observations across the United States be provided as part of a jurisdictional determination, along with 
probabilities that recent events fall above, within, or below the 30th and 70th percentiles. Considering only 
40% of prior events also can eliminate channel-forming events, including ephemeral stormflows that 
transport large volumes of water and materials to downstream waters (e.g., the Rio Puerco and Río 
Grande example cited in section II.B.iii.1.a). 

The 2020 NWPR’s preamble alludes to the inadequacy of that rule’s primary method for 
assessing “typical” climate by stating that the agencies “recognize there may be other accurate and 
reliable measurements of normal precipitation conditions” and places a burden of proof on those seeking 
more scientifically-defensible methods to assess “normal” conditions by stating that “alternative 
methods” must be “developed and appropriately validated, including different statistical percentiles, 
evaluation periods, or weighting approaches for condition values.” 85 FR 22274. No such comparable 
support for the rolling 30-year average is provided in the preamble or elsewhere in the public record. In 
practice, the difficulty of finding, assembling, integrating, validating, and analyzing datasets that could 
provide a more accurate estimate of climate “normals” presents a high bar for implementing robust and 
reliable methods. As a result, most assessments of “typical year” resorted to the use of 30-year 
precipitation records as recommended in the 2020 NWPR preamble.  

Lastly, while precipitation is an important predictor of streamflow (Eng et al. 2016; Jaeger et al. 
2019; Konrad 2019), there is no support for relating the “typical year” precipitation “condition value 
sum” to flow behavior at the basin, tributary, or reach scale. Thus, while claiming to provide a 
“predictable, implementable regulatory framework” for regulating tributaries, the 2020 NWPR methods 
add uncertainty to assessments of flow duration class (perennial, intermittent, or ephemeral), use 
standards for assessing climate normals (“typical year”) that have limited ability to assess current or near-
future conditions, and in practice, depend on historical records of streamflow or wetland inundation that 
frequently do not exist. 

 

d. Jurisdiction of lakes, ponds, impoundments, wetlands by one-
way inundation 

The 2020 NWPR preamble states that inundation by flooding of lakes (including oxbow lakes), 
ponds, impoundments of jurisdictional waters, and “adjacent wetlands” from jurisdictional waters in a 
“typical year” is “sufficient to establish jurisdiction [when it] occurs only in one direction, from the 
[traditional navigable water or territorial sea, tributary, or lake, pond, or impoundment of a jurisdictional 
water] to the lake, pond or impoundment of jurisdictional waters, rendering the feature ‘itself a part of 
those waters’ ‘that are ‘waters of the United States’ in their own right.’” 85 FR 22303 (citing Rapanos, 
547 U.S. at 740, 742 (Scalia, J., plurality). This requirement is inconsistent with the science on the 
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importance of flows that occur in the other direction—from a wetland or open water to the tributary 
network—and from other types of hydrologic connections. 

Wetlands and open waters in riparian areas and floodplains are physically, chemically, and 
biologically integrated with rivers and other jurisdictional water via functions that can benefit from, but 
are not dependent upon, near-permanent, continuous surface water connections established by outflows 
from jurisdictional waters. Wetlands improve water quality of nearby jurisdictional waters by 
transformation and/or sequestration of pollutants that can degrade water integrity, intercept sediment, and 
store local ground water for late-season baseflow in rivers. They also provide breeding and nursery 
habitat for fish, amphibians, and aquatic insects that are integral components of riverine, lacustrine, and 
estuarine food webs. These facts are all supported by the science synthesized in the Science Report. 

Long established aquatic science considers streams and rivers to have four dimensions – longitudinal 
connections between upstream and downstream reaches, vertical connections between the surface and 
subsurface, lateral connections between the river and its floodplain, and temporal connections that occur 
over time. Ward 1989. Lateral connections between lakes or river channels to floodplains, including 
wetlands and open waters, can occur through seasonal or episodic expansion and contraction of river 
networks or through outflows from wetlands and other surface waters to lakes and streams. These lateral 
connections—and the seasonal or longer-term absence of surface connections—provide numerous 
functions that contribute to the chemical, physical, and biological integrity of downstream waters. For 
example, these wetlands can attenuate stormflow, increase baseflow, be a source of carbon and organic 
matter, and a sink for sediment, nitrate, and other constituents that degrade water quality. Science Report. 

As discussed in the Science Report:  

Riparian/floodplain wetlands can be hydrologically connected to streams and rivers through 
unidirectional flows (i.e., from wetlands to rivers and streams, but not vice versa) of surface water 
and ground water from upgradient areas (e.g., hillslopes and nearby uplands). In addition, 
riparian/floodplain wetlands have bidirectional connections to streams and rivers (i.e., from 
wetlands to streams and rivers and vice versa) through lateral movement of surface and ground 
water between the channel and riparian/floodplain areas. Connections between riparian/floodplain 
wetlands and streams or rivers occur over a gradient of connectivity, for example, they can be 
permanent, can occur frequently (e.g., if the wetland is located within the mean high-water mark), 
or can occur infrequently (e.g., if the wetland occurs near the edge of the floodplain; Sections 
1.2.2 and 2.4.2). Even riparian/floodplain wetlands that rarely flood can have important, long-
lasting effects on streams and rivers. Riparian/floodplain wetlands can reduce flood peaks by 
storing floodwaters, store large amounts of sediment and nutrients from upland areas, influence 
stream geomorphology by providing woody debris and sediment, and regulate stream 
temperature. Riparian/floodplain wetlands also are sources of food for stream and river 
invertebrates and serve as rearing habitat for fish.”  

Science Report at 4-1. Further, the Report states: 

Wetlands in non-floodplain landscape settings lack bidirectional hydrologic connections with 
channels (i.e., water flows from the wetland to the channel but not from the channel to the 
wetland). These settings, however, have the potential for unidirectional hydrologic flows from 
wetlands to the river network through surface water or ground water. Non-floodplain wetlands 
can attenuate floods through depressional storage and can recharge ground water and thereby 
contribute to baseflow. These wetlands can affect nutrient delivery and improve water quality by 
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functioning as sources (e.g., of dissolved organic carbon) and as sinks for nutrients (e.g., 
nitrogen), metals, and pesticides. Non-floodplain wetlands also can provide habitat or serve as 
sources of colonists for biological communities in downstream waters, through movement of 
amphibians, reptiles, birds, and mammals. The extent to which non-floodplain wetlands perform 
these functions depends on their hydrologic and biological connectivity with downstream waters. 
Non-floodplain wetlands also occur on a hydrologic gradient, from wetlands having permanent 
connections with perennial channels, to geographically isolated wetlands having groundwater or 
occasional surface-water connections, to highly isolated wetlands having minimal hydrologic 
connection to the river network (but which could include surface and subsurface connections to 
other wetlands; Section 4.4.2 [of the Science Report]). Non-floodplain wetlands that are 
connected to the river network through a channel (i.e., wetlands that serve as stream origins) will 
have an effect on downstream waters, regardless of whether the outflow is permanent, 
intermittent, or ephemeral. For non-floodplain wetlands that do not connect to the river network 
through a stream channel (i.e., geographically isolated wetlands and wetlands that spill into losing 
streams that are completely disconnected from the river network), the type and degree of 
connectivity with downstream waters will vary with position in the watershed and over time.  

Id. at 4-1 to 4-2. The limitation in the 2020 NWPR results in wetlands and open waters that affect that 
chemical, physical, and biology integrity of traditional navigable waters, the territorial seas, and interstate 
waters being categorically excluded from jurisdiction. 

Restricting jurisdiction to those wetlands with only one-way flow from jurisdictional waters to 
other types of waters is inconsistent with long-standing practice. For example, the Rapanos Guidance (p. 
5) clearly states that wetlands can be adjacent if “there is an unbroken surface or shallow subsurface 
connection to jurisdictional waters.” This criterion for a surface connection in the guidance accounts for 
other types of hydrologic connections than does the 2020 NWPR. In addition, the Guidance also states 
that wetlands are adjacent if “their proximity to a jurisdictional water is reasonably close, supporting the 
science-based inference that such wetlands have an ecological interconnection with jurisdictional waters.” 
Rapanos Guidance at 5-6. Such proximity does not require inundation by flooding or other types of 
surface connections from the wetland to the jurisdictional water. Under the 2020 NWPR, seasonal swales 
(or “vernal swales”) as opposed to vernal wetland pools were found to be jurisdictional as “adjacent 
wetlands.” Vernal wetland pools that outflow to stream networks that would be jurisdictional under the 
pre-2015 practice as adjacent wetlands were found to not meet the definition of “adjacent wetlands” under 
the 2020 NWPR and thus were found to be non-jurisdictional. Swales are important features of vernal 
pool wetland complexes, and were found to be jurisdictional as adjacent wetlands under pre-2015 
practice, as well as the vernal wetland pools. They are hydrologically connected to the pools and often 
support similar plant communities as vernal pools, but typically do not pond water long enough to support 
large ESA-listed branchiopod or amphibian species. For the same reason, they are also very dynamic 
systems and may not reliably delineate as three-parameter wetlands in any given year. Mitigation bankers 
are required to include interconnecting swales in vernal pool restoration plans, but the swales are often 
utilitarian (e.g., constructed to help maintain hydrology at the stie) and bankers do not request credit for 
them since they are inherently risky and not a highly-desired credit type. So, while vernal swales are 
important, it is ironic and arbitrary that they are now considered the most important wetlands in vernal 
pool complexes under 2020 NWPR, whereas the vernal wetland pools, which provide even more 
functions affecting traditional navigable waters, the territorial seas, or interstate waters, are considered 
non-jurisdictional under that rule. 
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2. White Paper 

As part of the administrative record for the 2020 NWPR, the agencies added to the docket a white 
paper entitled “Limitations of the National Hydrography Dataset at High Resolution and the National 
Wetlands Inventory and their use for Determining the Scope of Waters Subject to Clean Water Act 
Jurisdiction.” EPA and Army 2020b, hereafter “White Paper.” The agencies used the White Paper in part 
to support their arguments at the time that the USGS National Hydrography Dataset (NHD) and the U.S. 
FWS National Wetlands Inventory (NWI) were inappropriate to use on a national level to estimate the 
2020 NWPR’s potential effect on the extent of waters that would no longer be jurisdictional under the 
rule, particularly as standalone datasets. While the White Paper was factual in stating that the datasets 
were not designed as regulatory datasets and do not explicitly depict the full geospatial scope of Clean 
Water Act jurisdiction, based on further analysis and interagency review the agencies have determined 
that the datasets can be used in national assessments of the potential effects of a revised definition of 
“waters of the United States,” as appropriately caveated. The agencies also find that the White Paper 
presented flawed arguments, including a disproportionate focus on limitations of the datasets, but failed to 
adequately consider the positive value of the datasets and the breadth of the available literature 
surrounding both datasets.  

a. Background 

The NHD and the NWI are the most comprehensive and detailed hydrography and wetlands 
datasets for the nation and are the most accurate national datasets at the spatial scale that is relevant to 
Clean Water Act decision-making. Despite being the most comprehensive available datasets of their kind, 
however, neither the NHD or NWI were designed to be regulatory datasets, both have certain known 
limitations, and neither can be used as a standalone tool to determine the full scope of Clean Water Act 
jurisdiction. Additionally, the definitions that the datasets use may differ from regulatory definitions 
under the Clean Water Act (e.g., the NWI’s Cowardin definition of “wetlands” is broader than the 
regulatory definition). As Federal Geographic Data Committee (FGDC) National Geospatial Data Assets 
(NGDAs) that support a broad range of users and applications, it is important that these datasets maintain 
this non-regulatory focus. However, EPA, the Army, and other interagency partners view these datasets as 
able to form the foundation of a decision support system that overlays regulatory-related information 
(e.g., location of traditional navigable waters, modeled flow permanence and hydrologic connectivity, and 
approved jurisdictional determinations). 

As for any rulemaking, accurately estimating the potential effects of a proposed or final action can be 
challenging, and a rule defining the scope of Clean Water Act jurisdiction is no exception. In a 
rulemaking, in the absence of precise data for all cases, the agencies typically use the best available data 
to estimate the direction and magnitude of potential effects of a rule. For purposes of assessing the effects 
of revising the definition of “waters of the United States,” the agencies in their economic analysis have 
often relied on data from the Corps’ ORM database regarding where jurisdictional determinations and 
Clean Water Act section 404 permits have been issued. See 2015 Clean Water Rule EA; 2020 NWPR EA; 
Economic Analysis for the Final Rule. Because the 2020 NWPR as proposed was assumed to reduce the 
scope of jurisdictional waters compared to the legal status quo, the agencies initially attempted to also 
utilize NHD and NWI to estimate the potential effects of that proposed rule. Proposed 2020 NWPR RPA; 
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2020 NWPR RPA. However, at that time the agencies determined that technical limitations of the datasets 
presented significant challenges for the purpose of determining potential effects of the proposed and final 
2020 NWPR. Id. 

b. The White Paper Presented Flawed Arguments  

The limitations of the NHD and NWI noted in the White Paper can be placed into two basic 
categories. The first category would include limitations due to the spatial resolution. For example, streams 
of small length (e.g., many headwater streams) are absent from high-resolution NHD maps drawn at 
1:24,000 scale. Positional accuracy is also a function of the spatial resolution of the data. The White 
Paper, however, contains a general lack of conceptual understanding of spatial resolution and map scale 
and incorrectly lists numerous examples of errors or “inaccuracies” that are in fact differences due to 
spatial resolution and appropriate use of spatial data sources. A map is not inaccurate if it does not include 
information that is more detailed than the map scale is meant to depict. The exclusion of features is 
purposeful. The reason for excluding features is to prevent overcrowding of the map so features at the 
map’s scale can be clearly depicted. Again, based on this fact the number and length of streams, for 
example, are not underrepresented for the given map scale. In addition, it is impractical to delineate in 
fine detail the bends in a river for a 1:24,000 scale map. These limitations should not be characterized as 
inaccuracies but instead are a function of the scale at which they are drawn. The way this is written in the 
White Paper implies that the issue is with the dataset, when the real issue is with using the dataset for a 
more detailed purpose than supported by the map scale. Thus, the section on limitations is incorrectly 
framed and should instead have been a discussion on appropriate spatial resolutions for estimating stream 
and wetland location and extent in jurisdictional determinations.  

The second category of limitations identified in the White Paper includes data accuracy, including 
data entry errors. Data entry errors include incorrect or missing attribute information such as a waterbody 
name, feature type, flow direction, or flow classification. The USGS manages a robust data stewardship 
program that empowers state and federal agencies to correct mistakes within the NHD. Similarly, the 
NWI data are regularly updated and maintained. 

Because the White Paper fails to describe application requirements and state key definitions 
clearly or quantitatively, it is impossible to thoroughly assess the validity of position statements contained 
therein. For example, the definition of “reliable” data is not properly defined, and this presents challenges 
when addressing the validity of the positions taken in the paper. The expression and use of “error” and 
“accuracy” are used widely and improperly throughout the White Paper. A definition of these terms 
would be necessary to determine whether a dataset meets the degree of accuracy required for a specific 
application of that dataset. The comparisons made in the White Paper between the NHD and NWI and 
validated field data do not follow established scientific protocols for determining level of “error” or 
“accuracy” of remotely sensed datasets. See, e.g., Congalton and Green 1990. A fundamental principle of 
accuracy assessment is that the reference (field) dataset must measure the same thing as the dataset being 
assessed (validated) and do so with a higher degree of certainty. Id. In the studies cited in the White 
Paper, a different classification system is being applied to the reference dataset and the dataset being 
assessed (i.e., NHD or NWI). For example, the White Paper cites to Colson et al. (2008) as supporting 
that there are horizontal positional inaccuracies in the NHD dataset, but the authors used a different 
metric (three meters) than the metric used by the USGS (12.2 meters) and thus it is not appropriate to cite 
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this study in reporting inaccuracies. In addition, another analysis the White Paper cites compared NWI 
data from the early 1980s to field data from 2003-2010 (Wu et al. 2014a); the study did not assess NWI 
accuracy and thus the White Paper erred in including it in the section titled “NWI Has Certain Errors.” 
Wu et al. (2014a, p. 27) specifically states, “Due to differences in definitions and techniques, there will be 
discrepancies in the determination of the wetland status of sampling sites when using the NWI and 
[Corps] methods. This study did not attempt to assess the accuracy of either method but to conduct a 
differential assessment of the results obtained when using these two methods” (emphasize added). Wu et 
al. (2014a, p. 28) also provides a more balanced perspective than the White Paper, acknowledging, “In 
addition, human errors from both map producers and users might also affect accuracy of the NWI map 
data. However, at least some of the factors above can also affect the accuracy of [Corps] field 
interpretations.” Similarly, Matthews et al. (2016) compared areas using two different wetland definitions 
and therefore should not be used to determine NWI “error” or “accuracy.” In addition, while errors are 
highlighted throughout the White Paper, there is no mention of what level of error (either of 
omission/commission or longitudinal accuracy) is acceptable to the agencies for estimating potential 
effects of rulemaking. Some degree of measurement error will occur with any dataset, independent of 
type (e.g., aerial photography, satellite imagery, field observations) and resolution, but that does not make 
such data not valuable for informing regulatory decisions. Importantly, the White Paper also fails to 
account for natural variability in wetland extent and stream hydrologic flow over time when describing 
sources of error. Hafen et al. 2020.  

The White Paper also argued that since wetland definitions differ between the agencies and the 
NWI, NWI data should not be considered. However, those differences can largely be addressed by 
excluding NWI classification codes that by definition would not meet the regulatory definition of 
wetlands, such as codes for unvegetated NWI wetland types. This capability is not addressed in the White 
Paper, even though the agencies used it to exclude non-vegetated wetland types in the case study analyses 
for the 2020 NWPR EA.  

Comparison studies between the NWI wetlands and wetlands that meet the regulatory definition 
often fail to exclude such NWI wetland types in their assessments, including most of those cited as 
supporting literature in the White Paper. Some of the references cited in the White Paper as supporting its 
conclusions for both the NHD and NWI were between 12 and 20 years old at the time of the White 
Paper’s release. The NHD and NWI are continuously updated datasets, so the currency of the references 
cited is important. The references did not appear to be reviewed to ensure they are still pertinent to the 
points being made, or that current datasets were used. For example, one of the references cited 
information from an archived version of a webpage from the NHD website (USGS 2014) that is out of 
date and should not have been included in the White Paper.  

c. The White Paper Contained Technical Errors 

The White Paper also contains technical errors in the description of the NHD and NWI products. 
For example, it misrepresents characterization of NWI mapping standards (e.g., the minimum threshold 
for wetland inclusion in the NWI is cited as being 0.05 acres, but that is not a national standard). The 
resolution information presented in the White Paper are only accurate for modern NWI data and not 
contextually relevant to legacy data, as legacy data are evaluated in the paper. Furthermore, the NWI 
section of the White Paper contains citations that do not address the NWI dataset (e.g., Downing et al. 



Page 132 of 564 

2007); were “updated” data that were not included in the NWI database (e.g., Matthews et al. 201632); 
may be taken out of context; or are no longer current (e.g., NWI disclaimer and biological wetlands 
definition within NWI classification standard). For example, the White Paper cites a “Special Note” found 
on NWI paper maps (Tiner 1997a), but the NWI no longer produces paper maps. The current relevant 
disclaimer on the NWI’s Wetlands Mapper is: “The wetland information displayed at this site show 
wetland type and extent using a biological definition of wetlands. There is no attempt to define the limits 
of proprietary jurisdiction of any Federal, state, or local government, or to establish the geographical 
scope of the regulatory programs of government agencies.” U.S FWS 2021. 

d. The White Paper Contained Broad Generalizations and 
Selectively Used Citations  

The White Paper also contains broad generalizations that are drawn from a singular or small 
number of examples that do not represent an issue fully and therefore cannot be used to prove a larger 
point. This type of overgeneralization is repeated throughout the paper. For example, the White Paper has 
a strong focus on the smallest waters that are often at or below the level of detection for the various 
methods of remote sensing or imagery used to construct the national maps. While it is often such features 
where questions of jurisdiction arise, this focus is not clearly stated, and the White Paper improperly 
implies that the same issues for mapping small waters are pervasive for all waters, including large rivers 
and wetlands. The NHD and NWI, for example, are more accurate in mapping and classifying hydrologic 
permanence of larger streams and wetlands but this fact is not discussed in the paper. Yamazaki et al. 
(2015), for example, looked at the relationship between water body size and the relative error (difference) 
in delineation by the NHD and G3WBM (an independent map derived from Landsat imagery). The 
density of points around high levels of disagreement is clearly greater for smaller waterbodies (streams 
and others) than for larger waterbodies. Id. at 348 (Figure 10(c)). Wu et al. (2019) compared the NHD to 
a digital elevation model (DEM) derived network for an entire watershed (not just headwater streams). 
They report high agreement (~99%) at this scale between the NHD at high resolution and DEM-derived 
networks for the Rogue River basin in Oregon. The White Paper does not provide information on to what 
degree the NHD or NWI under- or overrepresents the extent of larger-order streams and rivers, reservoirs, 
lakes, and coastal waters. As presented, the White Paper gives the impression that the datasets poorly 
represent water bodies regardless of their size and geographic location but does not provide support for 
such a conclusion regarding all waterbodies. For example, the White Paper cites one paper in one lowland 
watershed that has been heavily ditched for agriculture, making it difficult to map headwater stream 
networks in that geographic area (Lang et al. 2012), but the NHD contains over nine million stream 
segments nationwide, and more evidence from studies in a large number of geographically and 
hydrologically diverse watersheds would be needed to support the White Paper’s broad generalizations. 
Furthermore, the agencies are unaware of any studies that have evaluated the accuracy of the entirety of 
the NHD in terms of flow permanence class.  

The White Paper does not consider the breadth of literature available and only touches on a few 
relevant literature sources. The agencies have ascertained that the White Paper did not accurately 
represent the literature cited to support presumed errors or inaccuracies in the datasets, as discussed 

 
32 The data in the study that were considered to be “updated NWI” were deemed by the NWI Program to not meet 
NWI standards and were therefore never included in the NWI database. 
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above. For example, results of the literature described in the section “NWI Has Certain Errors” actually 
validate the accuracy of that dataset by exhibiting good correlation between NWI data and field 
observations. See Stolt and Baker 1995; Kudray and Gale 2000; Dvorett et al. 2012; Sharpe et al. 2016. 
The White Paper points out perceived “errors” of the NWI from one study (Sharpe et al. 2016) while 
seemingly ignoring the study’s relatively high correlations between NWI and the reference dataset. 
Sharpe et al. (2016, p. 547) in fact states, “This research highlights the relative strength of NWI mapping 
for landscape level wetland analysis, and the need to support remote sensing data by allocating field 
resources for accuracy assessment in specific areas based on management goals” (emphasis added).  

The White Paper also selectively uses portions of cited works to support its conclusions, while 
ignoring other portions of the same studies that conflict with those conclusions. For example, in citing 
Simley (2011), the White Paper notes that in the South Platte River, some mapped stream segments in the 
high resolution NHD (1:24,000-scale) do not match up well with contemporary orthophotographs 
(1:4,000-scale), but leaves out quotations from the same citation noting good correlation at finer scale, 
including, “However, at 1:18,000-scale the NHD lines up quite well to the imagery,” “At 1:18,000-scale 
the mismatch is not particularly evident,” “at 1:18,000-scale the river lines up very well,” etc. In addition, 
this study was for sections of the river with many meanders and may not be reflective of the accuracies of 
the NHD for the South Platte network as a whole. It is also possible that the original maps met the 
mapping standard, but the meanders have naturally migrated since the original map was compiled that the 
NHD data would not currently pass the criterion for current location. When not artificially constrained, 
most streams and rivers shift their position in the landscape over time. Leopold et al. 1964. 

Some of the critiques of the NWI in the White Paper regarding use of the data for regulatory 
purposes (Tiner 1997a; Tiner 1997b; Kusler 2006) are statements about using the NWI data alone to 
determine the jurisdictional status of individual wetlands as required by law. Subsequently at the time of 
the rule’s proposal and then finalization, the agencies were criticized by a wide variety of stakeholders for 
not utilizing the NHD and the NWI for estimating the extent of waters that would be no longer 
jurisdictional under the proposed and final rule. See Association of State Wetland Managers 2019; 
Fesenmyer et al. 2021. The citations in the White Paper are not directed at the broader use of NWI data 
along with other datasets to support the jurisdictional decision-making process. For example, the citations 
do not address the use of NWI data to assess policy change impacts on the overall direction and 
magnitude of jurisdiction under the Clean Water Act. 

The review in the White Paper would have been made more complete and useful by recognizing 
that quantifying the uncertainty, error, and limitations of any dataset are part of the research process, and 
by citing appropriate applications of NHD and NWI datasets, including a discussion of cases where they 
have been or can be used successfully to inform questions about Clean Water Act jurisdiction (e.g., as 
supporting data for state and federal agencies or the regulated community). For example, one of the 
studies cited in the White Paper noted that 90% of the sampling locations within wetland boundaries 
identified on NWI maps were categorized as wetlands that also met the agencies’ wetland delineation 
criteria (Wu et al. 2014a), which demonstrates very high correlation between NWI mapped wetlands and 
wetlands that meet the agencies’ regulatory definition. The White Paper could have also been more 
balanced by a discussion of the attributes of the databases that could be used in moving toward a more 
accurate dataset to inform regulatory decisions. For example, the White Paper could have included studies 
that apply recent technology and approaches to improve the NHD and reduce some of its past or current 
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limitations. See, e.g., Poppenga et al. 2013; Stanislawski et al. 2015; Stanislawski et al. 2016; 
Stanislawski et al. 2017; Stanislawski et al. 2018; McManamay and DeRolph 2019. The White Paper 
mentions that LIDAR-derived stream networks can have errors of commission but does not similarly note 
that numerous studies have made a concerted effort to improve methods for deriving fine-scale hydrologic 
features from LIDAR-derived digital elevation models. See Goulden et al. 2014 and references therein; 
Shavers and Stanislawski 2020 and references therein. Mapping of ephemeral streams, and small streams 
generally, for example, is a clear research need, including from a regulatory perspective. More recent 
studies, like Fesenmyer et al. (2021), have taken approaches to better map ephemeral streams.  

e. Conclusions 

Decision-making is based on weighing advantages and disadvantages of the underlying datasets 
used in analyses. The White Paper heavily weighted some disadvantages of the NHD and NWI and 
therefore created an imbalanced perspective of their value to Clean Water Act decision-making as the best 
available national datasets for stream and wetland systems. As OMB-A-16 National Geospatial Data 
Assets and the hydrography and wetlands layers of the Federal Geographic Data Committee National 
Spatial Data Infrastructure, the NHD and NWI are the authoritative, most up-to-date, and comprehensive 
mapping of hydrography and wetlands for the nation. Additionally, the USGS has agreements with 41 
states plus Washington DC to co-manage the NHD, enabling investment in the dataset form the local to 
national level. Citations and quotes are also available in the literature to support the advantages of the 
datasets, including high levels of dataset accuracy, but these citations (see, e.g., Nichols 1994) and 
quotations are not included in the White Paper (see, e.g., Stolt and Baker 1995; Kudray and Gale 2000; 
Simley 2011; Dvorett et al. 2012; Sharpe et al. 2016). In addition, information presented in the White 
Paper was generally limited geographic examples from older data rather than of the current versions of 
the national datasets evaluated as a whole. Because hydrologic conditions vary significantly across the 
country, it may not be accurate to take an analysis of the datasets in one area and assume that the results 
apply to the entire dataset and nation. Also, several references are out of date. The NHD framework was 
intended to improve accuracy over time while maintaining hydrologic connectivity and relationships 
within the network. For that reason, the NHD and NWI are continually updated by numerous partners 
engaged in their maintenance and improvement. Therefore, references that evaluate older versions of 
NHD (including topographic maps) and NWI are not based on the current datasets and thus should be 
interpreted with caution.  

While the agencies agree with the White Paper’s conclusion that the NHD are NWI are generally 
not sufficient as a sole basis for making jurisdiction determinations under the Clean Water Act and do not 
depict the full scope of waters that are or are not jurisdictional under the Act, the agencies now believe 
that it is scientifically defensible to use the datasets in national analyses to quantify the potential impact of 
their rulemaking efforts, so long as uncertainty and other appropriate caveats are also assessed and 
conveyed. In fact, the agencies used both the NHD and the NWI, in combination with programmatic data, 
in the 2020 NWPR EA’s case study analyses. 2020 NWPR EA. In fact, one of the references that the 
White Paper cites, supports the use of the datasets for national analyses, stating, “hydrographical datasets, 
such as the NHD, are highly valuable at national, regional, and even local scales.” Lang et al. 2012 at 
462. Furthermore, as the White Paper notes, the agencies continue to agree that “NHD and NWI may be 
used in accordance with applicable law along with other information as part of the agencies’ Clean Water 
Act jurisdictional determination process.” White Paper at 1. In addition, the NHD serves as the underlying 
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framework for most water data applications throughout the country, including several Clean Water Act 
applications within EPA. For example, EPA uses the NHD for other EPA regulatory requirements such as 
tracking impaired waters under Clean Water Act section 303(d), reporting Total Maximum Daily Loads 
(TMDLs), tracking state-submitted drinking water quality data (SDWIS), and calculating programmatic 
measures, among others. The NHD and NWI were not designed to be stand-alone decision-making tools, 
but rather were designed to work in concert with other available data to support nationwide analyses for 
informing decisions. For example, both NHD and NWI are often used in conjunction with additional 
sources of information to support jurisdictional determinations. In addition, under section 303(d) of the 
Clean Water Act, states do not exclusively use the NHD to determine whether a water is impaired. Rather, 
they use multiple lines of evidence to make that determination. However, once the determination is made, 
states do use the NHD to document the spatial extent and location of those impairments. All datasets have 
limitations, including the NHD and NWI, but there is tremendous value in these datasets—including their 
use to help assess the potential impacts of a rule defining “waters of the United States.” 

EPA and the Army have been working with other federal agencies on improving aquatic resource 
mapping and modeling, including through the Advanced Water Mapping and Analytics interagency 
initiative with the Department of Interior (DOI) to better align EPA and the Army’s regulatory needs with 
DOI’s existing processes and national mapping capabilities. EPA, USGS, and FWS have a long history of 
working together to map the nation’s aquatic resources. The agencies will continue to collaborate with 
DOI and other federal agencies to enhance the NHD, NWI, and other products to better map the nation’s 
water resources while enhancing the utility of such geospatial products for implementation of Clean 
Water Act programs. 

 

iv. Implementation Challenges 

The agencies experience implementing the 2020 NWPR for over a year prior to its vacatur made 
clear that foundational concepts underlying much of the 2020 NWPR are confusing and difficult to 
implement in the way the 2020 NWPR requires. A key example is that no available tools, and certainly 
not the tools the 2020 NWPR preamble recommends, reliably demonstrate whether a surface water 
connection exists in a “typical year” in many important contexts. Surface water connection in a typical 
year is a necessary element of most categories of jurisdictional waters under the 2020 NWPR and 
demonstrating it in the way required by the rule was often difficult. While any rule that draws lines 
between jurisdictional waters and non-jurisdictional waters will involve some implementation challenges, 
the agencies have found the challenges imposed by the 2020 NWPR to be impracticable in important 
respects. Based on the agencies’ experience, the 2020 NWPR did not achieve its stated purpose to 
“provide[] clarity and predictability for Federal agencies, States, Tribes, the regulated community, and the 
public.” See 85 FR 22252 (April 21, 2020). The challenges that the 2020 NWPR imposed to establish 
jurisdiction for features that it appears to define as jurisdictional, and that significantly affect the integrity 
of traditional navigable waters, the territorial seas, and interstate waters, further undermine the 2020 
NWPR’s viability as an alternative to the final rule. 
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1. Typical Year Metric 

The “typical year” is a concept fundamental to many of the 2020 NWPR’s definitions. 85 FR 
22273. Under that rule, tributaries and lakes, ponds, and impoundments of jurisdictional waters are only 
jurisdictional if they have certain surface water connections with a traditional navigable water or the 
territorial seas at least once in a typical year. 33 CFR 328.3(c)(6), (12). Two categories of wetlands only 
meet the adjacency test for jurisdiction if they have a surface water connection with other jurisdictional 
waters at least once in a typical year. 33 CFR 328.3(c)(1). As a scientific matter, the concept of “typical 
year conditions,” including precipitation normalcy, may be relevant to ensuring that certain surface water 
connections in natural streams are not being observed under conditions that are unusually wet or dry. In 
terms of implementation, the concept of precipitation normalcy as valid in certain contexts, such as to 
inform determinations as to the presence of a wetland. However, in many important contexts, available 
tools, including the tools the 2020 NWPR preamble recommended, cannot reliably demonstrate the 
presence of surface water connections in a typical year, which are a necessary element of most categories 
of jurisdictional waters under the 2020 NWPR. For example, a recent study by the Corps found that 
precipitation normalcy (as calculated based on the methodology described in the preamble to the 2020 
NWPR) was neither a reliable predictor of streamflow normalcy, nor was it a precise predictor of 
streamflow percentiles, in an analysis of watersheds across the United States. Sparrow et al. 2022. These 
challenges undermine the 2020 NWPR’s claim that it enhances the “predictability and consistency of 
Clean Water Act programs.” See 85 FR 22250 (April 21, 2020).  

One of the significant implementation challenges of the typical year metric is that it can be 
difficult and sometimes impossible to identify the presence of a surface water connection in a typical 
year. Such connections are often not apparent from visual field observation alone. For example, on the 
day of a visit to an intermittent stream that flows only several months or several weeks a year, it is very 
unlikely that an observer would see surface water flows connecting to a downstream jurisdictional water, 
particularly based on the time of year during which that site visit takes place. Similarly, though many 
ponds or wetlands may be frequently inundated by flooding from another water, those in arid areas may 
be inundated only a few times every year, and sometimes the inundation occurs on a single day or within 
a matter of hours. While these waters satisfy the 2020 NWPR’s jurisdictional test, agency staff would 
probably not be able to determine that they do, given how unlikely they would be to observe these 
infrequent connections. The difficulty of finding the direct hydrologic connections required by the typical 
year concept during a field visit is exacerbated by the fact that the 2020 NWPR discouraged reliance on 
field indicators. See, e.g., id. at 22292 (“The agencies . . . conclude that physical indicators of flow, absent 
verification of the actual occurrence of flow, may not accurately represent the flow classifications 
required for tributaries under this rule.”). 

Given the insufficiency of visual field observation to assess the presence of a surface water 
connection as specified in the 2020 NWPR, under that rule agency staff often needed to expend 
substantial time and resources to try to obtain ancillary data to determine flow conditions at a particular 
site in a typical year. Hydrologic modeling tools and advanced statistical analyses could be employed 
where sufficient flow data are available, but often data needed to conduct such an analysis is limited or 
lacking altogether, especially for smaller streams. Few streams across the country have hydrologic gages 
that continuously measure flow, as most such gages are located larger rivers with perennial flow. Flow 
and discharge data are rarely available for the small and/or non-perennial tributaries that collectively 
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constitute the largest number of stream miles in the United States; in addition, the number of long-term 
stream gages have declined over time and are geographically biased. Poff et al. 2006; Ruhi et al. 2018; 
Krabbenhoft et al. 2022. Moreover, “typical year conditions” are often irrelevant to the extent of flow in 
human-altered streams, including effluent-dependent streams. The 2020 NWPR did not explain why 
human-altered hydrology should be subject to the same typical year requirement as natural streams. 

For the same reasons that agency staff are unlikely to witness the specific surface water 
connections required under the 2020 NWPR during a site visit in dry regions or during the dry season, 
they are also unlikely to capture evidence of a surface water connection between a stream and a 
downstream traditional navigable water or the territorial seas using available aerial photographs taken 
during typical year conditions. Available aerial photographs are often taken just once per year or once 
every other year, and staff have no way of ensuring that they were taken during a typical year. High-
resolution satellite imagery can serve as a reliable source to demonstrate specific hydrologic connections 
and potentially provide additional coverage. But the availability and usability of such imagery vary across 
the country, depending on access, update intervals, cloud cover, and land cover (i.e., vegetation or trees 
that obscure aerial views of stream channels), so that such tools may be unlikely to demonstrate that 
specific surface water connections are occuring in a typical year. High resolution satellite imagery also is 
not an “off the shelf” product and requires pre-processing and classification (i.e., advanced tools) to 
identify features of interest or the presence of water. See, e.g., Mueller et al. 2016. Moreover, as the 2020 
NWPR acknowledged, “characteristics of tributaries may not be visible in aerial photographs” taken 
during periods of “high shrub or tree cover” (85 FR 22299 (April 21, 2020)), further reducing the chances 
that a photograph could capture surface water connections.33 Commenters on the proposed rule stated that 
Tribes and States lacked sufficient data, aerial photography, and access to other tools required to support 
the use of the typical year test in many locations. See, e.g., National Association of Wetland Managers 
2022. They expressed concern that under-resourced communities suffer a particular lack of data necessary 
to support this test. Id. New satellites that are launching soon are expected to surmount some of these 
issues in the future (see, e.g., NASA; NASA 2019), but as this information is not yet available, regulators 
could not use it to inform jurisdictional decisions based on the requirements in the 2020 NWPR. Remote 
tools, such as aerial or satellite imagery, are often useful in implementing any definition of “waters of the 
United States,” but the 2020 NWPR’s typical year criteria made use of these resources particularly 
challenging. 

The same difficulties created challenges in detecting surface hydrologic connections that occurred 
in a typical year to meet the 2020 NWPR’s definition of “adjacent wetlands” or “lakes and ponds, and 
impoundments of jurisdictional waters.” The 2020 NWPR’s standard of inundation by flooding in a 
typical year was not tied to any commonly calculated flood interval, such as flood recurrence intervals34 

 
33 Tree canopy cover varies across the country. The USDA Forest Service (USFS) produces percent tree canopy 
cover data layers for the National Land Cover Database (NLCD). USFS 2020. The most recent Tree Cover Canopy 
product shows the variation in tree canopy cover across the United States, with New Hampshire, West Virginia, and 
Maine having the highest percentage of cover in the conterminous United States, and North Dakota, Nebraska, and 
South Dakota have the lowest percentage. Id. About 24% of the land cover in the conterminous United States is 
forested as mapped in the 2019 NLCD (MRLC), while the USFS has estimated that about one third of the country is 
forested (USFS 2017).  
34 For example, the Federal Emergency Management Agency (FEMA) develops flood insurance rate maps based on 
the probability of a flood event occurring (e.g., 100-year floods have a 1% probability of occurring in a given year or 
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(see USGS c; FEMA 1995), and the agencies are not aware of a tool capable of collecting the type of 
inundation data the 2020 NWPR required. Demonstrating that a wetland, lake, pond, or impoundment is 
inundated by flooding once in a typical year would require a field visit or high-resolution aerial 
photograph or satellite image coinciding with the exact time that the flooding occurs from a tributary to a 
wetland, lake, pond, or impoundment, as well as being able to demonstrate that this flooding occurred in a 
typical year. Determining that inundation by flooding occurs in a typical year was therefore extremely 
difficult, and sometimes impossible. Demonstrating that an artificial feature allows for a direct hydrologic 
surface connection between a wetland and a tributary in a typical year poses similar obstacles, requiring 
either auspiciously timed field visits, aerial photography, high-resolution satellite imagery, or data that the 
agencies may not be able to access, such as construction plans or operational records for an artificial 
levee.  

The 2020 NWPR suggested the agencies “will generally use” precipitation data from NOAA to 
help determine the presence of a surface water connection in a typical year (see 85 FR 22274 (April 21, 
2020), but the methodology described in the 2020 NWPR preamble for determining precipitation in a 
typical year made it difficult to use these data to inform jurisdiction. NOAA precipitation totals over the 
three months prior to a site observation are compared to precipitation totals observed over the preceding 
30 years to determine if conditions were wetter than normal, drier than normal, or normal (“typical”). 
Using the methodology in the 2020 NWPR preamble, only 40% of observations over a rolling 30-year 
period of record are considered “normal,” while 30% of observations are considered to be “wetter than 
normal” and 30% of observations are considered to be “drier than normal.” If surface water flow was 
observed during normal or dry conditions, the agencies could have higher confidence that the surface 
water observations represented flow in a “typical year.” However, if flow was observed during the 30% of 
conditions that are “wetter than normal,” the surface water observations did not reveal whether flow 
would occur during a typical year. And if flow was not observed, precipitation data from the previous 
three months did not indicate whether flow might occur in that particular water feature under typical year 
conditions at a different point in the year. Therefore, if a site visit is conducted when surface water flow is 
not present, the agencies’ suggested approach for evaluating whether a feature meets the typical year test 
often did not provide meaningful and relevant information for the agencies to make accurate 
determinations of jurisdiction. Indeed, a commenter on the proposed rule emphasized that Tribes and 
States have found the “typical year” requirement to require extensive hydrologic modeling and advanced 
statistical analyses in complex conditions. National Association of Wetland Managers 2022. Under any 
regulatory regime, the agencies use a weight of evidence approach to determine jurisdiction, but the 2020 
NWPR typical year requirement placed onerous and, in many instances, arbitrary constraints on the data 
that can be used as evidence.  

Use of NOAA precipitation data to assess whether surface water flow occurs in a typical year for 
purposes of the 2020 NWPR presents other implementation challenges. The data rely on reports from 
weather stations that are sometimes at a different elevation from the site in question, or far away from the 
site, so that their indications as to whether precipitation at a given site is normal, wetter than normal, or 
drier than normal can be inaccurate. Furthermore, the typical year concept as applied to the 2020 NWPR 

 
500 year-floods have a 0.2% probability of occurring in a particular year). FEMA 2020. Flood insurance rate maps 
are developed by applying models and other information to identify areas that would be inundated by a flood event 
of a particular probability of recurring. See, e.g., FEMA 1995. 
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does not account for the increasing number of recurrent heat waves, droughts, storms, and other extreme 
weather events in many parts of the country. These events can have profound impacts on local and 
regional hydrology, including streamflow. See section II.B.iv.1.c. Although the concept of “typical year” 
in the 2020 NWPR sought to factor in long-term climatic changes over time to some degree by 
considering a thirty-year rolling period of data (see 33 CFR 328.3(c)(13)), the 2020 NWPR did not allow 
the agencies flexibility to consider other time intervals when appropriate to reflect effects of a rapidly 
changing climate, including positive trends in temperature, increasing storm events, and extended 
droughts. In response to more rapid recent changes in climate, NOAA has developed alternative 
approaches for estimating climate normals, including seasonal averages computed using shorter, annually 
updated averaging periods for temperature (10-year seasonal average) and total precipitation (15-year 
seasonal average). The rigid rolling thirty-year approach to determining typical year in the 2020 NWPR 
did not allow the agencies to use these updated methods. 

The 2020 NWPR noted that the agencies can look to sources of information other than site visits, 
aerial photographs, and precipitation data to assess whether a feature has surface water flow in a typical 
year. It identified the Web-based Water-Budget Interactive Modeling Program, Climate Analysis for 
Wetlands Tables, and the Palmer Drought Severity Index. 85 FR 22275 (April 21, 2020). These methods, 
which provide information useful in many other contexts, often only look at climate-related conditions 
generally, have well documented limitations, and often did not specifically answer the jurisdictional 
questions required by the 2020 NWPR. For example, the Palmer Drought Severity Index is difficult to 
correlate with specific water resource variables such as runoff and reservoir storage and does not account 
for delayed runoff from snow and ice. Further, none of these sources of information address whether 
surface water flow might connect a particular stream to a downstream traditional navigable water or the 
territorial seas, whether a particular wetland was inundated by or connected to a jurisdictional water as 
required under the 2020 NWPR, or how uncertainties at different locations and in different months 
affected the accuracy of condition estimates. While precipitation is an important factor, other information 
is also relevant to streamflow and surface water connections in a typical year, including the abundance of 
and contributions of flow from wetlands, upgradient streams, and open waters in the watershed; 
evapotranspiration rates; water withdrawals including groundwater pumping; and other climatic 
conditions. See section II.B.iii.1.c. Yet collecting this information from a variety of sources and 
interpreting it can be extremely time- and resource-intensive and may require special expertise, such as in 
climate science, remote sensing, statistical analysis, geospatial analysis, or other disciplines, that in many 
cases may not be feasible given available agency staff and resources. While the agencies have substantial 
experience using a weight of evidence approach to determine jurisdiction, for example as part of the 
significant nexus analysis, the “typical year” requirement of the 2020 NWPR makes it significantly more 
difficult to interpret available data and narrows the scope of data that can be used to determine 
jurisdiction.  

Finally, the challenges presented by determining the presence of surface water flow in a typical 
year are even greater when evaluating a tributary at a distance from the downstream traditional navigable 
water or the territorial seas. Even streams that flow perennially or intermittently often travel many miles 
prior to reaching the closest traditional navigable water or the territorial seas, meaning many downstream 
reaches may need to be assessed. Under the 2020 NWPR, any ephemeral reaches along that pathway that 
did not carry surface water flow once in a typical year would render all upstream waters non-
jurisdictional. 85 FR 22277 (April 21, 2020). The need to assess lengthy tributary systems imposed an 
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extraordinarily high burden of proof on the agencies to evaluate surface water flow in a typical year along 
the entire flow path from a stream of interest to a downstream traditional navigable water or the territorial 
seas. The longer the pathway, the more challenging the analysis. As a commenter on the 2020 NWPR’s 
proposal noted, in adopting the test, the 2020 NWPR inserted case-specific analyses for every 
jurisdictional determination despite the rule’s claim that it “provide[s] a predictable framework in which 
to establish federal jurisdiction.” Id. at 22273–22274. The uncertainty and implementation challenges 
generated by the 2020 NWPR’s foundational typical year test are yet another basis to replace that rule. 

2. Determining Adjacency 

The 2020 NWPR provided that wetlands are “adjacent” when they: (1) abut a traditional 
navigable water or the territorial seas; a tributary; or a lake, pond, or impoundment of a jurisdictional 
water; (2) are inundated by flooding from one of these waters in a typical year; (3) are physically 
separated from one of these waters only by a natural berm, bank, dune, or similar natural feature; or (4) 
are physically separated from one of these waters only by an artificial dike, barrier, or similar artificial 
structure so long as that structure allows for a direct hydrologic surface connection between the wetlands 
and the water in a typical year, such as through a culvert, flood or tide gate, pump, or similar artificial 
feature. Id. at 22338; 33 CFR 328.3(c)(1). In practice, agency staff have found several of these criteria for 
adjacency extremely difficult to implement in certain circumstances, in addition to the difficulties 
discussed above of assessing whether certain surface hydrologic connections exist in a typical year. 

The artificial barrier provision led to arbitrary results. For example, under the fourth way to meet 
the adjacency definition, a wetland may be jurisdictional if it is separated from a jurisdictional water by 
an artificial structure, such as a levee, that allows for a direct hydrologic surface connection in a typical 
year through a culvert. However, the same wetland would not be jurisdictional if there was no levee 
present, even if there was a direct hydrological surface connection in a typical year through a culvert 
(assuming the wetland did not meet another criterion for adjacency). The 2020 NWPR therefore 
established that certain wetlands with a direct hydrologic surface connection to a jurisdictional water are 
only jurisdictional due to the presence of an artificial barrier. This discrepancy bears no relationship to the 
actual connections between the features at issue and is not supported by science or the agencies’ 
experience.  

Moreover, the provision establishing that a wetland is “adjacent” if a jurisdictional water 
inundates it by flooding in a typical year was extremely difficult to implement. See 33 CFR 
328.3(c)(1)(ii). Inundation by flooding in a typical year is not a metric that is normally recorded either by 
implementing agencies or the regulated community. Available models generally focus on flood 
recurrence intervals, which do not necessarily correspond to the likelihood of inundation by flooding in a 
given or typical year, and the agencies would typically be unable to demonstrate that these indicators 
reflect typical year conditions. Indeed, the 2020 NWPR acknowledged that inundation by flooding in a 
typical year could correspond to a variety of flood recurrence intervals depending on location, climate, 
season, and other factors. 85 FR 22311. Given the absence of existing records of inundation by flooding, 
determining whether inundation by flooding has occurred in a typical year is challenging in many 
circumstances.  

Compounding the challenge, the 2020 NWPR provided that wetlands can be jurisdictional if they 
are inundated by flooding from a jurisdictional water in a typical year—but inundation in the other 
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direction, from the wetlands to the jurisdictional water, is not grounds for jurisdiction. Not only is there 
no scientific evidence (see section II.B.iv.b) or legal basis (see United States v. Riverside Bayview Homes 
Inc., 474 U.S. 121, 134 (1985), upholding the Corps’ assertion of jurisdiction over “wetlands that are not 
flooded by adjacent waters [but] may still tend to drain into those waters”) for distinguishing between 
inundation of the wetland as opposed to inundation from the wetland, but determining whether the limited 
available photographs, satellite images, or other evidence of inundation reflects flooding in one direction 
as opposed to another adds to the difficulty in evaluating whether this standard is met. The same 
challenges apply to determining whether lakes, ponds, or impoundments of jurisdictional waters are 
inundated by flooding in a typical year, one basis for demonstrating Clean Water Act jurisdiction over 
these features. 85 FR 22338-39 (April 21, 2020); 33 CFR 328.3(c)(vi). While any rule that draws lines 
between jurisdictional waters and non-jurisdictional waters will involve some implementation challenges, 
the agencies have found the challenges imposed by the 2020 NWPR to be exceptionally burdensome and 
impracticable. 

3. Ditches 

Among other requirements, the 2020 NWPR provided that a ditch35 is jurisdictional as a tributary 
if it was originally built in a tributary or adjacent wetland, as those terms are defined in the 2020 NWPR, 
and emphasized that the agencies bear the burden of proof to determine that a ditch was originally 
constructed in a tributary or adjacent wetland. 85 FR 22299 (April 21, 2020); 33 CFR 328.3(a)(2) and 
(c)(12). In other words, in order to find a ditch jurisdictional, the agencies had to demonstrate that a ditch 
was (1) originally constructed in a stream (2) that, at the time of construction, had perennial or 
intermittent flow and (3) a surface water connection to a downstream traditional navigable water or the 
territorial seas (4) in a “typical year.” Alternatively, the agencies had to show that a ditch was (1) 
originally constructed in a wetland (2) that either abutted or had certain surface hydrologic connections to 
a jurisdictional water at the time the ditch was constructed (3) in a “typical year,” in order to demonstrate 
that the ditch is jurisdictional. Americans have been building ditches, straightening streams, and draining 
wetlands for hundreds of years. By contrast, to determine whether a ditch was jurisdictional under the 
2020 NWPR, the agencies had to determine if it was originally built in a tributary or adjacent wetland that 
would have been jurisdictional under the 2020 NWPR, and therefore had to address all of the 
implementation challenges discussed in the preceding sections involved in determining surface water 
connections and wetland adjacency in a typical year—but often for ditches built twenty, fifty, one 
hundred, or even several hundred years ago. To the extent that sparse evidence is available to demonstrate 
a surface water connection in a typical year for tributaries using tools available today, evidence is even 
more difficult to find when looking so far back in time. States have approached the agencies seeking 
assistance in assessing the jurisdictional status of ditches, but the agencies were often unable to provide 
meaningful help given the burdens imposed by the 2020 NWPR’s ditch definition.  

The 2020 NWPR also provided that ditches are jurisdictional if they relocate a tributary, as that 
term was defined in the rule (85 FR 22341; 33 CFR 328.3(a)(2) and (c)(12)), but this standard, too, is 
often extremely difficult to meet. The 2020 NWPR explains that a relocated tributary is “one in which an 
entire portion of the tributary may be moved to a different location.” 85 FR at 22290. In other words, the 

 
35 Ditches perform many of the same functions as natural tributaries. For example, like natural tributaries, ditches 
that are part of the stream network convey water that carries nutrients, pollutants, and other constituents, both good 
and bad, to downstream traditional navigable waters, the territorial seas, and interstate waters. See section III.A.iv. 
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2020 NWPR appears to require a ditch to divert 100% of the tributary’s flow to meet the “relocate a 
tributary” test. While prior rules have defined relocated tributaries as jurisdictional, the requirement that 
the entire portion be relocated is new and has created significant implementation challenges. As a 
practical matter, when a tributary is relocated it often reroutes just a portion of its flow to the ditch. 
Assessing whether a ditch relocated 100% of a tributary’s flow, as opposed to 80% or 50% of its flow, is 
extremely difficult and may not be possible in some circumstances. The scientific literature indicates that 
features like ditches that convey water continue to connect to and affect downstream waters. See section 
III.A.iv of this Technical Support Document. By establishing a jurisdictional standard that is extremely 
difficult to meet, the 2020 NWPR effectively removed from the protections of the Clean Water Act large 
numbers of ditches that function as tributaries and that significantly affect the integrity of downstream 
traditional navigable waters, the territorial seas, and interstate waters. As is the case with tributaries, lakes 
and ponds, impoundments, and wetlands, the 2020 NWPR’s impracticable approach to ditches made it 
extremely difficult to implement. In the agencies’ judgment, any efficiencies the 2020 NWPR may have 
achieved through categorical exclusions are outweighed by the challenges the agencies encountered in 
implementing the rule, coupled with its failure to implement the objective of the Clean Water Act by 
removing protections for waters that are properly within the statute’s scope. These deficiencies of the 
2020 NWPR further undermine the viability of the 2020 NWPR as an alternative to the final rule.  

4. Results of Regional Survey 

EPA’s Office of Wetlands, Oceans, and Watersheds sought information from Regional staff about 
potential challenges they may have encountered implementing the 2020 NWPR. A seven-question survey 
that included both multiple choice and open-ended questions was provided to EPA staff in all ten 
Regional offices. Twenty-six staff persons provided responses to the survey, including representatives 
from all ten EPA Regions. While the number of respondents per region varied considerably, over 60% of 
respondents came from EPA Regions lying mostly west of the Mississippi River (i.e., Regions 6-10) 
(Figure 10). Although an imperfect demarcation boundary between generally more humid/temperate 
climatic conditions to the East and drier ones to the West, the responses provided by EPA staff west of the 
Mississippi River differed in some notable ways from those of staff in the eastern parts of the country. 
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Figure 10: Proportion of questionnaire respondents from each EPA Region. 
 

EPA Regional field staff reported different implementation challenges with the 2020 NWPR, but 
some challenges were significantly more often cited than others. Respondents were asked to identify the 
single biggest implementation challenge with the 2020 NWPR, and then they were also asked to identify 
their next Top 3 biggest challenges. The same four primary issues were cited most often in response to 
these questions, and each of the four gathered nearly the same number of cumulative responses: 

• “Documenting or determining historic conditions,” (18% of responses) 
• “Documenting flow regime in the dry season/dry season evaluations,” (18% of responses) 
• “Disproportionate burden of proof for asserting jurisdiction,” (18% of responses) 
• “Typical year,” (17% of responses) 

Despite the similarity of major implementation challenges cited cumulatively in response to the 
aforementioned pair of survey questions, there was greater differentiation among concerns considered by 
respondents as the single “biggest challenge.” Almost one-quarter of respondents (23%) reported that 
“documenting or determining historic conditions” was the biggest implementation challenge (Figure 11). 
Interestingly, over two-thirds of the respondents who cited documenting historic conditions as the biggest 
challenge came from EPA Regions east of the Mississippi River. “Documenting flow regime during the 
dry season (~ dry season evaluations)” and “Typical year” were each cited as the biggest implementation 
challenge by 19% of respondents. In contrast to the geographic distribution of responses for historic 
conditions, 100% of respondents who cited dry season evaluations as the single biggest challenge of the 
2020 NWPR came from EPA Regions west of the Mississippi River. “Typical year” was evenly split 
among EPA Regions lying in the East and West.  

The only other implementation challenge cited by at least ten percent of respondents as the 
biggest challenge was “disproportionate burden of proof to assert jurisdiction” (15%), and three-quarters 
of respondents citing burden of proof as the biggest 2020 NWPR implementation challenge came from 
Western EPA Regions. Other aspects of 2020 NWPR for which at least one respondent reported to be the 
most significant implementation challenge included “ditches and water diversions,” distinguishing 
between bridges and culverts, and “inability to evaluate flows on properties for which agency staff have 
no authorization to enter.” 

R1
8% R2

8%
R3
4%

R4
8%

R5
11%

R6
8%

R7
22%

R8
8%

R9
15%

R10
8%



Page 144 of 564 

 

Figure 11: Issues cited by EPA Regional staff as the “biggest implementation challenge” with the 
2020 NWPR (n=26 responses) 
 

Specific reasons cited by the survey respondents explaining implementation challenges with the 
2020 NPWR included many of the same issues previously described in this section. Respondents reported 
that a lack of historic aerial photographs or other sources of historic information rendered it difficult or 
impossible to document or determine historic conditions consistent with the 2020 NWPR’s requirements. 
This affected staff’s ability to assess the flow regime of ditches excavated decades ago or whether those 
ditches drained wetlands that would have been considered “adjacent wetlands” under the 2020 NWPR. 
Staff observed that even if historic imagery were available, land use, land cover, and climatic conditions 
prevalent at the time often bore no resemblance to more contemporary conditions. 

Challenges under the 2020 NWPR associated with documenting flow regime in the dry season 
and other dry season evaluations centered on the timing of site visits, as one would expect. Staff noted 
that site visits often only occur on a single date. When this takes place during a time of year for which 
intermittent stream flow would not normally even be expected to occur, for example, there is little 
information available upon which an assessment of flow regime as defined in the 2020 NWPR can be 
based. Other staff noted that it is nearly impossible to differentiate intermittent flow from ephemeral flow 
in small streams from aerial photographs; a challenge made even more acute under a dense canopy of 
vegetation cover. 

EPA Regional staff observed that assessing stream flow in a “typical year” had a very high 
likelihood for errors of omission, whereby a stream might be determined not to flow (and thereby be non-
jurisdictional), when in fact it may flow on a different date during even the same typical year. For 
example, field conditions at the low end of the precipitation range represented by a typical year analysis 
provide no indication at all of what field conditions would be like at the upper end of the typical year 
range. Staff noted that the probability of observing a qualifying flow event (e.g., stream flow, surface 
connection, inundation by flooding, etc.) that occurs only rarely in a “typical year” is very low. 

Challenges and demands associated with proving a given feature is a jurisdictional water included 
a disproportionate burden of time, effort, and resources necessary for locating and researching applicable 
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information. Regional staff noted, for example, that in some cases, on-scene coordinators have to assess 
the jurisdictional status of waters quickly, often at the request of other agencies on-site of an oil spill 
incident. Some staff felt that the 2020 NWPR was written with no consideration of Clean Water Act 
section 311(c) response authorities or time frames. In addition, the regulatory agencies often do not have 
the time or manpower to devote to collection and assessment of historic information, so they are often 
compelled to accept whatever information the permit applicant provides them. 

Implementation challenges of the 2020 NWPR associated with ditches encompass most other 
2020 NWPR implementation challenges (i.e., historic conditions, flow regime, adjacency criteria, typical 
year, burden of proof, etc.). Ditches excavated decades ago through wetlands have since drained those 
wetlands, often leaving little record that they were once wetlands and so are now impossible to prove (or 
disprove) that they would have been jurisdictional “adjacent wetlands” at the time of ditch excavation, as 
the 2020 NWPR requires. Other staff noted that ditches excavated in uplands still transport pollutants 
directly to jurisdictional waters, and that there was no scientific justification for 100% of flow to be 
redirected into a ditch before the diversion ditch itself becomes a jurisdictional water, as the 2020 NWPR 
stipulated in the 2020 NWPR preamble. 

Other challenges cited by at least one EPA Regional staff person in response to the survey 
included the need to periodically access multiple properties to document wetland adjacency to the nearest 
tributary, which is often not feasible; and the disparate treatment of culverts and bridges under the 2020 
NWPR, given that in the field there is often no clear distinction between them (e.g., what is an open-
bottomed culvert?). 

 

C. Climate Change 

Consistent with Executive Order 13990, the agencies, where consistent with the objective of the 
Clean Water Act, considered the impact of climate change on water resources to the extent those impacts 
would affect the chemical, physical, or biological integrity of traditional navigable waters, the territorial 
seas, or interstate waters. 

The Intergovernmental Panel on Climate Change (IPCC) notes that, “Recent climate changes 
have had widespread impacts on human and natural systems.” IPCC 2014 at 2. The IPCC explains that 
“Surface temperature is projected to rise over the 21st century under all assessed emission scenarios. It is 
very likely that heat waves will occur more often and last longer, and that extreme precipitation events 
will become more intense and frequent in many regions. The ocean will continue to warm and acidify, 
and global mean sea level to rise.” Id. at 10. Furthermore, climate change has important implications for 
communities with environmental justice concerns. “Climate change will amplify existing risks and create 
new risks for natural and human systems. Risks are unevenly distributed and are generally greater for 
disadvantaged people and communities in countries at all levels of development.” Id. at 13. 

 As a result of well documented climate trends, the traditional locations of rain belts and deserts 
are shifting. UCAR 2022. Current climate models indicate that rising temperatures will intensify the water 
cycle, leading to an increase in the rate of evaporation worldwide. NASA 2021; UCAR 2022. On average, 
this increase in evaporation is leading to more precipitation, and the impacts are likely to increase over the 
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century as the climate continues to warm. UCAR 2022. However, changes in evaporation and 
precipitation rates are not distributed evenly. Id. In some regions, increased evaporation rates are leading 
to higher levels of water vapor in the air, which in turn increases the intensity and frequency of 
precipitation events, including storms. NASA 2021; U.S. EPA 2022e; USGCRP 2018. As a result, storm-
affected areas, such as the Northeast and the Midwest, are likely to experience increases in precipitation 
and increased risk of flooding. NASA 2021; UCAR 2022; U.S. EPA 2022i; USGCRP 2018. In other 
regions, less precipitation and increased risk of drought is associated with more frequent and intense 
heatwaves. Across much of the country, surface soil moisture is also anticipated to decrease as the climate 
warms, driven largely by increased evaporation rates. USGCRP 2018. All else being equal, this will result 
in increased intensity, frequency, and duration of heatwaves and droughts in these regions. Id. These 
trends are likely to be strongest in the Southwest and Southern Great Plains, where precipitation is 
projected to decrease in most seasons and droughts may become more frequent, prolonged, and intense. 
Id.  

 Climate change is expected to have a variety of impacts on water resources. Runoff from more 
intense and frequent storms can impair water quality as pollutants deposited on land wash into water 
bodies. Changes in the size and frequency of heavy precipitation events, streamflow, snowmelt timing, 
and snowpack accumulation may also cause river floods to become larger or more frequent than they used 
to be in some places. U.S. EPA 2022f. Climate change is already affecting streamflow characteristics 
such as the magnitude, duration, and timing of flows (U.S. EPA 2022h), in part due to changes in 
snowpack magnitude and seasonality. U.S. EPA 2022g. Heatwaves and associated drought can cause 
streams and wetlands to become drier, negatively affecting both water supplies and water quality. 
Heatwaves and associated drought reduce surface and soil moisture thereby increasing the extent and 
duration of wildfires, which can alter water quality and impact wetlands and their functions. U.S. EPA 
2022b. Wetland loss and changes to stream habitat can also lead to reduced habitat for fish and other 
aquatic and semi-aquatic species and worsen existing shifts in species ranges. Id. A warming climate can 
also result in increased and more variable temperatures in streams, leading to fish kills and negatively 
affecting other aquatic species that can live only in colder water. See, e.g., Mantua et al. 2010; Ebersole et 
al. 2020. 

Climate change has been well established to contribute to sea level rise. Rising sea levels are 
affecting human activities in coastal areas and making coastal infrastructure more vulnerable to storm 
damage. Furthermore, rising sea level inundates low-lying wetlands and dry land, and further contributes 
to coastal flooding and erosion. U.S. EPA 2022b; U.S. EPA 2022c.; USGCRP 2018. Repeated inundation 
of low-lying wetlands results in the loss or migration landward of coastal wetlands. However, inland 
migration of wetlands can be impeded by coastal development, thereby placing these wetlands at risk of 
being lost. Kirwan and Megonigal 2013; Borchert et al. 2018; USGCRP 2018. Both tidal and non-tidal 
wetlands may be at risk from sea-level rise: wetland types that are vulnerable to climate change include 
salt marshes, bottomland hardwood swamps, freshwater marshes, mangrove swamps, and pocosins. U.S. 
EPA 2022b. Sea level rise can introduce saltwater into non-tidal wetlands which can lead to substantial 
impacts on the wetland health and distribution. Herbert et al. 2015. These impacts can be further 
exacerbated by climate-related reductions of inflows from rivers that deliver freshwater to non-tidal 
wetlands, illustrating that many wetlands face cumulative climate impacts from multiple sources. Id. 
Climate change can also inhibit the ability of sediment accretion in tidal wetlands leading to vegetation 
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“drowning.” This occurs when the rate of sea level rise surpasses the ability of coastal wetlands to keep 
pace via sediment accretion and can lead to certain wetlands becoming submerged. Borchert et al. 2018. 

 Although water resources are vulnerable to the effects of climate change, when their 
interconnectedness and extent are maintained, streams and wetlands perform a variety of functions that 
can help restore ecologic function of other water resources in light of climate change (i.e., contribute to 
climate resiliency) and mitigate the negative effects of climate change on other water resources, including 
larger downstream waters. For instance, despite their vulnerability to the effects of sea level rise, many 
coastal wetlands are resilient ecosystems that have the capacity to adjust to sea level rise through vertical 
adjustments due to feedbacks between plant growth, inundation, and sediment deposition and through the 
landward migration of wetlands. Id. In addition, wetlands inside and outside of floodplains store large 
volumes of floodwaters, thereby reducing flood peaks and protecting downstream watersheds. Science 
Report; U.S. EPA 2006; U.S. EPA 2022b. For example, during Hurricane Sandy in 2012, wetlands are 
estimated to have helped prevent $625 million in damage by protecting properties from flooding. Narayan 
2017. Coastal wetlands also help buffer storm surges and slow winds from tropical storms and hurricanes 
(U.S. EPA 2022b), which are increasing in intensity due to climate change (USGCRP 2017). As natural 
filters, wetlands also help purify and protect the quality of other waters, including drinking water 
sources—a function which is more important than ever as intense precipitation events spurred by a 
changing climate mobilize excess sediment, nutrients, and other pollutants. Additionally, small streams 
are particularly effective at retaining and attenuating floodwaters, a function that is increasing important 
in light of continued climate change. See, e.g., Science Report at ES-8. Biological communities and 
geomorphic processes in small streams, including ephemeral streams, and wetlands break down leaves 
and other organic matter, burying and sequestering a portion of that carbon that could otherwise be 
released into the atmosphere as either carbon dioxide or methane. Guinessey et al. 2019; Kirwan and 
Megonigal 2013. Carbon sequestered in soils, sediments, and vegetation is released to the atmosphere 
when these streams or wetlands are drained, dredged, or otherwise disturbed, contributing to greenhouse 
gas emissions which have negative effects on water resources. More streams are expected to become 
ephemeral under a changing climate. Lohse et al. 2020. 

 The 2020 NWPR did not appropriately acknowledge or take account of the effects of a changing 
climate on the chemical, physical, and biological integrity of the nation’s waters. For example, its rolling 
thirty-year approach to determining a “typical year” did not allow the agencies flexibility to account for 
the effects of a rapidly changing climate, including positive trends in temperature, increasing storm 
events, and extended droughts (see section II.B). The 2020 NWPR also categorically excluded ephemeral 
streams and their adjacent wetlands from the definition of “waters of the United States.” These 
exclusions, if in effect, would disproportionately impact the arid West. Aquatic systems comprised largely 
of ephemeral streams are increasingly critical to protecting and maintaining downstream integrity, for 
example by contributing streamflow and organic matter to larger downstream waters. This is especially 
true in the Southwestern United States, where the climate continues to get hotter and drier and the spatial 
extent of arid conditions is expanding, with increased risks of more extreme drought. Some portions of 
the arid West are experiencing altered monsoon seasons that have fewer but more intense storms that 
contribute to so-called “flashy” stream hydrology (i.e., higher runoff volume, leading to more rapidly 
rising and falling streamflow over shorter periods of time). The agencies’ use of the significant nexus 
standard in the final rule (see section III.E.iv.1) allows the agencies to consider the effects that water 
resources like ephemeral streams and wetlands have on the chemical, physical, or biological integrity of 
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downstream traditional navigable waters, the territorial seas, and interstate waters, including important 
functions that may intersect with climate change. 

D. Environmental Justice 

While impacts on communities with environmental justice concerns are not a basis for 
determining the scope of the definition of “waters of the United States,” the agencies recognize that the 
burdens of environmental pollution and climate change often fall disproportionately on communities with 
environmental justice concerns (e.g., minority (Indigenous peoples and/or people of color) and low-
income populations, as specified in Executive Order 12898). Compared to the average populations, these 
communities are more likely to experience environmental and social stressors like contaminated drinking 
water, limited access to clean water, and inadequate water infrastructure, that increase their likelihood of 
being exposed to pollutants. In addition to external stressors, behavioral and cultural characteristics of 
these communities, like engaging in subsistence fishing and consuming higher rates of fish from polluted 
waters, increases their vulnerability to pollution. Taken together, these environmental, social, and 
behavioral factors often increase the risk of these communities experiencing negative health outcomes 
because of their exposure.  

As the IPCC Synthesis Report notes, in addition to the existing risks that communities with 
environmental justice concerns face, the impacts of climate change have important additional implications 
for these communities. “Climate change will amplify existing risks and create new risks for natural and 
human systems. Risks are unevenly distributed and are generally greater for disadvantaged people and 
communities in countries at all levels of development.” IPCC 2014 at 13. Risks to human systems like sea 
level rise, flooding, and drought can all have disproportionate effects on these communities. For example, 
prolonged droughts pose a particular threat to Indigenous populations because of their economic and 
cultural dependence on land and water supplies. U.S. EPA 2022d. Similarly, decreased summer 
streamflow, habitat loss due to increasing storm intensity and flooding, warmer stream and ocean 
temperatures, and seasons of reduced snowpack are impacting Pacific salmon populations in the 
Northwest, threatening Indigenous communities that rely culturally and economically on salmon. 
USGCRP 2018. Because of existing environmental and social stressors and their reliance on natural 
resources (e.g., fish and other aquatic life for income or food) that may be negatively impacted by climate 
change, these communities may be less able to mitigate and adapt to the effects of climate change.  

Numerous groups have raised concerns that the 2020 NWPR had disproportionate impacts on 
Tribes and Indigenous communities.36 The 2020 NWPR decreased the scope of Clean Water Act 

 
36 See, e.g., Tribal Consultation Comment Letter from President Jonathan Nez and Vice President Myron Lizer, 
Navajo Nation, October 4, 2021 (“The Navajo Nation relies greatly on all its surface waters, including ephemeral, 
intermittent, and perennial surface waters. The Navajo Nation currently lacks the resources to implement CWA 
permitting and other programs necessary to maintain and protect water quality and relies on the Agencies to fill that 
need. Therefore, any new WOTUS rule must not reduce the scope of the waters that the Agencies can protect, or it 
will have ‘disproportionately high and adverse human health or environmental effects’ on the Navajo Nation.”), and 
Tribal Consultation Comment Letter from Clarice Madalena, Interim Director, Natural Resources Department, 
Pueblo of Jemez, October 4, 2021 (“The combination of these factors—[desert] hydrology and the geographic 
location of Native communities—means that the Navigable Waters Rule had the effect of disparately stripping Clean 
Water Act protections from areas with higher Native populations. This means that the Rule disproportionately 
harmed Native American communities. This discriminatory impact violates the principles of environmental justice” 
(citations omitted). See also section IV.B.3.d of the preamble for the final rule. 
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jurisdiction across the country, including in geographic regions where regulation of waters beyond those 
covered by the Act is not authorized under current Tribal or State law (see section IV.B.3.d of the 
preamble for the final rule). If the 2020 NWPR were in effect, without regulations governing discharges 
of pollutants into previously jurisdictional waters, population groups of concern where these waters are 
located could experience increased water pollution and impacts from associated increases in health risk.  

Further, the 2020 NWPR’s categorical exclusion of ephemeral streams disproportionately 
impacted Tribes and communities with environmental justice concerns in the arid West. Many tribes lack 
the authority and resources to regulate waters within their boundaries, and they may also be affected by 
pollution from adjacent jurisdictions. See supra note 36. Therefore, if in effect, the 2020 NWPR could 
disproportionately expose Tribes to increased pollution and health risks.  

In this final rule the agencies affirm their commitment to assessing impacts of a revised definition 
of “waters of the United States” on population groups of concern (see Chapter IV of the Economic 
Analysis for the Final Rule).  

 

III. Scientific Support for the Final Rule 

The objective of the Clean Water Act to protect water quality must be considered when defining 
“waters of the United States.” The latest science supports the conclusion that the categories of waters 
identified in the final rule, such as impoundments (paragraph (a)(2) waters in the final rule), tributaries 
(paragraph (a)(3) waters in the final rule), adjacent wetlands (paragraph (a)(4) waters in the final rule), 
and intrastate waters that do not meet the criteria to be jurisdictional under other categories of the final 
rule (paragraph (a)(5) waters in the final rule), provide functions that restore and maintain the chemical, 
physical, and biological integrity of traditional navigable waters, the territorial seas, and interstate waters 
(paragraph (a)(1) waters in the final rule). The best available science thus confirms that the final rule 
provides a definition of “waters of the United States” that furthers the water quality objective of the Clean 
Water Act. As explained in the preamble, the final rule also establishes limitations reflecting 
consideration of the statute as a whole and relevant Supreme Court decisions. The agencies thus believe 
that the latest science informs the conclusion that the categories of waters identified in the final rule 
provide functions that restore and maintain the chemical, physical, and biological integrity of traditional 
navigable waters, the territorial seas, and interstate waters. 

In the preamble to the final rule, the agencies’ reference to a “connection” to traditional navigable 
waters, the territorial seas, or interstate waters (when used without qualification such as “continuous 
surface connection” or an “unbroken surface or shallow subsurface connection”) includes all the types of 
connections relevant to either the relatively permanent standard or the significant nexus standard that are 
discussed in the Science Report and in this Technical Support Document: physical (including 
hydrological), chemical, biological, or functional relationships (including where the water retains 
floodwaters or pollutants that would otherwise flow to the traditional navigable water, the territorial seas, 
or an interstate water). A “requisite” connection is one that satisfies either the relatively permanent or 
significant nexus standard. 
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Although the scientific conclusions of the Science Report, the research published since its release, 
and other literature that the agencies reviewed to support this rulemaking play a critical role in informing 
the agencies’ interpretation of the Clean Water Act’s scope, the agencies’ interpretive task in this final 
rule – determining which waters are “waters of the United States”– requires scientific and policy 
judgment, as well as legal interpretation. The agencies also acknowledge that science can support other 
approaches to implementation, particularly regarding which waters to consider in combination with 
similar waters and the region in which to consider similarly situated waters but have made policy choices 
regarding implementation of this final rule. The agencies reiterate their previous conclusion that 
significant nexus is not a purely scientific determination. 80 FR 37054, 37060 (June 29, 2015). As the 
agencies charged with interpreting the statute, EPA and the Corps must develop the outer bounds of the 
scope of the Clean Water Act and science does not provide bright line boundaries for purposes of the 
Clean Water Act. Riverside Bayview, 474 U.S. at 132-33. This section summarizes the best available 
science in support of the final rule and the agencies’ conclusion that the rule advances the objective of the 
Clean Water Act. This section reflects the scientific consensus on the strength of the effects that upstream 
tributaries, adjacent wetlands, and intrastate waters considered under paragraph (a)(5) of the final rule can 
and do have on downstream traditional navigable waters, the territorial seas, and interstate waters. 
However, a significant nexus determination requires legal, technical, and policy judgment, as well as 
scientific considerations, to assess the significance of any effects. Section IV.C of the preamble and 
section IV of this document discuss the agencies’ approaches to making case-specific relatively 
permanent and significant nexus determinations under the final rule. The science demonstrates that waters 
fall along gradients of chemical, physical, and biological connection to traditional navigable waters, the 
territorial seas, and interstate waters, and it is the agencies’ task to determine where along that gradient to 
draw lines of jurisdiction under the Clean Water Act. In making this determination, the agencies must 
rely, not only on the science, but also on their technical expertise and practical experience in 
implementing the Clean Water Act during a 50-year period. 

To be clear, under the final rule no waters considered under paragraph (a)(5) are categorically 
jurisdictional. Rather, the agencies will assess tributaries, adjacent wetlands, and intrastate waters that do 
not fall with paragraphs (a)(1) through (a)(4) utilizing the relatively permanent or significant nexus 
jurisdictional standards. This approach advances the objective of the Clean Water Act and is consistent 
with the best available science because waters in these categories can have significant effects on 
traditional navigable waters, the territorial seas, and interstate waters. The agencies are also adding the 
relatively permanent and significant nexus standards to certain categories of waters based on their 
conclusion that together those standards are consistent with the statutory text, advance the objective and 
policies of the Act, and are supported by the scientific record. Indeed, the agencies are not reaching any 
conclusions, categorical or otherwise, about which tributaries, wetlands (other than those wetlands 
adjacent to traditional navigable waters, the territorial seas, or interstate waters), lakes, ponds, or other 
types of waters meet either the relatively permanent or the significant nexus standard. Instead, the final 
rule enables the agencies to make science-informed determinations of whether or not a water that falls 
within these categories meets either jurisdictional standard and is therefore a “water of the United States,” 
on a case-specific basis. 
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A. Tributaries 

Under the final rule, tributaries of traditional navigable waters, the territorial seas, interstate 
waters, or jurisdictional impoundments are “waters of the United States” where they meet either the 
relatively permanent or significant nexus standard. Asserting Clean Water Act jurisdiction over tributaries 
where they meet either the relatively permanent or significant nexus standards as outlined in paragraph 
(a)(3) of the final rule aligns with the scientific literature, as well as the agencies’ scientific and technical 
expertise and experience, which confirm that tributaries, regardless of flow regime, have chemical, 
physical, or biological effects on downstream waters. 

The scientific literature documents that tributary streams, including perennial, intermittent, and 
ephemeral streams, certain lakes and ponds, and certain categories of ditches are integral parts of river 
networks because they are directly connected to rivers via permanent surface features (channels and 
associated alluvial deposits) that concentrate, mix, transform, and transport water and other materials, 
including food resources, downstream. Alluvial deposits, or alluvium, are deposits of clay, silt, sand, 
gravel, or other particulate materials that have been deposited by a stream or other body of running water 
in a streambed, on a flood plain, on a delta, or at the base of a mountain. Science Report at A-1. 
Tributaries transport, and often transform, chemical elements and compounds, such as nutrients, ions, 
dissolved and particulate organic matter and contaminants, influencing water quality, sediment 
deposition, nutrient availability, and biotic functions in rivers. Streams also are biologically connected to 
downstream waters by dispersal and migration, processes which have critical implications for aquatic 
populations of organisms that use both headwater and river or open water habitats to complete their life 
cycles or maintain viable populations. The scientific literature clearly demonstrates that cumulatively, 
streams exert strong influence on the character and functioning of rivers. See id. at ES-2 and Chapter 3. In 
light of these well documented connections and functions, the agencies conclude that tributaries, either 
alone or in combination with similarly situated waters, can significantly affect the chemical, physical, or 
biological integrity of a traditional navigable water, the territorial seas, or an interstate water. The 
scientific literature supports this conclusion for ephemeral tributaries, as well as for intermittent and 
perennial tributaries; for tributaries both near to and far from the downstream traditional navigable water, 
the territorial seas, or interstate water; and for natural tributaries, human-altered, or human-made 
tributaries, which may include certain ditches and canals. For tributaries that meet the relatively 
permanent standard, such tributaries, either alone or in combination with similarly situated waters in the 
region, will virtually always significantly affect the chemical, physical, or biological integrity of 
traditional navigable waters, the territorial seas, or interstate waters. For tributaries that do not meet the 
relatively permanent standard, under the final rule they will be evaluated, either alone or in combination 
with similarly situated waters in the region, on a case-specific basis to determine whether they 
significantly affect the chemical, physical, or biological integrity of traditional navigable waters, the 
territorial seas, or interstate waters. 

The connections that tributaries have to downstream waters and functions they provide that 
impact those downstream waters continue even where the tributary has a natural or human-made break in 
its channel or ordinary high water mark (OHWM). The presence of a channel, bed and banks, or other 
indicators of OHWM upstream or downstream of the break is an indication that hydrological connections 
still exist. See, e.g., id. at 2-2. The connections between a tributary and a downstream water and 
associated functions remain intact even where the tributary flows underground for a portion of its length, 
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such as in regions with karst geology or topography or lava tubes. Artificial breaks can occur, for 
example, when a stream has been buried (e.g., diverted into pipes or other conveyances), which is 
common in urban watersheds. See, e.g., id. at 3-3. Where the hydrologic connection still exists, chemical 
and biological connections mediated by the hydrologic connection can also still exist. Similarly, flow 
through boulder fields does not sever the hydrologic connection. When a tributary flows through a 
wetland enroute to another or the same tributary, connectivity and effects still exist even though the 
channel or ordinary high water mark is broken for the length of the wetland. Adjacent wetlands located 
within a tributary can provide numerous benefits downstream (see section III.B), and the location of the 
wetland in-stream can provide additional water quality benefits to the receiving waters. Flow in flat areas 
with very low gradients may temporarily break a tributary’s channel or OHWM, but these systems 
continue to be connected downstream and can provide functions that benefit downstream waters. These 
are just illustrative examples of break in the stream channel or ordinary high water mark.  

The discussion below summarizes the key points in the literature regarding the chemical, 
physical, and biological connections and functions of tributaries that affect downstream waters. The 
scientific literature does not use legal terms like “relatively permanent” to describe streamflow 
permanence classes. Rather, the literature uses terms like “perennial,” “intermittent,” or “ephemeral” to 
describe and classify streamflow permanence. Tributaries that meet the relatively permanent standard 
under the final rule are those that have flowing or standing water year-round or continuously during 
certain times of the year. The agencies have decided against defining the relatively permanent standard by 
specific stream flow classifications in the final rule (e.g., perennial, intermittent, or ephemeral). However, 
flow characteristics like duration and timing of flow will be considered in determining whether tributaries 
meet the relatively permanent or significant nexus standard. Tributaries that do not meet the relatively 
permanent standard include tributaries with flowing or standing water for only a short duration in direct 
response to precipitation. The approach to the relatively permanent standard for tributaries in the final rule 
would encompass tributaries considered relatively permanent under the 2020 NWPR, as well as those 
considered relatively permanent under the Rapanos Guidance, providing continuity in approach for the 
regulated community and other stakeholders. Tributaries that do not meet the relatively permanent 
standard must be assessed under the significant nexus standard. The relatively permanent standard is 
discussed in section III.F below and the significant nexus standard is discussed in section III.E below. 

In addition, the evidence regarding human-altered and human-made tributaries and headwater 
streams and non-perennial streams, types of tributaries whose important functional relationships to 
downstream traditional navigable waters, the territorial seas, and interstate waters might not be obvious, is 
summarized. The evidence regarding headwater or in-stream lakes and ponds is also summarized. The 
scientific literature does not use legal terms like “traditional navigable water,” “the territorial seas,” or 
“interstate water.” Rather, the literature assesses tributaries in terms of their connections to and effects on 
larger downstream waters in a watershed. Traditional navigable waters, the territorial seas, and interstate 
waters are simply a subset of downstream waters, and their distinction is a legal, not scientific, one; the 
strength of the connections and effects does not change because a river does not meet the legal standards 
for being traditionally navigable. While the final rule, consistent with Supreme Court case law and the 
Clean Water Act, addresses only those tributaries that drain (contribute flow directly or indirectly) to a 
traditional navigable water, the territorial seas, interstate water, or jurisdictional impoundments, the 
conclusions of the scientific literature with respect to the effects of tributaries on downstream waters are 
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applicable to the subset of downstream waters that are traditional navigable waters, the territorial seas, or 
interstate waters.  

Based on the importance of the functions that are provided by tributaries to traditional navigable 
waters, the territorial seas, and interstate waters, the agencies’ final rule to interpret the Clean Water Act 
to protect those tributaries that meet either the relatively permanent standard or the significant nexus 
standard reflects proper consideration of the objective of the Act and the best available science. 

i. Tributaries Can Provide Functions that Restore and Maintain the Physical 
Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and 
Interstate Waters 

The scientific literature unequivocally demonstrates that tributaries exert a strong influence on the 
physical integrity of larger downstream waters. Tributaries, even when seasonal, are the dominant source 
of water in most rivers, rather than direct precipitation or groundwater input to main stem river segments. 
See, e.g., Science Report at 3-5 (citing Winter 2007; Bukaveckas 2009). Distant headwaters with stronger 
connections to groundwater or consistently higher precipitation levels than downstream reaches 
contribute more water to downstream rivers. Id. In the northeastern United States headwater streams 
contribute greater than 60% of the water volume in larger tributaries, including navigable rivers. See, e.g., 
id. (citing Alexander et. al. 2007). The contributions of tributaries to river flows are often readily 
measured or observed, especially immediately below confluences, where tributary flows increase the flow 
volume and alter physical conditions, such as water temperature, in the main stream. The physical effects 
of tributaries are particularly clear after intense rainfall occurs over only the upper tributary reaches of a 
river network. For example, a study of ephemeral tributaries to the Río Grande in New Mexico found that 
after a storm event contributions of the stormflow from ephemeral tributaries accounted for 76% of the 
flow of the Río Grande. Id. at 3-7 to 3-8 (citing Vivoni et. al. 2006). A key effect of tributaries on the 
hydrologic response of river networks to storm events is dispersion, or the spreading of water output from 
a drainage basin over time. Geomorphic dispersion of connected tributaries influences the timing and 
volume of water reaching a river network outlet. See, e.g., id. at 3-10 (citing Saco and Kumar 2002). 
Tributaries also can reduce the amount of water that reaches downstream rivers and minimize 
downstream flooding, often through infiltration or seepage through channel beds and banks or through 
evapotranspiration. See, e.g., id. at 3-11 (citing Hamilton et al. 2005; Costelloe et.al. 2007).  

One of the primary functions of tributaries is transporting sediment to downstream waters. 
Tributaries, particularly headwaters, shape and maintain river channels by accumulating and gradually or 
episodically releasing sediment and large woody debris into river channels. Sediment transport is also 
clearly provided by ephemeral streams. Effects of the releases of sediment and large woody debris are 
especially evident at tributary-river confluences, where discontinuities in flow regime and temperature 
clearly demonstrate physical alteration of river structure and function by headwater streams. Science 
Report at 3-14, 3-16, 3-18, 3-20 to 3-21. Sediment movement is critical for maintaining the river network, 
including rivers that are considered to be traditional navigable waters, as fluvial (produced by the action 
of a river or stream) sediments are eroded from some channel segments, and deposited in others 
downstream to form channel features, stream and riparian habitat which supports the biological 
communities resident downstream, and influence the river hydrodynamics. See, e.g., Florsheim et al. 
2008; Science Report at 3-13 (citing Church 2006). While essential to river systems, too much sediment 
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can impair ecological integrity by filling interstitial spaces, blocking sunlight transmission through the 
water column, and increasing contaminant and nutrient concentrations. Id. (citing Wood and Armitage 
1997). Over-sedimentation thus can reduce photosynthesis and primary productivity within the stream 
network and otherwise have harmful effects on downstream biota, including on the health and abundance 
of fish, aquatic macrophytes (plants), and aquatic macroinvertebrates (insects) that inhabit downstream 
waters. See, e.g., Wood and Armitage 1997. Headwater streams tend to trap and store sediments behind 
large structures, such as boulders and trees, that are transported downstream only during infrequent large 
storm events and that are the dominant means for downstream sediment transport. Science Report at 3-15 
(citing Gomi and Sidle 2003; Gooderham et al. 2007). Similarly, large, infrequent disturbance events are 
the primary drivers for wood movement from headwater streams to downstream waters. Id. at 3-17 (citing 
Benda and Cundy 1990; Benda et al. 2005; Bigelow et al. 2007). 

Tributaries can greatly influence water temperatures in tributary networks. This is important 
because water temperature is a critical factor governing the distribution and growth of aquatic life, both 
directly (through its effects on organisms) and indirectly (through its effects on other physiochemical 
properties, such as dissolved oxygen and suspended solids). Id. at 3-19 (citing Allan 1995). For instance, 
water temperature controls metabolism and level of activity in cold-blooded species like fish, amphibians, 
and aquatic invertebrates. See, e.g., Ice 2008. Temperature can also control the amount of dissolved 
oxygen in streams, as colder water holds more dissolved oxygen, which fish and other fauna need to 
breathe. Connections between tributaries and downstream rivers can affect water temperature in river 
networks. See, e.g., Science Report at 3-19 (citing Knispel and Castella 2003; Rice et al.2008). In 
particular, tributaries provide both cold and warm water refuge habitats that are critical for protecting 
aquatic life in downstream traditional navigable waters, the territorial seas, and interstate waters. Id. at 3-
42. Because headwater tributaries often depend on groundwater inputs, temperatures in these systems 
tend to be warmer in the winter (when groundwater is warmer than ambient temperatures) and colder in 
the summer (when groundwater is colder than ambient temperatures) relative to downstream waters. Id. 
(citing Power et al. 1999). Thus, tributaries provide organisms with both warm water and coldwater 
refuges at different times of the year. Id. (citing Curry et al. 1997; Baxter and Hauer 2000; Labbe and 
Fausch 2000; Bradford et al. 2001). For example, when temperature conditions in downstream waters are 
adverse, fish can travel upstream and use tributaries as refuge habitat, such as cold-water fish like Pacific 
salmon that seek important thermal refuge from warm downstream waters in small, cold tributaries. Id. 
(citing Curry et al. 1997; Cairns et al. 2005); Ebersole et al. 2015. Tributaries also help buffer 
temperatures in downstream waters. Science Report at 3-19 (citing Caissie 2006). Temperatures in 
tributaries affect downstream water temperature many kilometers away. Id. at 3-20 (citing Gardner and 
Sullivan 2004; Johnson et al. 2010).  

ii. Tributaries Can Provide Functions that Restore and Maintain the Chemical 
Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and 
Interstate Waters 

The scientific literature unequivocally demonstrates that tributaries exert a strong influence on the 
chemical integrity of downstream waters. Tributaries transform and export significant amounts of 
nutrients and carbon to downstream waters, serving important source functions that greatly influence the 
chemical integrity of downstream waters. Organic carbon, in both dissolved and particulate forms, 
exported from tributaries is consumed by downstream organisms. The organic carbon that is exported 
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downstream thus supports biological activity (including metabolism) throughout the river network. See, 
e.g., Science Report at 3-30 (citing Fisher and Likens 1973; Meyer 1994; Wallace et al. 1997; Hall and 
Meyer 1998; Hall et al. 2000; Augspurger et al. 2008). Much or most of the organic carbon that is 
exported from tributaries has been altered either physically or chemically by ecosystem processes within 
the tributary streams, particularly by headwater streams. In addition to transformations associated with 
microbial and invertebrate activity, organic matter in streams can be transformed through other processes 
such as immersion and abrasion; photodegradation also can be important in ephemeral and intermittent 
streams where leaves accumulate in dry channels exposed to sunlight. Id. (citing Paul et al. 2006; Corti et 
al. 2011; Dieter et al. 2011; Fellman et al. 2013). 

 Nutrient export from tributaries has a large effect on downstream water quality, as excess 
nutrients from surface runoff from lawns and agricultural fields can cause algal blooms that reduce 
dissolved oxygen levels and increase turbidity in rivers, lakes, estuaries, and territorial seas. Water low in 
dissolved oxygen cannot support aquatic life; this widely-recognized phenomenon, known as hypoxia or 
“dead zones,” occurs along coasts throughout the country, including the northern Gulf of Mexico and the 
Chesapeake Bay. Committee on Environment and Natural Resources 2000; Díaz and Rosenberg 2011; 
Murphy et al. 2011. Hypoxia threatens valuable commercial and recreational fisheries, including in the 
northern Gulf of Mexico, and reduces aquatic habitat quality and quantity. Committee on Environment 
and Natural Resources 2000; Freeman et al. 2007; Díaz and Rosenberg 2011; O’Connor and Whitall 
2007; He and Xu 2015. The amount of nitrogen that is exported downstream varies depending on stream 
size, and how much nitrogen is present in the system. Nitrogen loss is greater in smaller, shallow streams, 
most likely because denitrification and settling of nitrogen particles occur at slower rates in deeper 
channels. Science Report at 3-23 (citing Alexander et al. 2000). At low loading rates, the biotic removal 
of dissolved nitrogen from water is high and occurs primarily in small tributaries, reducing the loading to 
larger tributaries and rivers downstream. At high nitrogen loading rates, tributaries become nitrogen 
saturated and are not effectively able to remove nitrogen, resulting in high nitrogen export to rivers. Id. at 
3-25 to 3-26 (citing Mulholland et al. 2008). The transport of nitrogen and phosphorus downstream has 
also been well-documented, particularly in the cases of the Gulf of Mexico and the Chesapeake Bay. 
Tributary streams in the uppermost portions of the Gulf and Bay watersheds transport the majority of 
nutrients to the downstream waters; an estimated 85% of nitrogen arriving at the hypoxic zone in the Gulf 
originates in the upper Mississippi (north of Cairo, Illinois) and the Ohio River Basins. Goolsby et al. 
1999. The export of nutrients from streams in the Mississippi River Basin has an effect on anoxia, or low 
oxygen levels, in the Gulf. Science Report at 3-24 (citing Rabalais et al. 2002). Similarly, nutrient loads 
from virtually the entire 64,000 square mile watershed affect water quality in the Chesapeake Bay. 
Simulation tools have been used to determine the nutrient and sediment load reductions that must be made 
at many different points throughout the entire watershed in order to achieve acceptable water quality in 
the mainstem of the Bay. These reductions included specific annual nitrogen caps on the upper reaches of 
the Susquehanna River in New York State, more than 400 miles from the mouth of the Chesapeake Bay. 
See e.g., Rabalais et al. 2002; U.S. Environmental Protection Agency 2003; New York Department of 
Environmental Conservation 2021.  

Although tributaries export nutrients, carbon, and contaminants downstream, they also transform 
these substances. Phosphorous and nitrogen arrive at downstream waters having already been cycled, or 
taken up and transformed by living organisms, many times in headwater and smaller tributaries. Science 
Report at 1-3, 3-26 to 3-27 (citing Webster and Patten 1979; Newbold et al. 1981; Elwood et al. 1983; 
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Ensign and Doyle 2006). In addition, some of the nutrients taken up as readily available inorganic forms 
are released back to the water as organic forms that are less available for biotic uptake. Id. at 3-27 (citing 
Mulholland et al. 1988; Seitzinger et al. 2002). Similarly, nutrients incorporated into particulates are not 
entirely regenerated, but accumulate in longitudinally increasing particulate loads (i.e., increases moving 
downstream). Id. (citing Merriam et al. 2002; Whiles and Dodds 2002; Hall et al. 2009). Headwater 
streams have seasonal cycles in the concentrations of phosphorous and nitrogen that are delivered 
downstream by accumulating nutrient derived from temporarily growing streambed biomass. Id. (citing 
Mulholland and Hill 1997; Mulholland 2004). Such variations have been demonstrated to affect 
downstream productivity. Id. (citing Mulholland et al. 1995). Nitrification, the microbial transformation 
of ammonium to nitrate, affects the form of downstream nutrient delivery. Nitrification occurs naturally in 
undisturbed headwater streams, but increases sharply in response to ammonium inputs, thereby reducing 
potential ammonium toxicity from pollutant inputs. Id. at 3-28 (citing Newbold et al. 1983; Chapra 1996; 
Bernhardt et al. 2002). Denitrification, the removal of nitrate from streamwater through transformation to 
atmospheric nitrogen, is widespread among headwater streams; research indicates that small, tributaries 
free from agricultural or urban impacts can reduce up to 40% of downstream nitrogen delivery through 
denitrification. Id. at 3-28 (citing Mulholland et al. 2008). Small tributaries also affect the downstream 
delivery of nutrients through abiotic processes. Streams can reduce phosphorus concentrations through 
sorption (i.e., “sticking”) to stream sediments. Id. (citing Meyer and Likens 1979). This is particularly 
beneficial to downstream chemical integrity where phosphorus sorbs to contaminants such as metal 
hydroxide precipitates. Id. (citing Simmons 2010). 

Tributaries also store significant amounts of nutrients and carbon, functioning as important sinks 
for river networks so that they do not reach downstream traditional navigable waters, the territorial seas, 
or interstate waters. Small tributary streams in particular often have the greatest effect on downstream 
water quality, in terms of storage and reducing inputs to downstream waters. For instance, uptake and 
transformation of inorganic nitrogen often occurs most rapidly in the smallest tributaries. See, e.g., id. at 
3-25 (citing Peterson et al. 2001). Small tributaries affect the downstream delivery of nutrients such as 
phosphorus through abiotic processes; such streams can reduce phosphorus concentrations by sorption to 
stream sediments.  

Tributaries can also serve as a temporary or permanent source or sink for contaminants that 
adversely affect organisms when occurring at excessive or elevated concentrations, reducing the amounts 
of such pollutants that reach downstream traditional navigable waters, the territorial seas, or interstate 
waters. The transport of contaminants to downstream waters can impact water quality downstream if they 
are not stored in tributaries. See, e.g., id. at 3-34 (citing Wang et al. 2007). Tributaries can also serve as at 
least a temporary sink for contaminants that would otherwise impair downstream water quality. See, e.g., 
id. at 3-36 to 3-37 (citing Graf 1994). 

The distances and extent of metal contaminant transport was shown in separate studies in the 
upper Arkansas River in Colorado, and Clark Fork River in Montana, where past mining activities 
impacted the headwater tributaries. River bed sediments showed that metals originating from the mining 
and smelting areas in the headwaters were reaching water bodies up to 550 km downstream. Id. at 3-34 
(citing Axtmann and Luoma 1991; Kimball et al. 1995). 
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Military studies of the distribution, transport, and storage of radionuclides (e.g., plutonium, 
thorium, uranium) have provided convincing evidence for distant chemical connectivity in river networks 
because the natural occurrence of radionuclides is extremely rare. From 1942 to 1952, prior to the full 
understanding of the risks of radionuclides to human health and the environment, plutonium dissolved in 
acid was discharged untreated into several intermittent headwater streams that flow into the Rio Grande at 
the Los Alamos National Laboratory, New Mexico. Id. at 3-36 (citing Graf 1994; Reneau et al. 2004). 
Also during this time, nuclear weapons testing occurred west of the upper Rio Grande near Socorro, New 
Mexico (Trinity blast site) and in Nevada, where fallout occurred on mountainous areas with thin soils 
that are readily transported to headwater streams in the upper Rio Grande basin. The distribution of 
plutonium within the Rio Grande illustrates how headwater streams transport and store contaminated 
sediment that has entered the basin through fallout and from direct discharge. Los Alamos Canyon, while 
only representing 0.4% of the drainage area at its confluence with the Rio Grande, had a mean annual 
bedload contribution of plutonium almost seven times that of the mainstem. Id. (citing Graf 1994). Much 
of the bedload contribution occurred sporadically during intense storms that were out of phase with 
flooding on the upper Rio Grande. Total estimated contributions of plutonium between the two sources to 
the Rio Grande were approximately 90% from fallout to the landscape and 10% from direct effluent 
discharge at Los Alamos National Laboratory. Id. at 3-36 to 3-37 (citing Graf 1994).  

iii. Tributaries Can Provide Functions that Restore and Maintain the 
Biological Integrity of Downstream Traditional Navigable Waters, the Territorial 
Seas, and Interstate Waters 

Tributaries are biologically linked to downstream waters through the movement of living 
organisms or their reproductive propagules, such as eggs or seeds. For organisms that drift with water 
flow, biological connections depend on hydrological connections. However, many aquatic organisms are 
capable of active movement with or against water flow, and others disperse actively or passively over 
land by walking, flying, drifting, or “hitchhiking.” All of these different types of movement form the 
basis of biological connectivity between headwater tributaries and downstream waters. 

Headwater tributaries increase the amount and quality of habitat available to aquatic organisms. 
Under adverse conditions, small tributaries provide safe refuge, allowing organisms to persist and 
recolonize downstream areas once adverse conditions have abated. See, e.g., Science Report at 3-38 
(citing Meyer and Wallace 2001; Meyer et al. 2004; Huryn et al. 2005). Use of tributaries by salmon and 
other anadromous fish for spawning and by American eels and other catadromous fish for other life cycle 
needs is well-documented, but even non-migratory species can travel great distances within the river and 
tributary networks. See, e.g., id. at 3-40 (citing Gorman 1986; Sheldon 1998; Hitt and Angermeier 2008). 
Anadromous and catadromous fish are both types of diadromous fauna, which as explained in sections 
I.A.iv, require both freshwater and marine habitats over their life cycles. Anadromous fish are born in 
freshwater, spend most of their lives in saltwater, and return to freshwater to lay eggs. Catadromous fish 
breed in the ocean and spend most of their lives in freshwater. Tributaries also serve as an important 
source of food for biota in downstream rivers. Tributaries export plankton, vegetation, fish eggs, insects, 
invertebrates like worms or crayfish, smaller fish that originate in upstream tributaries and other food 
sources that drift downstream to be consumed by other animals. See, e.g., id. at 3-38 (citing Progar and 
Modenke 2002). For example, many fish feed on drifting insects, and numerous studies document the 
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downstream drift of stream invertebrates that then are eaten by fish in larger rivers. See, e.g., id. at 4-29 to 
4-30 (citing Nakano and Murakami 2001; Wipfli and Gregovich 2002). 

Biological connectivity also allows gene flow, or genetic connectivity, among tributary and river 
populations. Gene flow is needed to maintain genetic diversity in a species, a basic requirement for that 
species to be able to adapt to environmental change. Populations connected by gene flow have a larger 
breeding population size, making them less prone to the deleterious effects of inbreeding and more likely 
to retain genetic diversity or variation. Id. at 3-43 (citing Lande and Shannon 1996). Genetic connectivity 
exists at multiple scales and can extend beyond one a single river watershed, and for species capable of 
long distance movement (such as salmon), reveals complex interactions among spatially distant 
populations of aquatic organisms Id. (citing Hughes et al. 2009; Anderson 2010; Bohonak and Jenkins 
2003). 

Headwater streams provide unique habitat and protection for amphibians, fish, and other aquatic 
or semi-aquatic species living in and near the stream that may use the downstream waters for other 
portions of their life stages. See, e.g., Report at ES-8; Meyer et al. 2007. They also serve as migratory 
corridors for fish. Tributaries can improve or maintain biological integrity and can control water 
temperatures in the downstream waters. See, e.g., Report at 3-20 (citing Ebersole et. al. 2003; Gardner 
and Sullivan 2004; Johnson et al. 2010). Headwater streams also provide refuge habitat for riverine 
organisms seeking protection from temperature extremes, flow extremes, low dissolved oxygen, high 
sediment levels, or the presence of predators, parasites, and competitors. See, e.g., id. at 3-42 (citing 
Scrivener et al. 1994; Fraser et al. 1995; Curry 1997; Pires et al. 1999; Bradford et al. 2001; Cairns et al. 
2005; Wigington et al. 2006; Woodford and McIntosh 2010). Headwater streams serve as a source of 
food materials such as insects, larvae, and organic matter to nourish the fish, mammals, amphibians, and 
other organisms in downstream streams, rivers, and lakes. See, e.g., id. at 4-22, 3-30, 3-31 (citing Fisher 
and Likens 1973; Meyer 1994; Wallace et al. 1997; Hall and Meyer 1998; Hall et al. 2000; Gomi et al. 
2002; Augspurger et al. 2008). Disruptions in these biological processes affect the ecological functions of 
the entire downstream system. See, e.g., Kaplan et al. 1980; Vannote et. al. 1980. Headwater streams can 
help to maintain base flow in the larger rivers downstream, which is particularly important in times of 
drought. See, e.g., Science Report at 3-6, B-42, B-48 (citing Brooks and Lemon 2007; Tetzlaff and 
Soulsby 2008). At the same time, the network of headwater streams can regulate the flow of water into 
downstream waters, mitigating low flow and high flow extremes, reducing local and downstream 
flooding, and preventing excess erosion caused by flooding. See, e.g., Levick et al. 2008. 

iv. Human-made or Human-altered Tributaries Can Provide Functions that 
Restore and Maintain the Chemical, Physical, and Biological Integrity of 
Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate 
Waters 

Under the final rule, human-made and human-altered tributaries are jurisdictional where they 
meet either the relatively permanent or significant nexus standard under paragraph (a)(3), except where 
they are excluded under paragraph (b). As discussed in the preamble, the agencies are adding an exclusion 
to the final rule for ditches (including roadside ditches) excavated wholly in and draining only dry land 
and that do not carry a relatively permanent flow of water. Under the pre-2015 regulatory regime, such 
ditches were considered generally non-jurisdictional. The scientific literature indicates that structures that 
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convey water continue to connect to and effect downstream waters, though the connectivity and effects 
can be different than that of natural streams. Indeed, because structures like ditches and canals can reduce 
water losses from evapotranspiration and seepage, such structures could enhance the extent of 
connectivity by more effectively conveying the water downstream. For example, ditches typically are 
constructed to move water off the landscape and to downstream waters more quickly, and moving that 
water more quickly can influence the functions that ditches perform.  

Human-made and human-altered tributaries under the final rule include impoundments (which are 
also considered under paragraph (a)(2) of the final rule and discussed further in section III.C), ditches, 
canals, channelized streams, piped streams, and the like. Ditches and canals are wide-spread across the 
United States. Where ditches are streams that have been channelized, they would be tributaries under the 
final rule if they otherwise meet the provisions to be a “tributary” under paragraph (a)(3). See section 
IV.C.4 of the final rule preamble. Where ditches are constructed in natural streams, they are typically are 
purposely constructed to allow the hydrologic flow of the tributary to continue downstream and often 
straighten natural channels. Ditches can also intersect the water table, which can change the hydrological 
flow permanence as compared to the formerly natural stream. Human-made and human-altered 
tributaries, despite human manipulation, can continue to have chemical, physical, or biological 
connections to downstream waters supported by flow, though many of the natural functions may be lost 
or altered. Often-times human-made tributaries create channelized connections where they did not 
previously exist, such as canals that connect two rivers in different watersheds. Science Report at 1-11. 

Tributary ditches and other human-made or human-altered waters can impact downstream waters 
individually or cumulatively with other tributaries and their adjacent wetlands. Tributary ditches and the 
like, as with other tributaries, can have chemical, physical, and biological connections with downstream 
waters that could impact those waters. Tributary ditches and canals can have perennial, intermittent, or 
ephemeral flow. Due to the often straightened and channelized nature of ditches, these tributaries quickly 
move water downstream to traditional navigable waters, the territorial seas, or interstate waters. Ditches 
reduce water storage on the landscape and increase conveyance, generally altering the timing of peak 
flows and shortening the response times to storms. Blann et al. 2009. Ditches, canals, and human-altered 
streams, like other tributaries, export sediment, nutrients, and other materials downstream and are 
effective at transporting water and these materials, including nitrogen, downstream. See, e.g., Morris et al. 
2014; Schmidt et al. 2007; Sharpley et al. 2007; Strock et al. 2007. The more effective transport reduces 
residence time within sediments and limits nutrient cycling. Bukaveckas 2007; Needelman et al. 2007; 
Dollinger et al. 2015; Morris et al. 2014. The greater connection to the landscape often leads to higher 
nutrient loads down gradient, adding to downstream eutrophication. Alexander et al. 2008; David et al. 
2010. Ditches provide habitat for fish and other aquatic organisms and can seasonally serve as a refuge 
for native fish species and as sheltered breeding grounds. See, e.g., Smiley Jr. et al. 2008; Colvin et al. 
2009; Leslie et al. 2012. Fish and other aquatic organisms utilize canals and ditches to move to different 
habitats, sometimes over long distances. Rahel 2007. While ditches can have lower biodiversity than 
other aquatic ecosystems, they can provide habitat for species not found in larger waters. Leslie et al. 
2012. 

Human-made or human-altered tributaries can continue to have chemical, physical, and biological 
connections that affect the integrity of traditional navigable waters, the territorial seas, or interstate 
waters. Though the human-made or human-altered nature of such tributaries can change the nature of the 
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connections, it does not eliminate them. Thus, human-made and human-altered tributaries can continue to 
serve some of the same functions as natural tributaries, which in turn can greatly impact downstream 
traditional navigable waters, the territorial seas, or interstate waters, particularly when their functional 
contributions to the chemical, physical, and biological conditions of such downstream waters are 
evaluated in the aggregate. 

v. Ephemeral and Intermittent Tributaries Can Provide Functions that 
Restore and Maintain the Chemical, Physical, or Biological Integrity of 
Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate 
Waters 

Tributaries do not need to flow perennially to have a material influence on downstream traditional 
navigable waters, the territorial seas, or interstate waters. As described above in section I.A.iv., 
approximately 59% of streams across the United States (excluding Alaska) flow intermittently or 
ephemerally based on an analysis of National Hydrography Dataset (NHD). Science Report at 2-29 
(citing Nadeau and Rains 2007). A more recent study found that ephemeral streams are undermapped or 
unmapped in the NHD, particularly in non-Western states, and estimated that ephemeral streams comprise 
48% (range 43-56%) of stream channels by length in the conterminous United States. Fesenmyer et al. 
2021. Compared with the humid regions of the country, stream and river networks in arid regions have a 
higher proportion of channels that flow ephemerally or intermittently. For example, ephemeral and 
intermittent streams are particularly prevalent in the arid and semi-arid Southwest, where they account for 
over 81% of streams. Levick et al. 2008; Fesenmyer et al. 2021. In Arizona, most of the stream 
channels—96% by length—are classified as ephemeral or intermittent. Despite their intermittent or 
ephemeral flow, these streams nonetheless perform many of the same ecological and hydrological 
functions documented in the scientific literature on perennial streams, through their movement of water, 
nutrients, and sediment to downstream waters. Levick et al. 2008; Science Report; Sullivan et al. 2019a, 
2020; Fesenmyer et al. 2021. The importance of intermittent and ephemeral streams is documented in a 
2008 peer-reviewed report by EPA’s Office of Research and Development and the U.S. Department of 
Agriculture’s Agricultural Research Service (Levick et al. 2008), which addresses the hydrological and 
ecological significance of ephemeral and intermittent streams in the arid and semi-arid Southwestern 
United States and their connections to downstream waters; the report is a state-of-the-art synthesis of 
current knowledge of the ecology and hydrology in these systems. Id.  

Intermittent and ephemeral streams are chemically, physically, and biologically connected to 
downstream waters, and these connections have effects downstream. See, e.g., id. In some areas, 
stormflows channeled into alluvial floodplain aquifers by intermittent and ephemeral streams are the 
major source of annual streamflow in rivers. Perennial flows are not necessary for chemical connections. 
Periodic flows in ephemeral or intermittent tributaries can have a strong influence on biogeochemistry by 
connecting the channel and other landscape elements. See, e.g., Report at 3-22 (citing Valett et. al. 2005). 
This episodic connection can be very important for transmitting a substantial amount of material into 
downstream rivers. See, e.g., id. (citing Nadeau and Rains 2007). Intermittent and ephemeral streams 
contribute to water quality in downstream traditional navigable waters, the territorial seas, and interstate 
waters by processing and uptaking nutrients like nitrogen. Id. at ES-8; Addy et al. 2019. Ephemeral desert 
streams have been shown to export particularly high sediment loadings. See, Science Report at 3-15 
(citing Hassan 1990). Ephemeral streams can also temporarily and effectively store large amounts of 
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sediment that would otherwise wash downstream, contributing to the maintenance of downstream water 
quality and productive fish habitat. See, e.g., id. at 3-15 to 3-16 (citing Duncan et al. 1987; Trimble 1999; 
May and Gresswell 2003). This temporary storage of sediment thus helps maintain the chemical and 
biologic integrity of downstream waters. 

Tributaries also need not be large rivers to have a material influence on downstream waters. As 
discussed above, the scientific literature supports the conclusion that tributaries, including headwater 
streams, provide important contributions to the chemical, physical, or biological integrity of traditional 
navigable waters, the territorial seas, and interstate waters. Headwater tributaries, the small streams at the 
uppermost reaches of the tributary network, are the most abundant streams in the United States. See, e.g., 
id. at 3-4 (citing Nadeau and Rains 2007). Collectively, they help shape the chemical, physical, and 
biological integrity of downstream waters, and provide many of the same functions as non-headwater 
streams. See, e.g., id. at ES-2, ES-7 to ES-9, 3-1. For example, headwater streams reduce the amount of 
sediment delivered to downstream waters by trapping sediment from water and runoff. See, e.g., Dieterich 
and Anderson 1998. Headwater streams shape river channels by accumulating and gradually or 
episodically releasing sediment and large woody debris into river channels. They are also responsible for 
most nutrient cycling and removal, and thus transforming and changing the amount of nutrients delivered 
to downstream waters. See, e.g., Science Report at 3-25 (citing Peterson et al. 2001). A close connection 
exists between the water quality of these streams and the water quality of traditional navigable waters, the 
territorial seas, and interstate waters. See, e.g., id.; Ohio Environmental Protection Agency 2015. 
Activities such as discharging a pollutant into one part of the tributary system are well-documented to 
affect other parts of the system, even when the point of discharge is far upstream from the water that 
experiences the effect of the discharge. See, e.g., National Research Council 1997; Dunnivant and Anders 
2006.  

The Science Report provides case studies of prairie streams and Southwest intermittent and 
ephemeral streams, two stream types whose jurisdictional status has been called into question post-
Rapanos. These case studies highlight the importance of these streams to downstream waters, despite 
their small size and ephemeral or intermittent flow regime.  

For example, the Science Report assessed the connectivity of prairie streams that drain temperate 
grasslands in the Great Plains physiographic region of the central United States and Canada. Id. at B-22 to 
B-37. Eventually, these streams drain into the Mississippi River or flow directly into the Gulf of Mexico 
or the Hudson Bay. Id. at 5-6, B-23. Climate in the Great Plains region ranges from semiarid to moist 
subhumid and intra- and interannual variation in precipitation and evapotranspiration is high. Id. at 5-6, 
B-23 to B-24 (Borchert 1950; Lauenroth et al. 1999; Boughton et al. 2010). This variation is reflected in 
the hydrology of prairie streams, which include ephemeral, intermittent, and perennial streamflows. Id. at 
5-6, B-24 (citing Matthews et al. 1985; Matthews 1988; Brown and Matthews 1995; Sawin et al. 1999; 
Dodds et al. 2004; Bergey et al. 2008). Prairie streams are frequently subjected to the extremes of drying 
and flooding, and intermittent or flashy hydrology is prevalent in river networks throughout most of the 
Great Plains. Id. at B-24 (citing Matthews 1988; Zale et al. 1989; Poff 1996; Dodds et al. 2004). Prairie 
streams typically represent a collection of spring-fed, perennial pools and reaches, embedded within 
larger, intermittently flowing segments. Id. at B-36 (citing Labbe and Fausch 2000). Row cropping and 
livestock agriculture are the dominant land uses in the region, resulting in the withdrawal of water from 
stream channels and regional aquifers and its storage in reservoirs to support agriculture. Id. at 5-6, B-27 
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to B-28 (citing Cross and Moss 1987; Ferrington 1993; Galat et al. 2005; Matthews et al. 2005; 
Sophocleous 2010; Falke et al. 2011). 

Prairie streams typically are connected to downstream waters. Like other types of streams, prairie 
streams present strong fluvial geomorphic evidence for connectivity to downstream waters, in that they 
have continuous channels (bed and banks) that make them physically contiguous with downstream 
waters. Id. at 5-6. Prairie river networks are dendritic and generally have a high drainage density, so they 
are particularly efficient at transferring water and materials to downstream waters. Id. Their pool-riffle 
morphology, high sinuosity, and seasonal drying, however, also enhance material storage and 
transformation. Id. The timing of connections between prairie streams and downstream waters is seasonal 
and therefore relatively predictable. Id. For example, high-magnitude floods tend to occur in late fall into 
later spring, although they also occur at other times during the year; this observation indicates that the 
magnitude of connections to downstream also varies seasonally. Id. at 5-6 and B-28 (citing Fausch and 
Bramblett 1991; Hill et al. 1992; Fritz and Dodds 2005). 

The frequent and predictable connections between prairie streams and downstream waters have 
multiple physical, chemical, and biological consequences for downstream waters. Dissolved solids, 
sediment, and nutrients are exported from the prairie river network to downstream waters. Id. at 5-6. 
Ultimately, the expansion of the hypoxic zone in the Gulf of Mexico is a downstream consequence of 
cumulative nutrient loading to the Mississippi River network. Id. Relative to small streams and large 
rivers draining the moist eastern parts of the Mississippi River basin, small to midsized prairie streams 
deliver less than 25–50% of their nutrient load to the Gulf of Mexico. Id. at 5-6, B-32 (citing Alexander et 
al. 2008). Nonetheless, given the large number and spatial extent of headwater prairie streams connected 
to the Mississippi River, their cumulative effect contributes to downstream nutrient loading. Id. at 5-6, B-
32. 

Organisms inhabiting prairie streams have adapted to their variable hydrologic regimes and harsh 
physicochemical conditions via evolutionary strategies that include rapid growth, high dispersal ability, 
resistant life stages, fractional reproduction (i.e., spawn multiple times during a reproductive season), and 
life cycles timed to avoid predictably harsh periods. Id. at 5-6, B-26 (citing Matthews 1988; Dodds et al. 
1996b; Fausch and Bestgen 1997). Alterations in the frequency, duration, magnitude, and timing of flows 
—and thus hydrologic connectivity—are associated with the extinction or extirpation of species in 
downstream systems. Id. at 5-6, 3-41 (citing Morita and Yamamoto 2002; Letcher et al. 2007). Moreover, 
many fish species (e.g., Arkansas River shiner, speckled chub, flathead chub) in prairie river networks 
require sufficient unfragmented (i.e., connected) channel length with adequate discharge to keep their 
nonadhesive, semibuoyant eggs in suspension for incubation and early development. Id. at 5-6 to 5-7, B-
35 (citing Cross and Moss 1987; Fausch and Bestgen 1997; Platania and Altenbach 1998; Durham and 
Wilde 2006; Perkin and Gido 2011). When these conditions are not met, the biological integrity of 
downstream waters is impaired. Id. at 5-7. 

Human alteration of prairie river networks has affected the physical, chemical, and biological 
connectivity to and their consequences for downstream waters. Impoundments and water removal, 
through both surface flow diversions and pumping of ground-water aquifers, are common in this region. 
Id. at 5-7, B-27 to B-28 (citing Smith et al. 2002; Galat et al. 2005; Matthews et al. 2005; Sophocleous 
2010). These activities have reduced flood magnitude and variability, altered timing, and increased 
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predictability of flows to downstream waters. Id. As a result, physical, chemical, and biological 
connections to downstream waters have been altered. Id. at B-28 (citing Cross and Moss 1987; Hadley et 
al. 1987; Galat and Lipkin 2000). In addition to the altered land uses and application of nutrients and 
pesticides for agriculture, human alteration of the river network itself, through channelization, levee 
construction, desnagging, dredging, and ditching, has enhanced longitudinal connectivity while reducing 
lateral and vertical connectivity with the floodplain and hyporheic zone, respectively. Id. at 5-7. Pumping 
from streams and ground water has caused historically perennial river segments to regularly dry during 
summer months. Id. at 5-7, B-27 to B-28 (citing Cross and Moss 1987; Ferrington 1993; Falke et al. 
2011). Changes to the prairie’s grazing (from bison to cattle) and burning regimes increase nutrient and 
suspended sediment loading to downstream waters. Id. at 5-7. Introduced species have extirpated endemic 
species and altered food web structure and processes in prairie streams, thereby affecting the biological 
integrity of downstream waters. Id. 

Prairie streams have significant chemical, physical, and biological connections to downstream 
waters, despite extensive alteration of historical prairie regions by agriculture, water impoundment, water 
withdrawals, and other human activities, and the challenges these alterations create for assessing 
connectivity. Id. at B-36 to B-37 (citing Matthews and Robinson 1998; Dodds et al. 2004). The most 
notable connections are via flood propagation, contaminated sediment transport, nutrient retention and 
transformation, the extensive transport and movement of fish species (including eggs and larvae) 
throughout these networks, and refuges for prairie fishes. Id. at B-37 (citing Matthai 1969; Horowitz et al. 
1988; Marron 1989; Dodds et al. 1996a; Fausch and Bestgen 1997; Platania and Altenbach 1998; Fritz 
and Dodds 2004; Fritz and Dodds 2005; Franssen et al. 2006; Alexander et al. 2008; Perkin and Gido 
2011).  

Similarly, southwestern intermittent and ephemeral streams exert strong influences on the 
structure and function of downstream waters, and the case study (included in the Science Report) echoes 
many of the findings of the functions of intermittent and ephemeral tributaries generally, which are 
described above. See also Goodrich et al. 2018. The case study focuses on the heavily studied San Pedro 
River, located in southeast Arizona, in particular, as a representative example of the hydrological 
behavior and the connectivity of rivers in the Southwest, but also examines evidence relevant to other 
Southwestern streams. See Science Report at B-37 to B-60. 

Southwestern streams are predominantly ephemeral and intermittent (nonperennial) systems 
located in the southwestern United States. Id. at 5-7, B-37. Based on the NHD, 94%, 89%, 88%, and 79% 
of the streams in Arizona, Nevada, New Mexico, and Utah, respectively, are nonperennial. Id. (citing 
NHD 2008). Most of these streams connect to downstream waters, although 66% and 20% of the drainage 
basins in Nevada and New Mexico, respectively, are closed and drain into playas (dry lakes). Id. at 5-7. 
Southwestern streams generally are steep and can be divided into two main types: (1) mountainous 
streams that drain higher portions of basins and receive higher rates of precipitation, often as snow, 
compared to lower elevations; and (2) streams located in valley or plateau regions that generally flow in 
response to high-intensity thunderstorms. Id. at 5-7, B-39 (citing Blinn and Poff 2005). Headwater 
streams are common in both types of southwestern streams.  

Nonperennial southwestern streams, excluding those that drain into playas, are periodically 
connected to downstream waters by low-duration, high-magnitude flows. Id. at 5-7. In contrast to streams 
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in humid regions where discharge is typically supplemented by ground water as drainage area increases, 
many southwestern streams lose streamflow to channel transmission losses as runoff travels downstream. 
Id. Connection of runoff and associated materials in ephemeral and intermittent streams to downstream 
waters is therefore a function of distance, the relative magnitude of the runoff event, and transmission 
losses. Id. 

Spatial and temporal variation in frequency, duration, and timing of southwestern stream runoff is 
largely explained by elevation, climate, channel substrate, geology, and the presence of shallow 
groundwater. Id. at 5-8. In nonconstraining substrate, southwestern rivers are dendritic and their 
watersheds tend to have a high drainage density. Id. When high flows are present, southwestern streams 
are efficient at transferring water, sediment, and nutrients to downstream reaches. Id.; Goodrich et al. 
2018. Ephemeral headwater streams shape larger downstream river channels by accumulating and 
gradually or episodically releasing stored materials such as sediment and large woody debris.37 These 
materials help structure downstream river channels by slowing the flow of water through channels and 
providing substrate and habitat for aquatic organisms. Due to the episodic nature of flow in ephemeral 
and intermittent channels, sediment and organic matter can be deposited some distance downstream, and 
then moved farther downstream by subsequent precipitation events. Id. Over time, sediment and organic 
matter continue to move downstream and affect downstream waters. Id.  

The southwestern streams case study describes the substantial connection and important 
consequences of runoff, nutrients, and particulate matter originating from ephemeral tributaries on the 
integrity and sustainability of downstream perennial streams. Channel transmission losses can be an 
important source of ground-water recharge that sustains downstream perennial stream and riparian 
systems. Science Report. For example, isotopic studies indicate that runoff from ephemeral tributaries like 
Walnut Gulch, Arizona supplies roughly half the San Pedro River’s baseflow through shallow alluvial 
aquifer recharge. Id. Important cumulative effects of tributaries—that is the incremental contributions of 
individual streams in combination with similarly situated tributaries—are exemplified by ephemeral 
stream flows in arid landscapes, which are key sources of baseflow for downgradient waters. Id at 1-10 
(citing Schlesinger and Jones 1984; Baillie et al. 2007; Izbicki 2007); Goodrich et al. 2018. 

Human alterations to southwestern river networks affect the physical, chemical, and biological 
connectivity to downstream waters. Impoundments trap water, sediment, and particulate nutrients and 
result in downstream impacts on channel morphology and aquatic function. Science Report at 5-8. 
Diversion of water for consumptive can decrease downstream baseflows but typically does not affect the 
magnitude of peak flows. Id. Excessive ground-water pumping can lower ground-water tables, thereby 
diminishing or eliminating baseflows. Id. Urbanization increases runoff volume and flow velocity, 

 
37 Videos of ephemeral streams flowing after rain events in the Southwest highlight how effective ephemeral 
streams can be in transporting woody debris (e.g., tree branches) and sediment downstream during the rainy season. 
See, e.g., U.S. Department of Agriculture, Agricultural Research Service, Multiflume Runoff Event August 1, 1990, 
https://www.tucson.ars.ag.gov/unit/WGWebcam/WalnutGulchWebcam.htm; U.S. Geological Survey, Post-fire 
Flash Flood in Coronado National Memorial, Arizona (August 25, 2011), 
https://www.youtube.com/watch?v=qJ8JxBZt6Ws; Santa Clara Pueblo Fire/Rescue/EMS Volunteer Department, 
Greg Lonewolf, #4 Santa Clara Pueblo Flash Flood Event 01 Sept 2013 (April 14, 2017), 
https://www.youtube.com/watch?v=nKOQzkRi4BQ; Rankin Studio, Amazing Flash Flood / Debris Flow Southern 
Utah HD (July 19, 2019), https://www.youtube.com/watch?v=_yCnQuILmsM.  

https://www.tucson.ars.ag.gov/unit/WGWebcam/WalnutGulchWebcam.htm
https://www.youtube.com/watch?v=qJ8JxBZt6Ws
https://www.youtube.com/watch?v=nKOQzkRi4BQ
https://www.youtube.com/watch?v=_yCnQuILmsM
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resulting in more erosive energy that can cause bank erosion, streambed down-cutting, and reduced 
infiltration to ground water. Id. 

Flows from ephemeral streams are one of the major drivers of the dynamic hydrology of 
Southwest rivers (particularly of floods during monsoon seasons). Id. at B-42, B-49 (citing Goodrich et 
al. 1997; Yuan and Miyamoto 2008); Goodrich et al. Downstream river fishes and invertebrates are 
adapted to the variable flow regimes that are influenced strongly by ephemeral tributary systems, which 
provide isolated pools as refuges for fish during dry periods. Science Report at B-57 to B-58 (citing John 
1964; Meffe 1984; Labbe and Fausch 2000; Rinne and Miller 2006; Lytle et al. 2008). Ephemeral 
tributaries in the Southwest also supply water to mainstem river alluvial aquifers, which aids in the 
sustaining river baseflows downstream. Id. at B-46 (citing Goodrich et al. 1997; Callegary et al. 2007); 
Goodrich et al. 2018. Ephemeral tributaries export sediment downstream during major hydrologic events; 
the sediment, in turn, influences the character of river floodplains and alluvial aquifers of downstream 
waters. Science Report at B-47 (citing Nanson and Croke 1992; Shaw and Cooper 2008); Goodrich et al. 
2018. The nutrient and biogeochemical integrity of downstream Southwestern rivers, such as the San 
Pedro River, is heavily influenced by nutrient export from ephemeral tributaries after storm flow events. 
Science Report at 3-25, B-48 (citing Brooks and Lemon 2007; Fisher et al. 2001); Goodrich et al. 2018. 
Extensive downstream river riparian communities are supported by water, sediment and nutrients 
exported to the river from ephemeral tributaries; these riparian communities have a profound influence on 
the river attributes through shading, allochthonous (originating from outside of the channel) inputs of 
organic matter, detritus, wood, and invertebrates to the river. Science Report at B-47 to B-48 (citing 
Gregory et al. 1991; National Research Council 2002; Naiman et al. 2005; Stromberg et al. 2005; Baillie 
et al. 2007); Goodrich et al. 2018. 

Ephemeral streams often have physical indicators of flow, such as an ordinary high water mark. 
See, e.g., Lichvar and McColley 2008; Mersel and Lichvar 2014. Even discontinuous ephemeral streams, 
or streams characterized by alternating erosional and depositional reaches (e.g., channelized flow 
interspersed with channel fans or other depositional areas) can exhibit OHWMs, and the Corps has 
developed field indicators to help field staff identify OHWM in these and other common stream types in 
the arid West. Lichvar and McColley 2008. In addition to discontinuous ephemeral streams, the Arid 
West OHWM manual also looks at alluvial fans, compound channels (streams characterized by a mosaic 
of terraces within a wide, active floodplain and frequently shifting low-flow channel(s)), and single-
thread channels with adjacent floodplains. Lichvar and McColley 2008. These arid West stream types can 
exhibit an OHWM. Id.; Lefebvre et al. 2013. In arid non-perennial streams, the active floodplain 
represents a zone that most closely fits the concept of “ordinary” stream flow for use in delineating the 
OHWM. Lichvar and McColley 2008; Lichvar et al. 2009.  

Intermittent and ephemeral tributaries are distinct from erosional features like rills and gullies that 
typically lack a defined channel or an ordinary high water mark. Gullies are small, relatively deep 
channels that are ordinarily formed on valley sides and floors where no channel previously existed. They 
are commonly found in areas with low-density vegetative cover or with soils that are highly erodible. See, 
e.g., Brady and Weil 2002. Rills are very small incisions formed by overland water flows eroding the soil 
surface during rain storms. See, e.g., Leopold 1994; Osterkamp 2008. Rills are less permanent on the 
landscape than streams and typically lack an ordinary high water mark, whereas gullies are younger than 
streams in geologic age, smaller than streams in size, and also typically lack an ordinary high water mark; 
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time has shaped streams into geographic features distinct from gullies and rills. See, e.g., American 
Society of Civil Engineers 1996; Osterkamp 2008. A rill is it is one of the first and smallest incisions to 
be formed as a result of concentrated flow eroding the land surface. Id. The two main processes that result 
in the formation of gullies are downcutting and headcutting, which are forms of longitudinal (incising) 
erosion. These actions ordinarily result in erosional cuts that are often deeper than they are wide, with 
very steep banks, often small beds, and typically only carry water during precipitation events. The 
principal erosional processes that modify streams are also downcutting and headcutting. In streams, 
however, lateral erosion is also very important. The result is that streams, except on steep slopes or where 
soils are highly erodible, are typically characterized by the presence of channel and an ordinary high 
water mark as compared to typical erosional features that are more deeply incised. It should be noted that 
some ephemeral streams are called “gullies” or the like in local parlance, even though they are not 
“gullies” in the technical sense. Such streams that meet the requirements to be jurisdictional as tributaries 
under paragraph (a)(3) of the final rule will be considered “waters of the United States,” regardless of the 
name they are given locally. Similarly, a swale is a shallow trough-like depression that carries water 
mainly during rainstorms or snowmelt. Science Report at A-12. A swale might or might not be considered 
a wetland depending on whether it meets the three-factor wetland criteria, and only wetlands that meet the 
definition of “waters of the United States” are considered jurisdictional. A swale does not have the 
defined channel, including an ordinary high water mark, that a stream exhibits.  

Through evidence provided throughout the report, including case studies on intermittent and 
ephemeral prairie streams and arid Southwestern streams, the Science Report is clear that intermittent and 
ephemeral streams can have important connections and impacts on downstream waters, regardless of 
where they are located geographically. The functions and effects of intermittent and ephemeral streams 
are discussed throughout the Science Report and this document.  

vi. Tributary Lakes and Ponds Can Provide Functions that Restore and 
Maintain the Chemical, Physical, or Biological Integrity of Downstream 
Traditional Navigable Waters, the Territorial Seas, or Interstate Waters 

Lakes and ponds can be considered tributaries under the final rule where they are directly part of 
the tributary system—that is, where they are in-stream or “run of the stream” (sometimes called “in-line” 
lakes and ponds), including lakes and ponds that are at the headwaters of the stream network. Lakes and 
ponds are also considered tributaries when they are connected to the tributary system via a pipe, culvert, 
dam, or similar structure. This is consistent with pre-2015 practice. The agencies recognize that the SAB 
has previously recommended that such lakes and ponds (which are considered lentic or “still water” 
systems) should not be combined into the same category as streams and rivers (which are considered lotic 
or “moving water” systems). SAB 2014b. Lakes and ponds that are considered tributaries outlet to the 
tributary network and contribute flow downstream at the outlet point. Thus, the agencies believe that 
considering such lakes and ponds to be tributaries under the final rule is consistent with information on 
the contributions of flow downstream of such lakes and ponds. In addition, one of the goals of this 
rulemaking effort is to retain the protections of the longstanding regulatory framework, and continuing to 
consider in-stream lakes and ponds as tributaries is consistent with that framework. Such lakes and ponds 
that are tributaries to traditional navigable waters, the territorial seas, interstate waters, or jurisdictional 
impoundments would be considered jurisdictional where they meet either the plurality or significant 
nexus standard under paragraph (a)(3) of the rule.  
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An in-stream lake or pond can be part of the headwaters (e.g., a headwater lake or pond that is 
directly connected to the headwater stream) or can be further downstream where, for example, a tributary 
flows into a lake that then flows into another tributary. Headwater and run-of-the-stream lakes and ponds 
serve many functions that affect the chemical, physical, and biological integrity of downstream waters. 
Such open waters can act as sinks, storing floodwaters, sediment, and nutrients, as these materials have 
the opportunity to settle out, at least temporarily, as water moves through the lake to downstream waters. 
See, e.g., Phillips et al. 2011; Kalinin et al. 2016. The attenuation of floodwaters can also maintain stream 
flows downstream. Phillips et al. 2011. Harvey and Schmadel (2021) found that present-day in-stream 
lakes and ponds lengthen the water transit times through watersheds by months or even years. In addition 
to lengthening transit times, Harvey and Schmadel (2021) also found that the in-stream lakes and ponds 
moderate downstream flow variability by lowering the flow peaks exacerbated by impervious surfaces 
and piped and tiled drainage (citing Graf 2006; Poff et al. 2006; Poff et al. 2007; Eng et al. 2013). 
Tributary lakes and ponds often elevate and shorten the frequency of low flows. Id. Tributary lakes and 
ponds can also act as sources, contributing flow, nutrients, sediment, and other materials downstream. 
Total Maximum Daily Loads (TMDLs) for nutrients have been established for many in-stream lakes 
across the country in recognition of the ability of lakes to transport nutrients downstream, contributing to 
downstream impairments. See, e.g., Maine Department of Environmental Protection 2006; U.S. 
Environmental Protection Agency 2012. Tributary lakes and ponds can also serve as habitat for species 
that then move downstream. For instance, brook trout that are stocked in headwater lakes in Idaho and 
Montana are capable of invading most downstream habitat, including through very steep channel slopes 
and waterfalls. Adams et al. 2001. These non-native species can then affect the biological integrity of 
downstream waters by impacting populations of native fish species, such as cutthroat trout, downstream. 
See, e.g., Dunham et al. 2002. For example, non-native trout were introduced in headwater lakes to the 
Little Kern River in the southern Sierra Nevada and dispersed downstream, causing the near-extinction of 
the native Little Kern golden trout. Knapp and Matthews 2000. These studies demonstrate the ability of 
organisms to travel from tributary lakes and ponds to downstream waters, which is not limited to just non-
native species; many other species can also move downstream and back again.  

 

B. Adjacent Wetlands 

Under the final rule, not all adjacent wetlands are jurisdictional. Adjacent wetlands are 
jurisdictional where they are wetlands adjacent to traditional navigable waters, the territorial seas, or 
interstate waters or where they are adjacent to jurisdictional impoundments or tributaries and meet either 
the relatively permanent or significant nexus standard. Adjacent wetlands meet the relatively permanent 
standard under the final rule where they have a continuous surface connection with tributaries that also 
meet the relatively permanent standard or with relatively permanent impoundments. Asserting Clean 
Water Act jurisdiction adjacent wetlands where they meet the standards in paragraph (a)(4) of the final 
rule aligns with the scientific literature, as well as the agencies’ scientific and technical expertise and 
experience, which confirm that adjacent wetlands have chemical, physical, and biological effects on 
traditional navigable waters, the territorial seas, and interstate waters. 

Adjacent wetlands serve many functions that directly influence the integrity of downstream 
waters including traditional navigable waters, the territorial seas, and interstate waters. Adjacent wetlands 
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store water, which can reduce flooding of downstream waters, and the loss of adjacent wetlands has been 
shown, in some circumstances, to increase downstream flooding. Adjacent wetlands maintain water 
quality and quantity, trap sediments, store and modify potential pollutants, and provide habitat for plants 
and animals, thereby sustaining the biological productivity of rivers, lakes, reservoirs, and estuaries, 
which may be traditional navigable waters, the territorial seas, or interstate waters. The scientific 
literature and Science Report support these conclusions, as discussed in greater detail below. 

Based on the importance of the functions that are provided by adjacent wetlands to traditional 
navigable waters, the territorial seas, or interstate waters, the final rule’s interpretation that the Clean 
Water Act protects adjacent wetlands where those adjacent wetlands are adjacent to traditional navigable 
waters, the territorial seas, or interstate waters or where those adjacent wetlands meet either the relatively 
permanent standard or the significant nexus standard reflects proper consideration of the objective of the 
Act and the best available science. 

i. Adjacent Wetlands under the Final Rule 

As discussed further in section III.B.ii below, in this final rule, the agencies are retaining the 
definition of “adjacent” unchanged from the 1986 regulations: “Adjacent means bordering, contiguous, or 
neighboring. Wetlands separated from other waters of the United States by man-made dikes or barriers, 
natural river berms, beach dunes, and the like are ‘adjacent wetlands.’” In addition to retaining the 
definition of “adjacent” from the 1986 regulations, the final rule retains the adjacent wetlands provision of 
the 1986 regulations, with amendments to reflect the agencies’ interpretation of the statutory limits on the 
scope of the “waters of the United States” informed by the law, the science, and agency expertise. Aquatic 
resources that meet this rule’s definitions of “wetlands” and “adjacent” are assessed under this provision, 
where such wetlands are adjacent to traditional navigable waters, the territorial seas, interstate waters, 
jurisdictional impoundments, and tributaries. Adjacent wetlands that would be jurisdictional under the 
final rule include (1) wetlands adjacent to traditional navigable waters, the territorial seas, or interstate 
waters; (2) wetlands adjacent to and with a continuous surface connection to relatively permanent 
paragraph (a)(2) impoundments or jurisdictional tributaries when the jurisdictional tributaries meet the 
relatively permanent standard; and (3) wetlands adjacent to paragraph (a)(2) impoundments or 
jurisdictional tributaries when the wetlands meet the significant nexus standard. Under this rule, the 
relatively permanent standard (see section III.B.i.2) and the significant nexus standard (see section 
III.B.i.3) are independent jurisdictional standards for wetlands adjacent to impoundments of jurisdictional 
waters and for wetlands adjacent to tributaries. This is consistent with the pre-2015 regulatory regime.  

As discussed further in sections I.A.iv and IV.A.iii, in the final rule the agencies are retaining 
their longstanding definition of “wetlands” from the 1986 regulations: “Wetlands means those areas that 
are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, 
and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in 
saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.” 
Asserting Clean Water Act jurisdiction over adjacent wetlands as outlined in paragraph (a)(4) of the final 
rule is supported by the scientific literature, as well as the agencies’ scientific and technical expertise and 
experience, which confirm that such adjacent wetlands have chemical, physical, or biological effects on 
traditional navigable waters, the territorial seas, and interstate waters. 
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1. Wetlands Adjacent to Traditional Navigable Waters, the Territorial Seas, 
or Interstate Waters 

Under the final, wetlands adjacent to traditional navigable waters, the territorial seas, or interstate 
waters are jurisdictional without need for further assessment. Wetlands must meet the definition of 
“adjacent’ in paragraph (c)(2) of the final rule, which is described in more detail in section III.B.ii below. 
This is consistent with the pre-2015 regulatory regime. Asserting Clean Water Act jurisdiction over 
wetlands adjacent to traditional navigable waters, the territorial seas, interstate waters, or aligns with the 
scientific literature, as well as the agencies’ scientific and technical expertise and experience, which 
confirm that such wetlands have chemical, physical, and biological effects on the waters to which they are 
adjacent, as discussed in sections III.B.iii, III.B.iv, III.B.v. For example, the scientific literature supports 
that wetlands within close proximity to traditional navigable waters, the territorial seas, or interstate 
waters improve water quality through assimilation, transformation, or sequestration of nutrients, 
sediment, and other pollutants that can affect water quality in such paragraph (a)(1) waters. These waters 
also provide important habitat for aquatic-associated species that utilize paragraph (a)(1) waters to forage, 
breed, and rest in.  

2. Adjacent Wetlands under the Relatively Permanent Standard  

Under the relatively permanent standard, wetlands that have a continuous surface connection with 
a tributary that meets that relatively permanent standard or with a relatively permanent impoundment are 
jurisdictional without the need for a significant nexus finding. The determination of whether a wetland is 
“adjacent” is distinct from whether an “adjacent” wetland meets the relatively permanent standard; 
however, wetlands that have a continuous surface connection to a relatively permanent water meet the 
definition of “adjacent” and thus are a subset of adjacent wetlands. Under the relatively permanent 
standard for adjacent wetlands, wetlands meet the continuous surface connection requirement if they 
physically abut, or touch, a relatively permanent paragraph (a)(2) impoundment or a jurisdictional 
tributary when the jurisdictional tributary meets the relatively permanent standard, or if the wetlands are 
connected to these waters by a discrete feature like a non-jurisdictional ditch, swale, pipe, or culvert. A 
natural berm, bank, dune, or similar natural landform between an adjacent wetland and a relatively 
permanent water does not sever a continuous surface connection to the extent it provides evidence of a 
continuous surface connection.  

A continuous surface connection does not mean a continuous surface water connection and does 
not require surface water to be continuously present between the wetland and water to which it is 
adjacent. The plurality opinion indicates that “continuous surface connection” is a “physical connection 
requirement.” 547 U.S. at 751 n.13 (referring to “our physical-connect requirement” and later stating that 
Riverside Bayview does not reject “the physical-connection requirement”). The agencies’ approach is 
consistent with science, as well as the regulatory definition of “wetlands,” which does not require such 
aquatic resources to have water on the surface. As noted in paragraph (c)(1) of the final rule, wetlands are 
“those areas that are inundated or saturated by surface or groundwater at a frequency and duration 
sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically 
adapted for life in saturated soil conditions.” Under this longstanding definition, wetlands are not required 
to express water at the surface—rather, wetland hydrology may be at the subsurface, for instance where 
soils are saturated by groundwater during the growing season. See also the Corps 1987 Wetlands 
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Delineation manual (noting that one of the key provisions of the agencies’ regulatory definition is 
“[i]inundated or saturated soil conditions resulting from permanent or periodic inundation by 
groundwater or surface” (emphasis added)). Corps 1987 at p. 6. While some wetlands are permanently or 
semipermanently inundated, many aquatic resources that meet the regulatory definition of “wetlands” 
may never have surface water (i.e., have saturated soils), may only have surface water during or 
immediately after precipitation events (i.e., are irregularly inundated), or may only have water at the 
surface seasonally (i.e., are seasonally inundated). Since wetlands frequently do not contain surface water, 
a requirement for continuous surface water between a relatively permanent water and adjacent wetlands 
would be illogical as a scientific and practical matter.  

As discussed in section III.B.ii.1, scientific literature and the agencies technical expertise 
supporting regulating such wetlands with a continuous surface connection to tributaries that meet the 
relatively permanent standard and to jurisdictional relatively permanent impoundments as “waters of the 
United State” under the final rule. 

 

3. Adjacent Wetlands under the Significant Nexus Standard 

Under the significant standard for adjacent wetlands under paragraph (a)(4)(iii), wetlands 
adjacent to jurisdictional impoundments or to tributaries meet the significant nexus standard when the 
wetlands, either alone or in combination with similarly situated waters in the region, significantly affect 
the chemical, physical, or biological integrity of traditional navigable waters, the territorial seas, or 
interstate waters. Under the significant nexus standard in the final rule, the unit of analysis for assessing 
adjacent wetlands is the adjacent wetland, the tributary or impoundment to which it is adjacent, and all 
other adjacent wetlands that are in the tributary’s catchment. The tributary includes the tributary reach of 
the same order, as well as any tributaries that are upstream. That portion of the tributary system, plus any 
adjacent wetlands, would be assessed to determine whether the adjacent wetland, in combination with 
similarly situated waters in the region, significantly affects the chemical, physical, or biological integrity 
of traditional navigable waters, the territorial seas, or interstate waters. Wetlands adjacent to tributaries 
that meet the relatively permanent standard but that lack a continuous surface connect to such tributaries 
will also be assessed under the significant nexus standard, consistent with the pre-2015 regulatory regime. 
See Rapanos Guidance at 8. A determination of adjacency is based on an evaluation of the relationship 
between a wetland and the nearby jurisdictional water, which includes consideration of distance 
(proximity) and both physical and ecological connections between those waterbodies. In contrast, a 
determination of significantly affects is a different inquiry, which is based on evaluating whether there is a 
significant nexus between that adjacent wetland (in combination with similarly situated waters in the 
region) and a traditional navigable water, the territorial seas, or an interstate water. 

As discussed in section III.B.ii, scientific literature and the agencies technical expertise 
supporting protecting adjacent wetlands that meet the significant nexus standard, as such wetlands, 
individually or in combination with similarly situated waters in the region, significantly affect the 
chemical, physical, or biological integrity of traditional navigable waters, the territorial seas, or interstate 
waters. 
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ii. Definition of “Adjacent” Wetlands 

Under the final rule, “adjacent” means bordering, contiguous, or neighboring, including wetlands 
separated from other “waters of the United States” by constructed dikes or barriers, natural river berms, 
beach dunes and the like. Further, waters that connect segments of, or are at the head of, a stream or river 
are “adjacent” to that stream or river. The term “adjacent” is a policy term and is not one that is used in 
the scientific literature. The terms “bordering,” “contiguous,” and “neighboring” are discussed further 
below. Under this definition, adjacency is focused on the distance between the wetland and the 
jurisdictional water. Whether the distance between the wetland and the jurisdictional water qualifies the 
wetland as bordering, contiguous, or neighboring (and therefore “adjacent”) depends on the factual 
circumstances. 

For purposes of adjacency, the entire wetland is adjacent if any part of the water is bordering, 
contiguous, or neighboring. Thus, under the relatively permanent standard, if any portion of a wetland has 
a continuous surface connection with a tributary that meets the relatively permanent standard or with a 
jurisdictional relatively permanent impoundment, the entire wetland meets the standard and thus is 
considered jurisdictional under paragraph (a)(4)(ii) of the final rule. The agencies’ determination that an 
entire wetland is adjacent if any part of the water meets the definition of “adjacent” is informed by 
science and the agencies technical expertise and experience and is consistent with longstanding practice. 
It would be artificial to separate a single wetland into an adjacent and non-adjacent portion, as the entire 
wetland is a single functional unit, and the agencies’ longstanding practice is to treat an entire adjacent 
wetland as one entity.   

The agencies are continuing the practice outlined in the preamble to the proposed rule, consistent 
with the Rapanos Guidance, for the three well-established factors to determine adjacency. The agencies 
consider wetlands to be bordering, contiguous, or neighboring, and therefore “adjacent” if at least one of 
following three criteria is satisfied: 

(1) There is an unbroken surface or shallow sub-surface hydrologic connection to jurisdictional 
waters (discussed in section III.B.ii.2.a); or  

(2) They are physically separated from jurisdictional waters by “man-made dikes or barriers, natural 
river berms, beach dunes, and the like” (discussed in section III.B.ii.2.b); or  

(3) Where their proximity to a jurisdictional water is reasonably close such that “adjacent wetlands 
have significant effects on water quality and the aquatic ecosystem.” Riverside Bayview, 474 U.S. 
at 135 n.9 (discussed in section III.B.ii.2.c).  

If any one of the criteria is met, the wetland is “adjacent,” but may require further analysis to determine if 
it meets the definition of “waters of the United States.” See Rapanos Guidance at 5-8. 

The agencies have determined that the longstanding regulation properly defines the term 
“adjacent” for purposes of the Clean Water Act because it is based on the concept of both reasonable 
proximity and scientific connections. Based on the scientific literature and the agencies’ technical 
expertise and experience, as discussed further in the sections below, the agencies’ longstanding definition 
of “adjacent” is supported by the science. This includes the terms to define “adjacent,” “bordering, 
contiguous, or neighboring,” including wetlands separated from other jurisdictional waters by man-made 
dikes or barriers, natural river berms, beach dunes, and the like. Wetlands that meet the definition of 
“adjacent’ are physically proximate to and integrated with the water to which they are adjacent and, in 
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turn, can individually or cumulatively affect the chemical, physical, or biological integrity of traditional 
navigable waters, the territorial seas, or interstate waters. The agencies have also determined that the 
longstanding implementation criteria for adjacency are supported by the science and the agencies’ 
technical expertise and experience. The three criteria are well-established, are based on scientific 
principles about the relationship of wetland to the water to which it is adjacent, and complement the 
regulatory definition of “adjacent.” Such wetlands that meet one of the three criteria can provide functions 
that significantly affect the chemical, physical, and biological integrity of traditional navigable waters, the 
territorial seas, and interstate waters.  

1. Bordering, Contiguous, or Neighboring Wetlands 

The final rule continues to include wetlands that are bordering, contiguous, or neighboring within 
the definition of “adjacent,” consistent with the current regulatory regime and the agencies’ longstanding 
definition that existed prior to the 2020 NWPR. Within the definition of “adjacent,” the terms bordering 
and contiguous are well understood. For continuity and clarity, the agencies will continue to interpret and 
implement the terms “bordering, contiguous, or neighboring” consistent with the current policy and 
practice. The science demonstrates that bordering, contiguous, or neighboring wetlands are integrated 
with the water to which they are adjacent and can affect the chemical, physical, or biological integrity of 
traditional navigable waters, the territorial seas, or interstate waters. 

Wetlands that are bordering, contiguous, or neighboring wetlands include wetlands with an 
unbroken surface or shallow subsurface connection to jurisdictional waters; wetlands separated by 
constructed dikes or barriers, natural river berms, beach dunes, and the like; and wetlands within 
reasonably close proximity to other jurisdictional waters. This can include wetlands in the floodplain or 
the riparian area, wetlands that are outside of the floodplain or riparian area, run-of-the-stream wetlands, 
headwater wetlands, wetlands with a continuous surface connection to jurisdictional waters, wetlands 
behind a natural berm or similar natural landform, and wetlands behind artificial levees and similar 
artificial features, amongst others. Wetlands that are bordering or contiguous often directly abut the water 
which they are adjacent. (e.g., they are not separated by uplands, an artificial dike, or similar artificial 
feature). See, e.g., U.S. Army Corps of Engineers 2007a. Neighboring wetlands may or may not have a 
continuous surface connection to the waters to which they are adjacent, but science still demonstrates that 
they individually or cumulatively provide important functions that can impact on the chemical, physical, 
and biological integrity of traditional navigable waters, the territorial seas, and interstate waters.  

 As discussed further below, wetlands that are bordering, contiguous, or neighboring perform a 
myriad of critical chemical, physical, and biological functions that affect the integrity of traditional 
navigable waters, the territorial seas, or interstate waters. Such wetlands are integrally linked with the 
jurisdictional waters to which they are adjacent. Because of their close physical proximity to nearby 
jurisdictional waters, bordering, contiguous, or neighboring wetlands readily exchange their waters 
through the saturated soils surrounding the jurisdictional water or through surface exchange. This 
commingling of waters allows bordering, contiguous, or neighboring wetlands to both provide chemically 
transformed waters to streams and to absorb excess stream flow, which in turn can significantly affect 
traditional navigable waters, the territorial seas, or interstate waters. The close proximity also allows for 
the direct exchange of biological materials, including organic matter that serves as part of the food web of 
traditional navigable waters, the territorial seas, or interstate waters.  
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As previously discussed, “adjacent” is a policy term and not one found in the scientific literature. 
Similarly, “bordering, contiguous, or neighboring” are not terms found readily in the scientific literature 
regarding the relationship of a wetland to the tributary system. However, the agencies’ technical expertise 
and experience support that bordering or contiguous wetlands are generally but not always found with the 
riparian area or floodplain. In addition, neighboring waters can also be located within the floodplain or a 
riparian area. Though this section addresses how bordering, contiguous, or neighboring wetlands can 
affect the chemical, physical, and biological integrity of traditional navigable waters, the territorial seas, 
and interstate waters, largely drawing from the scientific literature regarding waters in the floodplain or 
riparian area, the discussion of wetlands located outside the floodplain or riparian area used throughout 
this document, where appropriate and applicable, can also be used to support the agencies’ determination 
that “bordering, contiguous, or neighboring” wetlands that meet the criteria to be jurisdictional under 
paragraph (a)(4) of the final rule should be considered “waters of the United States.” 

The scientific literature supports that “bordering, contiguous, or neighboring” wetlands located in 
riparian areas and floodplains are chemically, physically, and biologically connected to downstream 
traditional navigable waters, the territorial seas, or interstate waters and affect the integrity of such waters. 
The Science Report concludes that wetlands located in “riparian areas and floodplains are physically, 
chemically, and biologically integrated with rivers via functions that improve downstream water quality, 
including the temporary storage and deposition of channeling-forming sediment and woody debris, 
temporary storage of local ground water that supports baseflow in rivers, and transformation and transport 
of stored organic matter.” Science Report at ES-2 to ES-3. Such waters act as the most effective buffer to 
protect downstream waters from nonpoint source pollution (such as nitrogen and phosphorus), provide 
habitat for breeding fish and aquatic insects that also live in streams, and retain floodwaters, sediment, 
nutrients, and contaminants that could otherwise negatively impact the condition or function of 
downstream waters.  

Bordering, contiguous, or neighboring wetlands that are in the riparian area or floodplain lie 
within landscape settings that have bidirectional hydrological exchange with the waters to which they are 
adjacent. Id. at 2-7. Such wetlands play an integral role in the chemical, physical, and biological integrity 
of the waters to which they are adjacent and to traditional navigable waters, the territorial seas, or 
interstate waters. Riparian areas and floodplains often describe the same geographic region. Id. at 2-5. 
Therefore, the discussion of the functions of wetlands in riparian areas will typically apply to floodplains 
unless otherwise noted. Where connections arise specifically from the act of inundation of adjoining land 
during times of higher-than-normal water, the term “floodplain” is solely used to describe the area.  

Riparian areas are transition zones between terrestrial and aquatic ecosystems that are 
distinguished by gradients in biophysical conditions, ecological processes, and biota. Id. at 2-4. Like 
riparian areas, wetlands are also transitional areas between terrestrial and aquatic ecosystems. Wetlands 
are often but not always found in riparian areas, but not all of the riparian area is a wetland. As noted in 
paragraph (c)(1) of the final rule, from a Clean Water Act regulatory perspective, wetlands are those areas 
that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to 
support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for 
life in saturated soil conditions. Only those wetlands that meet the provisions of paragraphs (a)(1) through 
(a)(5) of this final rule will be considered “waters of the United States.” Wetlands in riparian areas 
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significantly influence exchanges of energy and matter with aquatic ecosystems. See, e.g., id. (citing 
National Research Council 2002). 

As discussed in section I.A.iv, floodplains are low areas bordering streams, rivers, lakes, and 
impoundments and are inundated during moderate to high water events. Id. (citing Leopold 1994; 
Osterkamp 2008). Floodplains are also considered riparian areas, but not all riparian areas have 
floodplains. Id. at 2-5. Similar to riparian areas, wetlands are often but not always found in floodplains, 
but not all of the floodplain is a wetland. All rivers and streams within river networks have riparian areas, 
but small streams in constrained valleys are less likely to have floodplains than larger streams and rivers 
in unconstrained valleys. Id.  

Wetlands, like open waters, are considered in-stream or “run-of-the-stream” where they are 
directly part of the tributary system. For example, an in-stream wetland can be part of the headwaters 
(e.g., a headwater wetland) or can be further downstream where, for example, a tributary flows into a 
wetland that then flows into another tributary. For bordering, contiguous, or neighboring wetlands that are 
run-of-the-stream wetlands, the fact that such wetlands are in-stream often enhances their ability to filter 
pollutants and contaminants that would otherwise make it downstream; in-stream wetlands also attenuate 
floodwaters during wet periods and provide important sources of baseflow downstream during dry 
periods. See, e.g., id. at 4-21 (citing Morley et al. 2011).  

One type of wetland often located in-stream are wetlands that are connected to the river network 
through a channel (e.g., wetlands that serve as stream origins). These are wetlands from which a stream 
channel originates. Science Report at 4-2. Where these wetlands directly flow into jurisdictional waters, 
they are bordering, contiguous, or neighboring, and they meet the implementation criteria for a 
continuous surface connection. Because these adjacent wetlands are often located at the headwaters, the 
stream to which they are adjacent may not be large enough to have a floodplain (e.g., they may lie at the 
hillslope or in high gradient areas), and thus in such circumstances they are generally non-floodplain 
wetlands (however, some stream-origin wetlands can be located within the floodplain or riparian area). 
They are part of the stream network itself, and along with first- and second-order streams, form the 
headwaters of the river network. Such bordering, contiguous, or neighboring wetlands have a direct 
hydrologic connection to the tributary network via unidirectional flow from the wetland to the headwater 
stream. 

Wetlands that serve as stream origins connect via perennial, intermittent, or ephemeral drainages 
to river networks. Id. at 4-21 (citing Rains et al. 2006; Rains et al. 2008; Morley et al. 2011; McDonough 
et al. 2015). Regardless of the permanence of flow, such wetlands have an impact on downstream waters. 
Id. at 4-2, 4-40. Wetland seeps, for example, can form where groundwater discharges from breaks in 
slope. Id. at 4-20 (citing Hall et al. 2001; O’Driscoll and DeWalle 2010). They often have perennial 
connections to the stream, providing important sources of water downstream, particularly during summer 
baseflow. Id. at 4-21 (citing Morley et al. 2011). In Maine, for example, seeps were found to provide 40 
to 80% of stream water during baseflow periods. Id. In other cases, surface connections between channel 
origin wetlands and streams are intermittent or ephemeral. In addition to surface water connections, 
groundwater flow can hydrologically connect wetlands that serve as stream origins with the stream 
network. Id. at 4-22.  
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Wetlands at the channel origin generally have chemical, physical, and biological effects on 
traditional navigable waters, the territorial seas, or interstate waters, including hydrologic, water quality, 
and habitat functions, regardless if the outflow from the wetland to the stream is perennial, intermittent, or 
ephemeral. Id. Like other wetlands, wetlands that serve as stream origins can transport channel-forming 
sediment and woody debris, transport stored organic matter, remove and transform pollutants and excess 
nutrients such as nitrogen and phosphorus, attenuate and store floodwaters, contribute to stream baseflow 
through groundwater recharge, and provide habitat for breeding fish, amphibians, reptiles, birds, and other 
aquatic and semi-aquatic species that move from the wetlands to the river network. Id. at 4-40, 4-42. In 
some cases, however, where wetlands that serve as stream origins are already saturated prior to rainfall, 
they can convey stormwater quickly downstream and thus actually increase flood peaks. Id. (citing 
Bullock and Acreman 2003). This is because the wetland soil, if completely saturated, cannot store any 
additional water, making the wetland unable to store floodwater. Id. 

Bordering, contiguous, or neighboring wetlands, including wetlands that serve as stream origins, 
have important chemical, physical, and biological connections downstream that affect traditional 
navigable waters, the territorial seas, and interstate waters. Where they have a direct hydrologic 
connection to the stream network, that connection facilitates the impact they have downstream. This 
impact on downstream waters occurs regardless of whether their connection to the tributary network is 
perennial, intermittent, or ephemeral. Thus, bordering, contiguous, or neighboring wetlands serve 
important functions, which in turn can impact traditional navigable waters, the territorial seas, and 
interstate waters, particularly when their functional contributions to the chemical, physical, or biological 
conditions of downstream waters are combined at a catchment or watershed scale. 

Bordering, contiguous, or neighboring wetlands can include those wetlands located outside the 
riparian area or floodplain. Such wetlands include wetlands with an unbroken surface or shallow 
subsurface connection to jurisdictional waters (particularly when the connection is via a discrete feature 
like a non-jurisdictional ditch, swale, pipe, or culvert or via an unbroken shallow subsurface connection), 
wetlands separated from a jurisdictional water by a natural berm or the like or by a constructed levee or 
the like, and wetlands within reasonably close proximity of a jurisdictional water. The science and the 
agencies’ technical expertise and experience support implementing the definition of “adjacent” to include 
such wetlands, and such wetlands are integrated with the water to which they are adjacent and can provide 
functions that significantly affect the chemical, physical, and biological integrity of traditional navigable 
waters, the territorial seas, and interstate waters.  

Wetlands with an unbroken surface or shallow subsurface connection to other jurisdictional 
waters are “bordering, contiguous, or neighboring.” As discussed further in section III.B.ii.2.a below, the 
science and the agencies’ technical expertise and experience support implementing the definition of 
“adjacent” to include such wetlands, and such wetlands are integrated with the water to which they are 
adjacent and can provide functions that significantly affect the chemical, physical, and biological integrity 
of traditional navigable waters, the territorial seas, and interstate waters. 

Wetlands separated from other “waters of the United States” by man-made dikes or barriers, 
natural river berms, beach dunes, and the like are “bordering, contiguous, or neighboring” and thus 
“adjacent” under the final rule, consistent with the agencies’ longstanding definition of “adjacent.” As 
discussed further in section III.B.ii.2.b. below, the science and the agencies’ technical expertise and 
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experience support including such wetlands in the definition of “adjacent,” and such wetlands can provide 
functions that significantly affect the chemical, physical, and biological integrity of traditional navigable 
waters, the territorial seas, and interstate waters.  

Wetlands within reasonably close proximity of jurisdictional waters are “bordering, contiguous, 
or neighboring.” The agencies have always recognized that adjacency is bounded by proximity. In 
addition, the science is clear that a wetland’s proximity to downstream waters influences its impact on 
those waters. The Science Report states, “[s]patial proximity is one important determinant of the 
magnitude, frequency and duration of connections between wetlands and streams that will ultimately 
influence the fluxes of water, materials and biota between wetlands and downstream waters.” Id. at ES-
11. Generally, wetlands that are closer to a jurisdictional water are more likely to be connected to that 
water than wetlands that are farther away. As discussed further in section III.B.ii.2.c below, the science 
and the agencies’ technical expertise and experience support implementing the definition of “adjacent” to 
include such wetlands. “Bordering, contiguous, or neighboring” wetlands that are within close proximity 
of the jurisdictional water are integrated with the water to which they are adjacent and can have 
significant chemical, physical, and biological connections with and effects on traditional navigable 
waters, the territorial seas, or interstate waters. 

Based on a review of the scientific literature and the agencies’ technical expertise and experience, 
the final rule continues the longstanding interpretation in regulations predating the 2020 NWPR that 
wetlands that are “bordering, contiguous, or neighboring” to other jurisdictional waters are “adjacent,” 
including wetlands separated from other jurisdictional waters by man-made dikes or barriers, natural river 
berms, beach dunes, and the like. Under the final rule, adjacent wetlands are jurisdictional when they are 
adjacent to a traditional navigable water, the territorial seas, or an interstate water, and where they are 
adjacent to jurisdictional tributaries and jurisdictional impoundments and meet either the relatively 
permanent standard or the significant nexus standard as described in paragraph (a)(4).  

2. Determination of Adjacent Wetlands  

As with the proposed rule, the final rule will continue the well-established practice outlined in the 
Rapanos Guidance for the three criteria to determine adjacency. First, there is an unbroken surface or 
shallow subsurface connection to jurisdictional waters; this hydrologic connection maybe intermittent. 
Second, the wetlands are physically separated from jurisdictional waters by human-made dikes or 
barriers, natural river berms, beach dunes, and the like (discussed in section III.B.ii.2.b). Or third, their 
proximity to a jurisdictional water is reasonably close such that “adjacent wetlands have significant 
effects on water quality and the aquatic ecosystem.” Riverside Bayview, 474 U.S. at 135 n.9. See also 
Rapanos Guidance at 5-6. Wetlands that adjacent will need to meet one of these under the factors under 
the final rule and are “bordering, contiguous, or neighboring.” Such wetlands would then be assessed 
under paragraph (a)(4) to determine if they are “waters of the United States” under the final rule. These 
longstanding criteria are derived from the regulatory definition of “adjacent,” and the science, along with 
the agencies’ technical and expertise, supports including such wetlands in the definition of “adjacent.” As 
discussed further below in this section, such wetlands can provide functions that significantly affect the 
chemical, physical, and biological integrity of traditional navigable waters, the territorial seas, and 
interstate waters. 
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a. Wetlands with an Unbroken Surface or Shallow Subsurface 
Connection 

Adjacent wetlands under the final rule include wetlands with an unbroken surface or shallow 
subsurface connection. Wetlands that meet the relatively permanent standard will always meet this 
criterion, as they have a continuous surface connection to the jurisdictional water to which they are 
adjacent. An unbroken surface or shallow subsurface connection can be established, for example, where 
the wetland directly abuts the jurisdictional water or by a non-jurisdictional physical feature that provides 
the direct connection between the wetland and a jurisdictional water, such as a pipe, culvert, non-
jurisdictional ditch, or flood gate, that has at least periodic flow. Under the final rule, an unbroken surface 
connection includes but is not limited to surface hydrologic connections, including confined surface 
hydrologic connections. 

An unbroken surface or shallow subsurface hydrologic connection to jurisdictional waters may be 
established by a physical feature or discrete conveyance that supports periodic flow between the wetland 
and a jurisdictional water, such as a pipe, culvert, non-jurisdictional ditch, or flood gate. Water does not 
have to be continuously present in this hydrologic connection and the flow between the wetland and the 
jurisdictional water may move in either or both directions. The hydrologic connection need not itself be a 
jurisdictional water.  

Both confined surface and shallow subsurface connections are forms of direct hydrologic 
connections between adjacent wetlands and the waters to which they are adjacent. Confined surface 
connections consist of permanent, intermittent, or ephemeral surface connections through directional 
flowpaths, such as (but not limited to) swales, gullies, rills, and ditches. In some cases, these connections 
will be a result of “fill and spill” hydrology, but only where such a surface connection is unbroken. A 
directional flowpath is a path where water flows repeatedly from the wetland to the nearby jurisdictional 
water that at times contains water originating in the adjacent wetland as opposed to just directly from 
precipitation. 

A shallow subsurface hydrologic connection is lateral water flow through a shallow subsurface 
layer, such as may be found in steeply sloping forested areas with shallow soils, soils with a restrictive 
horizon, or in karst systems. Devito et al. 1996; O’Driscoll and Parizek 2003; Cook and Hauer 2007. A 
shallow subsurface connection also exists, for example, when the adjacent wetland and the water to which 
it is adjacent are in contact with the same shallow aquifer (e.g., an alluvial aquifer) or with the same 
shallow water table which fluctuates within the soil profile, sometimes rising to or near the ground 
surface. In addition, water can move within confined human-made subsurface conveyance systems such 
as drain tiles and storm sewers (Science Report at 3-3 and 4-24 (citing Schiller et al. 2012)), and within 
natural subsurface conveyance systems such as karst topography or lava tubes (see, e.g., Miller et al. 
2013; O’Driscoll and Parizek 2003; U.S. EPA 2002). Shallow subsurface connections may be found 
below the ordinary root zone (below 12 inches), where other wetland delineation factors may not be 
present. A combination of physical factors may reflect the presence of a shallow subsurface connection, 
including, position in the landscape (for example, on a slope directing flow from wetland to jurisdictional 
waters), stream hydrograph, and soil surveys (for example, exhibiting indicators of high transmissivity 
over an impermeable layer), and information indication that the water table in the stream is lower than in 
the shallow subsurface. 
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Shallow subsurface connections are distinct from deeper groundwater connections, which do not 
satisfy the requirement for adjacency, in that the former exhibit a direct connection to the water found on 
the surface in wetlands. While they may provide the connection establishing jurisdiction, these shallow 
subsurface flows are not “waters of the United States.” 

The Science Report supports that the functions of non-floodplain wetlands clearly affect the 
condition of downstream waters if a visible (e.g., channelized) surface-water or a regular shallow 
subsurface-water connection to the river network is present. Science Report at ES-3. The SAB also noted 
the importance of shallow subsurface connections and stated, “[t]he available science…shows that 
groundwater connections, particularly via shallow flow paths in unconfined aquifers, can be critical in 
support the hydrology and biogeochemical functions of wetlands and other waters.” SAB 2014b. For non-
floodplain wetlands connected through ground-water flows, less distant areas are generally connected 
through shallower flowpaths, assuming similar soil and geologic properties. Id. at 2-39. These shallow 
subsurface flows have the greatest interchange with surface waters and travel between points in the 
shortest amount of time. Id. Water can move within confined man-made subsurface conveyance systems 
such as drain tiles and storm sewers, and in karst topography. See, e.g., Miller et al. 2013; O’Driscoll and 
Parizek 2003; U.S. EPA 2002. Confined subsurface systems can move water, and potential contaminants, 
directly to surface waters rapidly without the opportunity for nutrient or sediment reduction along the 
pathway. Science Report at 3-28; 4-24 (citing Royer et al. 2004). Shallow subsurface connections move 
quickly through the soil and impact surface water directly within hours or days rather than the years it 
may take long pathways to reach surface waters. The Science Report refers to local groundwater flow or 
shallow groundwater flow, which is a type of shallow subsurface connections. Id. at 2-11. Such shallow 
subsurface connections flow from the highest elevations of the water tables to nearby lowlands or surface 
waters. Id. (citing Winter and LaBaugh 2003). These are dynamic hydrologic connections that have the 
greatest interchange with surface waters. Id. The presence of a confining layer near the surface also leads 
to shallow subsurface flows through the soil. Id. at 2-34. 

Asserting Clean Water Act jurisdiction over adjacent wetlands with an unbroken surface or 
shallow subsurface connection to jurisdictional waters where they are adjacent to traditional navigable 
waters, the territorial seas, or interstate waters, or where they meet either the relatively permanent or 
significant standard, aligns with the scientific literature, as well as the agencies’ scientific and technical 
expertise and experience, which confirm that such wetlands have chemical, physical, and biological 
effects on downstream traditional navigable waters, the territorial seas, and interstate waters. 

b. Wetlands Separated by Constructed Dikes or Barriers, Natural 
River Berms, Beach Dunes, and the Like 

Wetlands separated from other “waters of the United States” by constructed dikes or barriers, 
natural river berms, beach dunes and the like are adjacent under the final rule, which is consistent with the 
pre-2015 regulatory regime and continued from the regulatory definition of “adjacent” that existed prior 
to the 2020 NWPR. This has been a longstanding part of the concept of adjacency under the agencies’ 
regulations defining “waters of the United States” (except in the 2020 NWPR), and the agencies are 
restoring their longstanding definition of “adjacent.” Including wetlands behind certain natural features or 
artificial barriers as adjacent wetlands is also consistent with Justice Kennedy’s opinion, which noted the 
important functions that such wetlands can play: “In many cases, moreover, filling in wetlands separated 
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from another water by a berm can mean that floodwater, impurities, or runoff that would have been stored 
or contained in the wetlands will instead flow out to major waterways. With these concerns in mind, the 
Corps’ definition of adjacency is a reasonable one, for it may be the absence of an interchange of waters 
prior to the dredge and fill activity that makes protection of the wetlands critical to the statutory scheme.” 
Rapanos, 547 U.S. at 775. 

If a wetland is separated from a jurisdictional water by man-made dikes or barriers, natural river 
berms, beach dunes, and the like, then the wetlands adjacent under this rule, consistent with the 1986 
regulations. Waters separated by constructed dikes or barriers, natural river berms, beach dunes, and the 
like are considered bordering, contiguous, or neighboring, and the presence of the artificial barrier or 
natural landform does not affect their adjacency. No additional identification of a hydrologic connection 
between the wetland and the jurisdictional water is required for such wetlands to be considered adjacent. 
For example, a wetland that is separated from a jurisdictional tributary simply by a 40-foot road meets the 
longstanding definition of adjacent. With respect to beach dunes and similar natural landforms like river 
berms, more than one dune may exist between an adjacent wetland and jurisdictional water (including 
primary and secondary dunes), because beach dunes typically function as an interdunal system 
(particularly on barrier islands). For example, interdunal wetlands which are located between dune ridges 
would be adjacent. Similarly, more than one natural river berm may exist between an adjacent wetland 
and a jurisdictional water because such natural river berms were formed as a system in the floodplain due 
to overbank flooding of the river and typically function as a system. Thus, more than one natural river 
berm may exist between an adjacent wetland and the jurisdictional water. 

In some cases, a wetland may be separated from a jurisdictional water by more than one human-
made dike or barrier or multiple types of barriers and landforms (e.g., a wetland separated by a human-
made barrier and a natural river berm). The agencies will assess such wetlands consistent with the other 
adjacency criteria previously described (i.e., by identifying the presence of an unbroken surface or 
shallow subsurface connection or determining that their proximity to a jurisdictional water is reasonably 
close).  

Under the final rule, such wetlands adjacent to traditional navigable waters, the territorial seas, or 
interstate waters are jurisdictional under paragraph (a)(4)(i). Such wetlands that are adjacent to tributaries 
or impoundments would likely require a significant nexus analysis under paragraph (a)(4)(iii) of the final 
rule, with the exception of wetlands behind natural landforms where the river berm, beach dune, or the 
like serves as an indication of a continuous surface connection and wetlands behind artificial barriers or 
natural landforms that maintain a continuous surface connection to relatively permanent impoundments or 
tributaries, such as through a culvert, flood gate, or break in the dam, beach dune, or levee. Such wetlands 
with a continuous surface connection to relatively permanent waters would be evaluated under paragraph 
(a)(4)(ii) of the final rule. Asserting Clean Water Act jurisdiction over adjacent wetlands separated from 
other jurisdictional waters by constructed dikes or barriers, natural river berms, beach dunes and the like, 
where the wetlands meet the standards in paragraph (a)(4) of the final rule, aligns with the scientific 
literature, as well as the agencies’ scientific and technical expertise and experience, which confirm that 
such wetlands have chemical, physical, and biological effects on traditional navigable waters, the 
territorial seas, and interstate waters. 
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 If uplands separating a wetland from jurisdictional water can reasonably be characterized as 
“man-made dikes or barriers, natural river berms, beach dunes, and the like,” then, under the final rule, 
the wetlands are adjacent even if no apparent hydrologic connection exists. The terms earthen dam, dike, 
berm, and levee are used to describe similar structures whose primary purpose is to help control flood 
waters. Such structures vary in scale and size. A levee is an embankment whose primary purpose is to 
furnish flood protection from seasonal high water and which is therefore subject to water loading for 
periods of only a few days or weeks a year. Earthen embankments that are subject to water loading for 
prolonged periods (longer than normal flood protection requirements) are called earth dams. There are a 
wide variety of types of structures and an even wider set of construction methods. These range from a 
poorly constructed, low earthen berm pushed up by a backhoe to a well-constructed, impervious core, 
riprap lined levee that protects houses and cropland. Generally, levees are built to detach the floodplain 
from the channel, decreasing overbank flood events. Franklin et al. 2009. The investigation methods to 
determine the presence or absence of the hydrologic connection depend on the type of structure, the 
underlying soils, the presence of groundwater, and the depth of the water table. U.S. Army Corps of 
Engineers 2000 at 1-1.  

 Barriers between wetlands and jurisdictional waters have been constructed for centuries (see, e.g., 
National Geographic Society 2022 (“As early as 2500 BCE, the Indus Valley Civilization, with urban 
centers in what is today Mohenjo Daro and Harappa, Pakistan, used levees to protect land near the Indus 
River” and “Since the 18th century, levees have protected Louisiana and other nearby states from 
flooding by the Mississippi River”)). Human-made berms and the like are fairly common along streams 
and rivers across the United States and often accompany stream channelization. Franklin et al. 2009; 
Morrison et al. 2018. One study conducted in Portland, Oregon found that 42% of surveyed wetlands had 
dams, dikes, or berms. Kentula et al. 2004. Likewise, over 90% of the tidal freshwater wetlands of the 
Sacramento-San Joaquin Delta have been diked or leveed. Simenstad et al. 1999. At least 40,000 
kilometers of levees, floodwalls, embankments, and dikes are estimated across the United States, with 
approximately 17,000 kilometers (more than 10,000 miles) of levees in the Upper Mississippi Valley 
alone. Gergel et al. 2002. 

 Adjacent wetlands separated from the tributary network by dikes, levees, berms, and the like 
typically continue to have a hydrologic connection to the jurisdictional waters to which they are adjacent. 
This is because berms and similar features typically do not block all water flow. Indeed, even dams, 
which are specifically designed and constructed to impound large amounts of water effectively and safely, 
do not prevent all water flow, but rather allow seepage under the foundation of the dam and through the 
dam itself. See, e.g., International Atomic Energy Agency 2003; U.S. Bureau of Reclamation; Federal 
Energy Regulatory Commission 2005.  

 Seepage is the flow of a fluid through the soil pores. Seepage through a dam, through the 
embankments, foundations or abutments, or through a berm is a normal condition. Kovacic et al. 2000; 
Federal Energy Regulatory Commission 2005. This is because water seeks paths of least resistance 
through the berm or dam and its foundation. Association of State Dam Safety Officials 2021. All earth 
and rock-fill dams are subject to seepage through the embankment, foundation, and abutments. U.S. 
Army Corps of Engineers 1993; U.S. Army Corps of Engineers 2004. Concrete gravity and arch dams 
similarly are subject to seepage through the foundation and abutments. U.S. Army Corps of Engineers 
1993. Levees and the like are subject to breaches and breaks during times of floods. Nilsson et al. 2005. 
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Levees are similarly subject to failure in the case of extreme events, such as the extensive levee failures 
caused by Hurricanes Katrina and Rita. Day et al. 2007. In designing levees and similar structures, 
seepage control is necessary to prevent possible failure caused by excessive uplift pressures, instability of 
the downstream slope, piping through the embankment and/or foundation, and erosion of material by 
migration into open joints in the foundation and abutments. Id.; Kovacic et al. 2000; U.S. Bureau of 
Reclamation; International Atomic Energy Agency 2003; California Division of Safety of Dams 1993.  

 The rate at which water moves through the embankment depends on the type of soil in the 
embankment, how well it is compacted, the foundation and abutment preparation, and the number and 
size of cracks and voids within the embankment. All but the smallest earthen dams are commonly built 
with internal subsurface drains to intercept water seeping from the reservoir (i.e., upstream side) to the 
downstream side. U.S. Army Corps of Engineers 1995. Where it is not intercepted by a subsurface drain, 
the seepage will emerge downstream from or at the toe of the embankment. Association of State Dam 
Safety Officials 2021. Seepage may vary in appearance from a “soft,” wet area to a flowing “spring.” It 
may show up first as an area where the vegetation is lush and darker green. Cattails, reeds, mosses, and 
other marsh vegetation may grow in a seepage area. Id. 

 Engineered berms are typically designed to interfere with the seasonal pattern of water level 
(hydroperiod) of the area behind the berm, reducing the frequency and severity of inundation. Berms are 
not designed to eliminate all hydrologic connection between the channel on one side and the area behind 
the berm on the other. It is almost always impracticable to build a berm that will not be overtopped by a 
flood of maximum severity, and most berms are not designed to withstand severe floods. See, e.g., U.S. 
Army Corps of Engineers 1993. Levees are designed to allow seepage and are frequently situated on 
foundations having natural covers of relatively fine-grain impervious to semipervious soils overlying 
pervious sands and gravels. U.S. Army Corps of Engineers 2005a. These surface strata constitute 
impervious or semipervious blankets when considered in connection with seepage. Principal seepage 
control measures for foundation underseepage are (a) cutoff trenches, (b) riverside impervious blankets, 
(c) landslide berms, (d) pervious toe trenches, and (e) pressure relief wells. U.S. Army Corps of Engineers 
2000. Overtopping of an embankment dam is very undesirable because the embankment materials may be 
eroded away. Additionally, only a small number of concrete dams have been designed to be overtopped. 
Water normally passes through the main spillway or outlet works; it should pass over an auxiliary 
spillway only during periods of high reservoir levels and high water inflow. All embankment and most 
concrete dams have some seepage. See, e.g., Texas Commission on Environmental Quality 2006. 
However, it is important to control the seepage to prevent internal erosion and instability. Proper dam 
construction, and maintenance and monitoring of seepage provide control.  

 It is important to note that natural river berms are formed by sediment deposits accumulating at or 
near the stream bank during flood events. Such berms vary in height from inches to feet, and also can be 
quite wide. Wharton et al. 1982. Berm-like landforms known as natural levees occur naturally and do not 
isolate adjacent wetlands from the streams that form them. Hydrologic connections can be bidirectional 
across berms or other similar features when integrated over time during and after floods when the 
hydraulic or hydrostatic gradient changes direction. Natural levees and the wetlands and waters behind 
them are part of the floodplain, including along some small streams and streams in the arid West. 
Johnston et al. 2001. Every flowing watercourse transports not only water, but sediment—eroding and 
rebuilding its banks and floodplains continually. Federal Interagency Stream Restoration Working Group 
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1998. Different deposition patterns occur under varying levels of streamflow, with higher flows having 
the most influence on the resulting shape of streambanks and floodplains. Id. In relatively flat landscapes 
drained by low-gradient streams, this natural process deposits the most sediment on the bank immediately 
next to the stream channel while floodplains farther from the channel are usually lower-lying wetlands 
(“backswamps” or “backwater wetlands”) that receive less sediment. See, e.g., Johnston et al. 1997. The 
somewhat elevated land thus built up at streamside is called a natural levee, and this entirely natural 
landform is physically and hydrologically similar to narrow, human-made berms. See, e.g., Leopold et al. 
1964. Natural levees are discontinuous, which allows for a hydrologic connection to the stream or river 
via openings in the levees and thus the periodic mixing of river water and backwater. Johnston et al. 
2001. Such discontinuities in natural levees can contribute to a continuous surface connection that is 
sufficient to satisfy the requirements for jurisdiction of wetlands adjacent to relatively permanent 
impoundments or tributaries under paragraph (a)(4)(ii) of the final rule. In addition, streams with natural 
levees, in settings with no human interference whatsoever, retain hydrologic connection with their 
wetlands behind the levees by periodic flooding during high water and via seepage through and under the 
levee. Similarly, human-made berms are typically periodically overtopped with water from the near-by 
stream, and as previously mentioned, are connected via seepage.  

 Wetlands separated from a stream by a natural or human-made berm serve many of the same 
functions as those discussed above on other adjacent wetlands. Furthermore, even in cases where a 
hydrologic connection may not exist, there are other important considerations, such as chemical and 
biological factors, that result in important connections between the adjacent wetlands and the nearby 
“waters of the United States,” that affect downstream waters. 

 The movement of surface and subsurface water both over berms and through soils and berms 
adjacent to rivers and streams is a hydrologic connection between wetlands and flowing watercourses. 
The intermittent connection of surface waters over the top of, or around, natural and human-made berms 
further strengthens the evidence of hydrologic connection between wetlands and flowing watercourses. 
Both natural and human-made barriers can be topped by occasional floods or storm events. See, e.g., 
Turner et al. 2006; Keddy et al. 2007. When berms are periodically overtopped by water, wetlands and 
waters behind the barriers are directly connected to and interacting with the nearby stream and its 
downstream waters. In addition, surface waters move to and from adjacent soils (including adjacent 
wetland soils) continually. Along their entire length, streams alternate between effluent (water-gaining) 
and influent (water-losing) zones as the direction of water exchange with the streambed and banks varies. 
Federal Interagency Stream Restoration Working Group 1998. The adjacent areas involved in this surface 
water exchange with a stream or river are known as the hyporheic zone. Hyporheic zone waters are part 
of total surface waters temporarily moving through soil or sediment. Like within-channel waters, these 
waters are oxygenated and support living communities of organisms in the hyporheic zone.  

 Because a hydrologic connection between adjacent wetlands and downstream waters still exists 
despite the presence of a berm or the like, the chemical and biological connections that rely on a 
hydrologic connection also exist. For instance, adjacent wetlands behind berms can still serve important 
water quality functions, serving to filter pollutants and sediment before they reach downstream waters. 
Wetlands behind berms can function to filter pollutants before they enter the nearby tributary, with the 
water slowly released to the stream through seepage or other hydrological connections. See, e.g., Osborne 
and Kovacic 1993; Kovacic 2000. Their ability to retain sediment and floodwaters may be enhanced by 
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the presence of the berm. For instance, some backwater wetlands in floodplain/riparian areas exhibit 
higher sedimentation rates than streamside locations. Kuenzler et al. 1980; Johnston et al. 2001. The 
presence of manmade levees can actually increase denitrification rates, meaning that the adjacent 
wetlands can more quickly transform nitrogen. Gergel et al. 2005. However, the presence of manmade 
berms does limit the ability of the river to connect with its adjacent wetlands through overbank flooding 
and thus limits sediment, water and nutrients transported from the river to the adjacent wetlands. Id.; 
Florsheim and Mount 2003. However, the presence of a berm does not completely eliminate the transport 
of sediments and water from the river to the nearby adjacent wetland, as suspended sediments and water 
can overflow both natural and human-made levees, though the transport is usually more pronounced in 
settings with natural levees. See, e.g., Turner et al. 2006; Keddy et al. 2007. Sediment deposition over 
levees is particularly enhanced by extreme events like hurricanes. Id.; Reed et al. 2006. Wetlands behind 
berms, where the system is extensive, can help reduce the impacts of storm surges caused by hurricanes. 
Day et al. 2007.  

 Adjacent wetlands separated from water bodies by berms and the like maintain ecological 
connection with those water bodies. Though a berm may reduce habitat functional value and may prevent 
some species from moving back and forth from the wetland to the river, many major species that prefer 
habitats at the interface of wetland and stream ecosystems remain able to utilize both habitats despite the 
presence of such a berm. Additional species that are physically isolated in either stream or wetlands 
habitat still interact ecologically with species from the other component. Thus, adjacent wetlands with or 
without small berms can retain numerous similarities in ecological function. For example: wetland bird 
species such as wading birds are able to utilize both wetland and adjacent stream/ditch habitats; wetland 
amphibians would be able to bypass the berm in their adult stage; aquatic invertebrates and fish would 
still interact with terrestrial/wetland predators and prey in common food web relationships despite the 
presence of a berm. See, e.g., Butcher and Zimpel 1991; Willson and Halupka 1995; Cederholm et al. 
1999; Schwartz and Jenkins 2000; Bilton et al. 2001. 

Beach dunes are another form of a natural barrier that does not sever adjacency. Beach dunes are 
formed by tidal or wave action. Multiple beach dunes may exist between a wetland and jurisdictional 
water (including primary and secondary dunes), because beach dunes typically function as an interdunal 
system (particularly on barrier islands). Adjacent wetlands behind beach dunes include intradunal and 
interdunal wetlands located in coastal areas, including some areas of the Great Lakes and along barrier 
islands. Interdunal wetlands form in swales or depressions within open dunes or between beach ridges 
along the coast and experience a fluctuating water table seasonally and yearly in synchrony with sea or 
lake level changes. Odum 1988; Albert 2000; Albert 2003; Albert 2007. For those along the ocean coast, 
they are typically formed as a result of oceanic processes where the wetlands establish behind relict dune 
ridges (dunes that were formed along a previously existing coast line). These wetlands occur in 
depressional areas between sand dunes or beach ridges. The waters, including wetlands, generally form 
when water levels of the territorial seas fall or the Great Lakes drop, creating swales that support a diverse 
mix of wetland vegetation and many endangered and threatened species. Odum 1988; Albert 2000; Albert 
2003; Tiner 2003c; Albert 2007. Wetlands in the interdunal system are in close proximity to each other 
and to the surrounding traditional navigable waters or territorial seas. Their proximity to one another and 
to the traditional navigable waters or territorial seas indicates a close physical relationship between 
interdunal wetland systems and the traditional navigable waters, the territorial seas, or interstate waters. 
Despite the presence of the beach dunes, interdunal wetlands have chemical, physical, or biological 
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connections that greatly influence the integrity of the nearby traditional navigable waters or territorial 
seas. The wetlands are hydrologically connected to these traditional navigable waters or territorial seas 
through unconfined, directional flow and shallow subsurface flow during normal precipitation events and 
extreme events. As previously noted, they are linked to the rise and fall of the surrounding tides or water 
levels in the case of the Great Lakes—the water-level fluctuations of the nearby traditional navigable 
waters or territorial seas are important for the dynamics of the wetlands. Albert 2003. The wetlands 
provide floodwater storage and attenuation, retaining and slowly releasing floodwaters before they reach 
the nearby traditional navigable waters or territorial seas. Like other adjacent wetlands, interdunal 
wetlands also have important chemical connections to the nearby traditional navigable waters or territorial 
seas as they serve important water quality benefits. The wetlands store sediment and pollutants that would 
otherwise reach the surrounding traditional navigable waters or territorial seas. The wetlands are 
biologically connected to the surrounding traditional navigable waters or territorial seas. For instance, 
they provide critical habitats for species that utilize both the wetlands and the nearby traditional navigable 
waters or territorial seas, supporting high diversity and structure. Habitat uses include basic food, shelter, 
and reproductive requirements. Aquatic insects, amphibians, and resident and migratory birds all use 
interdunal wetlands as critical habitat, and the wetlands provide better shelter than the nearby exposed 
beach. Albert 2000; Smith et al. 2008. In marine coastal areas, the wetlands are often the only freshwater 
system in the immediate landscape, thus providing critical drinking water for the species that utilize both 
the wetlands and the nearby traditional navigable waters or territorial seas, although some interdunal 
wetlands are brackish in nature. See, e.g., Heckscher and Bartlett 2004.  

 Wetlands behind the extensive levee system in the Yazoo Basin are an example of adjacent 
wetlands behind human-made barriers. A regional hydrogeomorphic approach guidebook for the Yazoo 
Basin of the Lower Mississippi River Alluvial Valley assesses the functions of these wetlands. Smith and 
Klimas 2002. An extensive levee system was built along the river system to prevent flooding of the 
Mississippi River, resulting in drastic effects to the hydrology of the basin. Id. Despite the alteration of 
hydrology in the basin, extensive wetlands systems still exist behind the human-made and natural levees 
and maintain a hydrologic connection to the river system. These wetlands detain floodwater, detain 
precipitation, cycle nutrients, export organic carbon, remove elements and compounds, maintain plant 
communities, and provide fish and wildlife habitat. Id. The functions in turn provide numerous benefits to 
the nearby river.  

c. Reasonably Close Wetlands 

Adjacent wetlands under the final rule include wetlands that are within reasonably close 
proximity to jurisdictional waters such that “adjacent wetlands have significant effects on water quality 
and the aquatic ecosystem.” Riverside Bayview, 474 U.S. at 135 n.9. The Supreme Court in Riverside 
Bayview deferred to the Corps’ judgment that adjacent wetlands “that form the border of or are in 
reasonable proximity to” other “waters of the United States” “may be defined as waters under the Act.” 
Riverside Bayview, 474 U.S. at 134. The agencies have long considered adjacent wetlands to include 
those within reasonably close proximity of other jurisdictional waters. See 42 FR 37128 (July 19, 1977) 
(Corps’ preamble to the 1977 definition of “navigable waters,” noting that “Federal jurisdiction under 
Section 404 must include any adjacent wetlands that form the border of or are in reasonable proximity to 
other waters of the United States, as these wetlands are part of this aquatic system”) (emphasis added). 
The ecological relationship between jurisdictional waters and their adjacent wetlands is well documented 



Page 185 of 564 

in the scientific literature and reflects their physical proximity as well as shared hydrological and 
biological characteristics. Rapanos Guidance at 9. The agencies conclude that close proximity between an 
adjacent wetland and a jurisdictional water means the wetland can modulate water quantity or water 
quality in the jurisdictional water, and the jurisdictional water can modulate water quantity or quality in 
the wetland. For example, wetlands typically help to store floodwaters, pollutants, and sediments that 
could otherwise reach the jurisdictional water to which they are adjacent. They can also provide flow 
contributions to the jurisdictional waters to which they are adjacent during high hydroperiods, where 
water spills from the wetland to the nearby jurisdictional water, and such contributions of flow are 
facilitated by the wetland’s close proximity to the jurisdictional water. The proximate jurisdictional 
waters can serve as important sources of water for adjacent wetlands, for example, through overtopping 
events where flow from the jurisdictional waters is stored in the wetlands.  

While under this rule the agencies are not establishing distance limits for adjacency, the agencies 
recognize that as the distance between the wetland and jurisdictional water increases, the reasonableness 
of the connection between the waters will generally decrease, particularly in the absence of the type of 
surface or shallow subsurface connections described above, and a finding of adjacency is less likely. The 
distance between a jurisdictional water and its adjacent wetlands may vary by region, as well as based on 
site-specific factors within regions. The distance between a jurisdictional water and an adjacent wetland 
can vary from site to site and region to region due to differences in climate, geomorphology, landscape 
setting, hydrology, soils, vegetation, elevation, size of the jurisdictional water, and other site-specific 
variables. Because of regional variability and its effects on proximity for purposes of adjacency, wetlands 
in the arid West—where rainfall is generally lower, evaporation rates are higher, and riparian areas and 
floodplains often do not extend far from the tributary network—may often be closer to the jurisdictional 
water than in more humid parts of the country. On the other hand, where the jurisdictional water is wide 
(e.g., a wide river), topography is flat lending to larger floodplains and riparian areas, and rainfall is 
higher, wetlands are more likely to be determined to be reasonably close at a distance that is further from 
the jurisdictional water than in other circumstances because the site-specific conditions contribute to the 
close relationship between the wetland and the jurisdictional water, including any unbroken surface or 
shallow subsurface hydrologic connections between the waters. 

While bright-line rules (for example, rules that state that wetlands that are more than a specific 
number of feet from a jurisdictional water are not “adjacent”) are generally easiest to understand and 
implement, convenience is not the only goal the agencies must consider in administering the Clean Water 
Act. Because the relationship between a jurisdictional water and a proximate wetland can depend upon a 
number of site-specific factors, like climate, geomorphology, landscapes, hydrology, and size of the 
jurisdictional water (e.g., the ocean compared to a headwater stream), and because the central purpose of 
the Act is to protect the integrity of the nation’s waters, a more nuanced analysis is required. While 
science says that all things being equal, distance, location in a riparian area or floodplain, or discrete 
hydrologic connections are more likely to strengthen the relationship between a wetland and a nearby 
water, science does not provide bright lines on appropriate distances to determine adjacency. In 
implementing this provision over the years, the agencies have worked hard to balance the desire for 
clarity and predictability with the agencies’ scientific understanding of the resources Congress has 
charged the agencies with protecting. The agencies have carefully considered options for nationally 
applicable bright lines with respect to adjacency, such as establishing that any wetland within a certain 
number of feet from a jurisdictional tributary is per se jurisdictional, in order to facilitate implementation 
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of the Clean Water Act and to minimize the burden on both landowners and the agencies to evaluate the 
scope of “waters of the United States.” However, the United States is a vast country with many different 
types of waters, watersheds, landscapes, and hydrology. In fact, in the 2015 Clean Water Rule the 
agencies sought to establish a distance-based bright line for determining adjacency. As discussed in 
section IV.B.1 of the preamble, that rule was immediately challenged, and the distance-based limitations 
were a substantial factor in many of the challenges. As the Supreme Court itself has recognized, the scope 
of Clean Water Act jurisdiction does not easily lend itself to bright lines: “In sum, we recognize that a 
more absolute position . . . may be easier to administer. But, as we have said, those positions have 
consequences that are inconsistent with major congressional objectives, as revealed by the statute’s 
language, structure, and purposes.” Maui, 140 S. Ct. at 1477. Ultimately, for purposes of the final rule, 
the agencies concluded that there was not a reasoned basis, consistent with the text of the statute, to 
establish such a regulatory bright line. 

Under the pre-2015 regulatory regime, the agencies have stated that a wetland’s reasonably close 
proximity supports the science-based inference that such wetlands have an ecological interconnection 
with jurisdictional waters.38 Because of the scientific basis for this inference, determining whether a 
wetland is reasonably close to a jurisdictional water does not generally require a case-specific 
demonstration of an ecological interconnection. In the case of a jurisdictional water and a reasonably 
close wetland, such implied ecological interconnectivity is neither speculative nor insubstantial. For 
example, species, such as amphibians or anadromous and catadromous fish, move between such waters 
for spawning and their life stage requirements. In assessing whether a wetland is reasonably close to a 
jurisdictional water, the proximity of the wetland (including all parts of a single wetland that has been 
divided by road crossings, ditches, berms, etc.) in question is evaluated. This is consistent with pre-2015 
practice. See Rapanos Guidance at 6.  

Based on a review of the scientific literature and the agencies’ expertise and experience, the 
agencies determined that adjacent wetlands that are within reasonably close proximity to a jurisdictional 
water are integrally linked to the chemical, physical, or biological functions of waters to which they are 
adjacent and to the integrity of traditional navigable waters, the territorial seas, or interstate waters, where 
such wetlands meet the requirements to be jurisdictional under paragraph (a)(4) of the final rule.  

Although determining whether a wetland is reasonably close to a jurisdictional water does not 
generally require a case-specific demonstration of an ecologic interconnection, there may be instances 
where the presence of such an ecological interconnection between the wetland and the jurisdictional 
waterbody demonstrates that the wetlands is reasonably close and therefore adjacent. For example, if 
resident aquatic species (e.g., amphibians, aquatic turtles, fish, or ducks) rely on both the wetland and the 
jurisdictional waterbody for all or part of their life cycles (e.g., nesting, rearing, or feeding), that may 
demonstrate that the wetland is within reasonably close proximity and thus adjacent. The agencies 
recognize that as the distance between the wetland and jurisdictional water increases, the potential 
ecological interconnection between the waters is likely to decrease. The distance between a jurisdictional 

 
38 See, e.g., Riverside Bayview Homes, 474 U.S. at 134 (“. . .the Corps’ ecological judgment about the relationship 
between waters and their adjacent wetlands provides an adequate basis for a legal judgment that adjacent wetlands 
may be defined as waters under the Act.”) 
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water and its adjacent wetlands may vary by region, as well as based on site-specific factors within 
regions. 

Wetlands that are reasonably close to a jurisdictional water perform a myriad of critical chemical, 
physical, and biological functions associated with a traditional navigable water, the territorial seas, or an 
interstate water. Such wetlands are often located within the riparian area or floodplain and are often 
connected via surface and shallow subsurface hydrology to the water to which they are adjacent. While 
the SAB in its review of the Science Report was clear that distance is not the only factor that influences 
connections and their effects downstream, due to their close proximity to jurisdictional waters, reasonably 
close wetlands are often located within a landscape position that allows for them to receive and process 
surface and shallow subsurface flows before they reach nearby streams and rivers. These waters can 
individually and collectively affect the integrity of traditional navigable waters, the territorial seas, and 
interstate waters by acting primarily as sinks that retain floodwaters, sediments, nutrients, and 
contaminants that could otherwise negatively impact the condition or function of such paragraph (a)(1) 
waters. Wetlands within close proximity of jurisdictional waters improve water quality through 
assimilation, transformation, or sequestration of nutrients, sediment, and other pollutants that can affect 
the integrity of traditional navigable waters, the territorial seas, or interstate waters. These waters, 
including wetlands, also provide important habitat for aquatic-associated species to forage, breed, and 
rest. Such species can travel between the wetlands and the nearby jurisdictional water, as well as to the 
traditional navigable waters, the territorial seas, and interstate waters.  

As noted above, reasonably close wetlands may be within the riparian area even if the floodplain 
is limited. Riparian wetlands within floodplains and riparian wetlands that occur in systems that do not 
have floodplains are an important part of the overall riverine landscape. Science Report at 4-7 (citing 
Ward 1998). Wetlands within riparian areas are also connected to streams and rivers by a diverse set of 
hydrologic inputs and outputs. Id. (citing Junk et al. 1989; Winter and Rosenberry 1998; Benke et al. 
2000; Tockner et al. 2000; Bunn et al. 2006). Waters in stream and river channels can readily reach 
wetlands in riparian areas via overbank flow, which occurs when floodwaters flow over stream and river 
channels. Id. at 2-12 (citing Mertes 1997).  

Riparian areas can have a diverse array of hydrologic inputs and outputs, which, in turn influence 
riparian wetlands. Id. at 2-14. Riparian areas receive water from precipitation; overland flow from upland 
areas; local, intermediate, regional ground water; and hyporheic flows. Id. (citing National Research 
Council 2002; Richardson et al. 2005; Vidon et al. 2010). Water flowing over the land surface in many 
situations can infiltrate soils in riparian areas. If low permeability subsoils or impervious clay layers are 
present, water contact with the plant root zone is increased and the water is subject to ecological functions 
such as denitrification before it reaches the stream channel. Id. (citing National Research Council 2002; 
Naiman et al. 2005; Vidon et al. 2010). Riparian wetlands can have bidirectional, lateral hydrologic 
connections to the river network, either through overbank flooding (i.e., lateral expansion of the network) 
or hyporheic flow, in addition to unidirectional flows from upland and ground-water sources. Id. at 2-20. 

Floodplain wetlands that are reasonably close to jurisdictional waters perform important functions 
that improve downstream water quality, including the temporary storage and deposition of channeling-
forming sediment and woody debris, temporary storage of local ground water that supports baseflow in 
rivers, and transformation and transport of stored organic matter. Id. at ES-2 to ES-3. Floodplain wetlands 
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improve water quality through the assimilation, transformation, or sequestration of pollutants, including 
excess nutrients and chemical contaminants such as pesticides and metals, that can degrade downstream 
water integrity. Id. at ES-3. In addition to providing effective buffers to protect downstream waters from 
point source and nonpoint source pollution, these systems form integral components of river food webs, 
providing nursery habitat for breeding fish and amphibians, colonization opportunities for stream 
invertebrates, and maturation habitat for stream insects. Id. Lateral expansion and contraction of the river 
in its floodplain result in an exchange of organic matter and organisms, including fish populations that are 
adapted to use floodplain habitats for feeding and spawning during high water, that are critical to river 
ecosystem function. Id. Floodplain wetlands also affect the integrity of downstream waters by 
subsequently releasing (desynchronizing) floodwaters and retaining large volumes of stormwater, 
sediment, and contaminants in runoff that could otherwise negatively affect the condition or function of 
downstream waters. Id.  

As discussed in section I, riparian and floodplain wetlands lie within landscape settings that have 
bidirectional hydrological exchange with the jurisdictional waters. This can occur through overbank 
flooding (i.e., lateral expansion of the network) or hyporheic flow or from unidirectional overflow from 
the wetland to the channel. Id. at 2-20. Although elevation is the primary factor determining areas that are 
inundated through overbank flooding, connectivity with the river generally will be higher for 
riparian/floodplain wetlands located near the river’s edge compared with riparian/floodplain wetlands 
occurring near the floodplain edge. Id. at 2-39. 

Science demonstrates that distance is a factor in the connectivity and the strength of connectivity 
of wetlands to downstream waters. Science Report at ES-4, ES-11, 4-2, 5-6-5. The Science Report states, 
“[s]patial proximity is one important determinant of the magnitude, frequency and duration of 
connections between wetlands and streams that will ultimately influence the fluxes of water, materials 
and biota between wetlands and downstream waters.” Science Report at ES-11. Thus, waters that are 
more distant generally have less opportunity to be connected to and to effect downstream waters. 
Wetlands closer to the stream network or coastline generally will have greater hydrologic and biological 
connectivity than waters located farther from the same network. See, e.g., id. at 2-38. For instance, 
wetlands that are more closely proximate have a greater opportunity to contribute flow, as water is likely 
to be lost from the channel through evaporation or transpiration. Id. Via their hydrologic connectivity, 
proximate wetlands also have chemical connectivity to and effects on traditional navigable waters, the 
territorial seas, or interstate waters and are more likely to impact water quality due to their close distance. 
Waters more closely located to other water resources are also more likely to be biologically connected to 
such waters more frequently and by more species, including amphibians and other aquatic animals.  

All factors being equal, wetlands closer to the tributary network will have greater hydrologic and 
biological connectivity than wetlands located farther from the same network. Id. at 2-40. Distance is a 
factor that is well known to have various effects on physical and biological processes within and between 
system components. Id. at 4-44. Sometimes this is due to the direct effect of distance. In some cases, there 
is an indirect effect due to distance controlling how long transport of a material will take. This fact is 
embedded in the time of concentration concept in hydrology, whereby under similar slope and velocities, 
water traveling from more distant points and with a longer flowpath will—because of the length of time 
in transit—have greater potential for evapotranspiration and soil infiltration losses before reaching a 
stream. Id. at 2-39; Blanco-Canqui and Lal 2008. There are many examples in the scientific literature of 
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distance effects from various factors with respect to chemical, physical, and biological processes. Graf 
1984; Marron 1989; Leigh 1997; King et al. 2005; Alexander et al. 2007; Attum et al. 2007; Subalusky 
2007; Van Sickle and Johnson 2008; Colvin et al. 2009; Flitcroft et al. 2012; Greathouse et al. 2014.  

With respect to provision of water quality benefits downstream, non-floodplain wetlands within 
close proximity of the stream network often are able to have more water quality benefits than those 
located at a distance from the stream. Many studies indicate that the primary water quality and habitat 
benefits will generally occur within a several hundred foot zone of a water. See, e.g., Peterjohn and 
Correll 1984; Hawes and Smith 2005. In addition, the scientific literature indicates that to be effective, 
contaminant removal needs to occur at a proximate distance prior to entry into stream network and 
subsequently into the downstream traditional navigable waters, the territorial seas, or interstate waters. 
Some studies also indicate that fish, amphibians (e.g., frogs, toads), reptiles (e.g., turtles), and small 
mammals (e.g., otters, beavers, etc.) will use a reasonably close zone for foraging, breeding, nesting, and 
other life cycle needs. Dole 1965; Smith and Green 2005; Semlitsch 2008; Steen et al. 2012. 

Based on a review of the scientific literature and the agencies’ expertise and experience, there is 
clear evidence that the reasonably close wetlands adjacent to traditional navigable waters, the territorial 
seas, or interstate waters or reasonably close wetlands adjacent to jurisdictional impoundments or 
tributaries and that meet either the relatively permanent or significant standard under paragraph (a)(4) of 
the final rule perform critical processes and functions discussed in the sections below.  

 

iii. Adjacent Wetlands Can Provide Functions that Restore and Maintain the 
Physical Integrity of Traditional Navigable Waters, the Territorial Seas, and 
Interstate Waters 

Scientific research shows that adjacent wetlands are important in protecting the physical integrity 
of downstream traditional navigable waters, the territorial seas, and interstate waters. This includes 
adjacent wetlands in riparian areas and floodplains, which exhibit bidirectional exchange of water with 
the waters to which they are adjacent and that play an important role in determining the volume and 
duration of stream flow. Such adjacent wetlands also have an essential role in regulating and stabilizing 
sediment transport to downstream traditional navigable waters, the territorial seas, and interstate waters. 
These characteristics are fundamental to the physical integrity of streams as well as downstream 
traditional navigable waters, the territorial seas, and interstate waters.  

Adjacent wetlands located in riparian areas and floodplains are important for the reduction or 
delay of floods. Id.at 2-21, 4-7 (citing Mertes et al. 1995; Walton et al. 1996; Bullock and Acreman 2003; 
Poole et al. 2006; Rassam et al. 2006). Such adjacent wetlands control flooding during times of high 
precipitation or snowmelt by capturing water from overbank flow and storing excess stream water. Id. at 
4-7. One study found that peak flows in the Cache River in Arkansas decreased by 10-20% mainly 
because of floodplain water storage. Id. (citing Walton et al. 1996). Research has shown that floodplain 
wetlands in Ohio store about 40% of the flow of small streams. Id. (citing Gamble et al. 2007). These and 
similar findings point to the close hydrological influence that adjacent wetlands in riparian and floodplain 
areas have on streams and downstream traditional navigable waters, the territorial seas, and interstate 
waters. 



Page 190 of 564 

Adjacent wetlands are bordering, contiguous, or neighboring jurisdictional waters. Because of 
their close physical proximity to nearby jurisdictional waters, they can readily exchange their waters 
through the saturated soils surrounding the stream or through surface exchange. This commingling of 
waters allows bordering, contiguous, or neighboring wetlands to both provide chemically transformed 
waters to streams and to absorb excess stream flow.  

Flow between neighboring wetlands and streams tends to be more longitudinal (downslope) at 
headwaters and more lateral further downstream. Id. at 4-40, Table 4-3. These connections in part 
determine stream flow volume and duration. Adjacent wetlands in riparian areas connect to nearby water 
bodies through various surface and subsurface connections. See, e.g., id. at 2-4 (citing National Research 
Council 2002). Floodplains, similarly, are closely associated with the groundwater found beneath and 
beside river channels (which are considered shallow aquifers), and adjacent wetlands in floodplains 
readily exchange water with such aquifers. Id. at 2-12 (citing Stanford and Ward 1993; Amoros and 
Bornette 2002; Poole et al. 2006). Riparian and floodplain wetlands are frequently contiguous with 
streams and other water bodies and can significantly influence the physical form, hydrology, chemistry, 
and biology of such water bodies. Id. at 4-6 (citing Junk et al. 1989; Abbott et al. 2000; Tockner et al. 
2000; Woessner 2000; Amoros and Bornette 2002; Ward et al. 2002; King et al. 2003; Naiman et al. 
2005; Church 2006; Kondolf et al. 2006; Poole et al. 2006; Poole 2010; Tockner et al. 2010; Vidon et al. 
2010; Helton et al. 2011; McLaughlin et al. 2011; Humphries et al. 2014). Adjacent wetlands located in 
floodplains are important for the reduction or delay of floods by capturing water from overbank flow and 
by storing excess water from the streams to which they are adjacent. Id. at 4-7 (citing Bullock and 
Acreman 2003).  

Adjacent wetlands in riparian areas and floodplains filter sediment washed down from uplands 
and collect sediment from overbank flow as the river or stream floods. Id. at 4-8 (citing Boto and Patrick 
1979; Whigham et al. 1988). For example, riparian areas were observed to collect 80-90% of the 
sediment from farmlands in a study in North Carolina. Id. (citing Cooper et al. 1987; Daniels and Gilliam 
1996; Naiman and Decamps 1997). Maintaining the equilibrium between sediment deposition and 
sediment transport is important to maintain the physical shape and structure of stream channels, including 
of downstream traditional navigable waters, the territorial seas, and interstate waters. Significant changes 
to upstream channels can affect the chemical, physical, and biological condition of downstream 
traditional navigable waters, the territorial seas, and interstate waters.  

The physical effects of excess sediment can impair chemical and ecological integrity in a variety 
of ways. Id. at 5-9 (citing Wood and Armitage 1997). Excess sediment is linked to increasing contaminant 
and nutrient concentrations, all of which tributaries can transmit downstream, affecting the water quality 
of traditional navigable waters, the territorial seas, and interstate waters. Excess sediment may block and 
absorb sunlight transmission through the water column, inhibiting plant photosynthesis and warming the 
water in the stream. Sediment may fill the interstitial spaces between rocks in a streambed, which many 
fish and aquatic species use for mating, reproduction, and shelter from predators. This kind of physical 
degradation of tributary streambeds results in less suitable habitat available for animals and fish that move 
between upstream and downstream waters. Adjacent wetlands located in riparian areas retain sediments 
and thus protect downstream traditional navigable waters, the territorial seas, and interstate waters from 
the effects of excess sediment.    
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Because adjacent wetlands support riparian vegetation, they affect the capacity of riparian 
vegetation to influence stream flow, morphology, temperature, and habitat provided in the nearby water 
body. Vegetation in adjacent wetlands located in riparian areas influences the amount of water in the 
stream by capturing and transpiring stream flow and intercepting groundwater and overland flow. Id. at 2-
21, 4-8 (citing Meyboom 1964). Riparian vegetation in adjacent wetlands also reduces stream bank 
erosion, serving to maintain the physical integrity of the channel. See, e.g., id. at 4-8 to 4-9 (citing Beeson 
and Doyle 1995; Naiman and Decamps 1997; Burt et al. 2002; Zaimes et al. 2004). In addition, inputs of 
woody debris from aquatic vegetation or logs into waters make important contributions to the channel’s 
geomorphology and the stream’s aquatic habitat value. Id. at 4-9 (citing Anderson and Sedell 1979; 
Harmon et al. 1986; Nakamura and Swanson 1993; Abbe and Montgomery 1996; Naiman and Decamps 
1997; Gurnell et al. 2002; Brummer et al. 2006; Sear et al. 2010; Collins et al. 2012). Also, the riparian 
vegetation in adjacent wetlands that overhangs streams provides shade, providing a critically important 
function of reducing fluctuations in water temperature helping to reduce excessive algal production and to 
maintain life-supporting oxygen levels in streams and other types of waters. Id. at 4-9 to 4-10 (citing 
Gregory et al. 1991; Volkmar and Dahlgren 2006). Even small changes in water temperature can have 
significant impacts on the type and number of species present in waters, with higher temperatures 
generally associated with degraded habitat which supports only those species that can tolerate higher 
temperatures and reduced levels of dissolved oxygen. Higher water temperatures are associated with 
streams and rivers with less valuable recreational and commercial fisheries. As discussed below, these 
physical characteristics of headwater streams influence what types of organisms live in the region.  

Headwaters and nearby adjacent wetlands supply downstream traditional navigable waters, the 
territorial seas, and interstate waters with dissolved organic carbon as a result of decomposition processes 
from dead organic matter such as plants. Both production and consumption of organic and inorganic 
carbon occur in adjacent wetlands. Id. at 4-13. Adjacent wetlands are an important source of dissolved 
organic carbon (DOC) to downstream waters. Allochthonous inputs from adjacent wetlands to streams are 
important to aquatic food webs, particular in headwaters. Id. (citing Tank et al. 2010). Allochthonous 
inputs are terrestrial organic materials that enter the stream through vegetation litter (i.e., woody debris, 
leaves, and partially decomposed plant parts), erosion, and hydrologic flows. Id. (citing Wetzel 1992). 
These inputs of organic matter are the primary source of energy flow into the food webs of streams. Id. 
Organic matter inputs are important because they affect food availability to aquatic organisms by 
releasing organic carbon and nitrogen into streams. Id. (citing Wetzel and Manny 1972; Mulholland and 
Hill 1997). This organic carbon contributes to the downstream foodweb and ultimately supports 
downstream fisheries, including in traditional navigable waters, the territorial seas, and interstate waters. 
See, e.g., id. at 4-16. Export of DOC to downstream waters supports primary productivity, effects pH and 
buffering capacity, and can protect aquatic organisms from the harmful effects of UV-B radiation. Id. at 
4-28 (citing Eshelman and Hemond 1985; Hobbie and Wetzel 1992; Hedin et al. 1995; Schindler and 
Curtis 1997; Nuff and Asner 2001; Reddy and DeLaune 2008). However, too much organic matter 
downstream can have negative effects because contaminants, such as methylmercury and other trace 
metals, can be adsorbed to it. Id. (citing Thurman 1985; Driscoll et al. 1995). 
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iv. Adjacent Wetlands Can Provide Functions that Restore and Maintain the 
Chemical Integrity of Traditional Navigable Waters, the Territorial Seas, and 
Interstate Waters 

As stated above in section III.A on tributaries, pollutants such as petroleum waste products and 
other harmful pollutants dumped into any part of the tributary system are likely to flow downstream, or to 
be washed downstream, and thereby pollute traditional navigable waters, the territorial seas, and interstate 
waters from which American citizens take their drinking water, shellfish, fin fish, water-based recreation, 
and many other uses. Some wetlands perform the valuable function of trapping or filtering out pollutants 
(such as fertilizers, silt, and some pesticides), thereby reducing the likelihood that those pollutants will 
reach and pollute the tributaries of traditional navigable waters, the territorial seas, and interstate waters 
(and eventually pollute those larger waters themselves). However, many other pollutants (such as 
petroleum wastes and toxic chemical wastes), if dumped into wetlands that are adjacent to tributary 
streams or to jurisdictional impoundments, may reach those tributaries or impoundments themselves, and 
thereafter flow downstream to pollute traditional navigable waters, the territorial seas, and interstate 
waters, posing risks to the nation’s drinking water supply, fisheries, and recreation areas. 

Adjacent wetlands in riparian areas and floodplains play a critical role in controlling the 
chemicals that enter streams and other “waters of the United States” and as a result are vital in protecting 
the chemical, physical, and biological integrity of traditional navigable waters, the territorial seas, and 
interstate waters. Runoff (the water that has not evaporated or infiltrated into the groundwater) from 
uplands is a large source of pollution, but research has shown that adjacent wetlands in riparian areas trap 
and chemically transform a substantial amount of the nutrients, pesticides, and other pollutants before 
they enter streams, river, lakes, and other downstream waters. 

Chemicals and other pollutants enter waters from point sources such as outfalls and pipes, non-
point sources (e.g., runoff from agricultural and urban fields and lawns), dry and wet (e.g., rain, snow) 
atmospheric deposition, upstream reaches, and through the hyporheic zone, a region beneath and 
alongside a stream bed where surface water and shallow groundwater mix. Id. at 4-10 (citing Nixon and 
Lee 1986; Tiner 2003c; Whigham and Jordan 2003; Comer et al. 2005; Whitmire and Hamilton 2008). 
Throughout the stream network, but especially in headwater streams and their adjacent wetlands, 
chemicals are sequestered via sorption (adsorption and absorption) or sedimentation processes, 
assimilated into the flora and fauna, transformed into other compounds, or lost to the atmosphere through 
transformational processes performed by microbes, fungi, algae, and macrophytes present in riparian 
waters and soils. Id. (citing Nixon and Lee 1986; Johnston 1991; Boon 2006; Mitsch and Gosselink 2007; 
Reddy and DeLaune 2008). These chemical processes reduce or eliminate pollution that would otherwise 
enter streams, rivers, lakes, and other types of waters and subsequently downstream traditional navigable 
waters, the territorial seas, or interstate waters.  

The removal of the nutrients nitrogen and phosphorus is a particularly important role for adjacent 
wetlands. As described previously, nutrients are necessary to support aquatic life, but the presence of 
excess nutrients can lead to eutrophication and the depletion of oxygen (hypoxia) in nearby waters and in 
waters far downstream. See, e.g., id. at ES-8. Eutrophication is a large problem in waters across the 
United States including such important ecosystems as the Chesapeake Bay and Lake Spokane in 
Washington. Kemp et al 2005; Moore and Ross 2010; Murphy et al. 2011. Eutrophication is the natural 
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or artificial enrichment of a water body by nutrients, typically phosphates and nitrates. Science Report at 
A-4. It can occur when plants and algae grow in waters to such an extent that the abundance of vegetation 
monopolizes the available oxygen, detrimentally affecting other aquatic organisms. Protection of these 
waters therefore helps maintain the chemical integrity of the nation’s waters, including downstream 
traditional navigable waters, the territorial seas, and interstate waters.  

The removal of nitrogen is an important function of adjacent wetlands. Adjacent wetlands located 
in riparian areas regularly remove more than half of dissolved nitrogen found in surface and subsurface 
water by plant uptake and microbial transformation. Id. at 4-11 (citing Vidon et al. 2010). Denitrification 
potential in surface and subsurface flows is highest where there is high organic matter and/or anoxic 
conditions. Id. at 4-12 (citing McClain et al. 2003; Orr et al. 2014). The highest denitrification potentials 
occur in adjacent wetlands located in floodplain and riparian areas where high organic matter, denitrifying 
microbes, and saturated soil conditions are present, and rates increase with proximity to streams. Id. 
(citing Gregory et al. 1991; Vidon et al. 2010). Adjacent wetlands are therefore important in maintaining 
the conditions important for denitrification, which in turn protects streams, rivers, lakes, and downstream 
traditional navigable waters, the territorial seas, and interstate waters from nitrogen pollution. 

Plant uptake of dissolved nitrogen in subsurface flows through wetlands located in riparian areas 
also accounts for large quantities of nitrogen removal. Id. (citing Vidon et al. 2010). Riparian forests have 
been found to remove 75% of dissolved nitrate transported from agricultural fields to a Maryland river. 
Id. (citing Vidon et al. 2010). Likewise, riparian forests in Georgia remove 65% of nitrogen and 30% of 
phosphorus from agricultural sources. Id. (citing Vidon et al. 2010). A Pennsylvania forested riparian area 
removed 26% of the total nitrate input from the subsurface. Id. (citing Newbold et al. 2010). The 
vegetation associated with adjacent wetlands in riparian waters also removes nitrogen from subsurface 
flows. Therefore, the conservation of adjacent wetlands helps protect downstream traditional navigable 
waters, the territorial seas, and interstate waters from influxes of dissolved nitrogen.  

Phosphorus is another potentially harmful nutrient that is captured and processed in adjacent 
wetlands, including those located in riparian areas. Id. at 4-12 to 4-13 (citing Dillaha and Inamdar 1997; 
Sharpley and Rekolainen 1997; Carlyle and Hill 2001). Biogeochemical processes, sedimentation, and 
plant uptake account for high rates of removal of particulate phosphorus in riparian areas. Id. at 4-12 
(citing Hoffmann et al. 2009). The amount of contact the water has with nearby soils and the 
characteristics of that soil determine the ability of the riparian area to remove phosphorus. Id. Adjacent 
wetlands in riparian areas are phosphorus sinks in oxic soils (containing oxygen), while riparian soils 
generally can serve as sources of phosphorus when soils are anoxic (lacking oxygen) or when mineral 
dissolution releases phosphorus. Id. at 4-12 (citing Baldwin and Mitchell 2000; Carlyle and Hill 2001; 
Chacon et al. 2008). Adjacent wetlands in riparian areas where agricultural sediments are deposited are 
phosphorus sources to streams if the phosphorus is desorbed and leached but can be sinks by adsorbing 
dissolved phosphorus if sediment phosphorus concentrations are low. Id. at 4-12 to 4-13 (citing Dillaha 
and Inamdar 1997; Sharpley and Rekolainen 1997). Adjacent wetlands in riparian areas also serve as 
phosphorus sinks when upland surface runoff travels through the riparian area or when fine-grained 
sediment containing phosphorus is deposited overbank onto the riparian area. Id at 4-13 (citing Dillaha 
and Inamdar 1997). These sediments, however, can become sources of phosphorus if they are later 
saturated with water and iron and manganese are reductively dissolved during anoxic conditions, thus 
causing them to desorb phosphorus. Id. (citing Reddy and DeLaune 2008). The function of adjacent 
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wetlands to move and uptake phosphorus is crucial for maintaining the chemical and biological integrity 
of the waters to which they are adjacent, and for preventing eutrophication in downstream traditional 
navigable waters, the territorial seas, and interstate waters, thereby helping to restore and maintain the 
integrity of those larger fundamental waters. In the case where adjacent wetlands are acting as a source of 
phosphorus for traditional navigable waters, the territorial seas, and interstate waters, this also can 
significantly affect the chemical and biological integrity of these downstream waters.  

 

v. Adjacent Wetlands Can Provide Functions that Restore and Maintain the 
Biological Integrity of Traditional Navigable Waters, the Territorial Seas, and 
Interstate Waters 

Adjacent wetlands support the biological integrity of downstream traditional navigable waters, 
the territorial seas, and interstate waters in a variety of ways. They provide habitat for aquatic and water-
tolerant plants, invertebrates (aquatic insects), and vertebrates, and provide feeding, refuge, and breeding 
areas for invertebrates and fish. Seeds, plants, and animals move between adjacent wetlands and the 
nearby streams, and from there colonize or utilize downstream waters, including traditional navigable 
waters, the territorial seas, and interstate waters. 

Organic matter from adjacent wetlands is critical to aquatic food webs, particularly in headwaters, 
where it is the primary source of energy flow due to low light conditions that inhibit photosynthesis. See, 
e.g., id. at 4-13 (citing Tank et al. 2010). Headwater streams tend to be located in heavily vegetated areas 
compared to larger waters, so they are more likely to contain leaf litter, dead and decaying plants, and 
other organic matter that forms the basis of headwater food webs. The organic matter is processed by 
microbes and insects that make the energy available to higher levels of stream life such as amphibians and 
fish. Studies have shown that aquatic insects rely on leaf inputs in headwater streams and that excluding 
organic litter from a stream resulted in significant changes to the food web at multiple levels. Id. (citing 
Minshall 1967; Wallace and Webster 1996; Wallace et al. 1997; Meyer et al. 1998). Fish and amphibian 
species found in headwaters travel downstream and in turn become part of the food web for larger aquatic 
organisms in traditional navigable waters, the territorial seas, and interstate waters. Organic material 
provided by adjacent wetlands to small, headwater streams is therefore important not only to the small 
streams that directly utilize this source of energy to support their biological populations but also to the 
overall biological integrity of downstream traditional navigable waters, the territorial seas, and interstate 
waters that benefit from the movement of fish and other species that contribute to the food web of larger 
streams, rivers, estuaries, and the ocean. 

Adjacent wetlands accumulate organic carbon and nitrogen, an important function influenced by 
the size and frequency of floods from rivers to which they are adjacent. See, e.g., id. at B-11 (citing 
Cabezas et al. 2009). These stored chemicals are available for exchange with river water when 
hydrological connections are present. Organic materials are the basis for the food web in stream reaches 
where photosynthetic production of energy is absent or limited, particularly in headwater systems where 
vegetative litter alone makes up the base of the aquatic food web. The maintenance of floodplain wetlands 
is therefore an important component of protecting the biological integrity of traditional navigable waters, 
the territorial seas, and interstate waters into which the headwaters flow.  
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Adjacent wetlands play an important role in the removal of pesticides. Id. at 4-14 (citing Vidon et 
al. 2010). Microbes near plant roots break down these pesticides. See, e.g., id. (citing Voos and Groffman 
1996). Uptake by aquatic plants has also been shown to be an important mechanism of removal of the 
pesticides alachlor and atrazine. Id. (citing Paterson and Schnoor 1992). Adjacent wetlands also trap and 
hold pesticide contaminated runoff preventing it from harming neighboring waters. 

Adjacent wetlands located in riparian areas and floodplains are dynamic places that support a 
diversity of aquatic, amphibious, and terrestrial species adapted to the unique habitat created by periodic 
or episodic flooding or inundation events. Id. at 4-15 (citing Power et al. 1995a; Power et al. 1995b; Galat 
et al. 1998; Robinson et al. 2002; Toth and van der Valk 2012; Rooney et al. 2013; Granado and Henry 
2014). Plants, aquatic insects, and vertebrates use adjacent wetlands for habitat, nutrients, and breeding. 
As a result, adjacent wetlands act as sources of organisms, particularly during inundation events, 
replenishing the waters to which they are adjacent with organisms, seeds, and organic matter. Inundation 
and hydrological connectivity of adjacent wetlands to the tributary network greatly increase the area of 
aquatic habitats and species diversity. Id. at 4-15, 4-16 (citing Junk et al. 1989; Tockner et al. 2000; 
Jansson et al. 2005; Brooks and Serfass 2013). Aquatic animals, including amphibians and fish, take 
advantage of the adjacent wetlands, either inhabiting them or moving between the wetlands and the 
waters to which the wetlands are adjacent. Id. at 4-15, 4-17 through 4-19 (citing Copp 1989; Smock et al. 
1992; Smock 1994; Robinson et al. 2002; Richardson et al. 2005; Ilg et al. 2008; Shoup and Wahl 2009). 
Likewise, seeds, plant fragments, and whole plants move between adjacent wetlands and the river 
network. Id. at 4-15 (citing Schneider and Sharitz 1988; Middleton 2000; Nilsson et al. 2010). 

Hydrological connections are often drivers of biological connections, and flooding events 
enhance the existing connections between adjacent wetlands and the river network. As a result, adjacent 
wetlands have important functions for aquatic health. Many species have cycles timed to flooding events, 
particularly in circumstances where flooding is associated with annual spring snowmelt or high 
precipitation. Id. at 4-15 to 4-16, 4-19 (citing Thomas et al. 2006; Tronstad et al. 2007; Gurnell et al. 
2008). Adjacent wetlands act as sinks of seeds, plant fragments, and invertebrate eggs and as sources of 
such biological material during times of periodic flooding, allowing for cross-breeding and resulting gene 
flow across time. Id. at 4-16, 4-19 to 4-20 (citing Middleton 2000; Jenkins and Boulton 2003; Frisch and 
Threlkeld 2005; Gurnell et al. 2008; Vanschoenwinkel et al. 2009). Stream macroinvertebrates (e.g., 
insects, crayfish, and mollusks) and microinvertebrates (e.g., zooplankton such as cladocerans, copepods, 
rotifers, and gastropods) colonize nutrient rich waters within riparian areas and floodplains in large 
numbers during periods of seasonal or episodic inundation, facilitating an increase in population and 
sustaining them though times of limited resources and population decline. Id. at 4-19 to 4-20 (citing 
Fisher and Willis 2000; Frisch and Threlkeld 2005; Junk et al. 1989; Malmqvist 2002; Ilg et al. 2008). 
Such animals are adapted to high floods, desiccation (drying out), or other stresses that come with these 
regular, systemic fluctuations. Id. at 4-19. Adjacent wetlands, including those in riparian areas and 
floodplains therefore maintain various biological populations, which periodically replenish jurisdictional 
waters to which they adjacent and to traditional navigable waters, the territorial seas, and interstate 
waters, serving to maintain their biological integrity.  

Plants and animals use adjacent wetlands for habitat, food, and breeding. Adjacent wetlands also 
provide food sources for stream invertebrates, which colonize during inundation events. Id. at 4-19 (citing 
Junk et al. 1989; Ilg et al. 2008). Adjacent wetlands also form an integral part of the river food web, 
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linking primary producers and plants to higher animals. Id. (citing Malmqvist 2002; Woodward and 
Hildrew 2002; Stead et al. 2005; Woodford and McIntosh 2010). Likewise, adjacent wetlands located in 
floodplains are important foraging, hunting, and breeding sites for fish, amphibians, and aquatic 
macroinvertebrates. Id. at 4-15 (citing Copp 1989; Smock et al. 1992; Smock 1994; Bestgen et al. 2000; 
Richardson et al. 2005; Schramm and Eggleton 2006; Sullivan and Watzin 2009; Alford and Walker 
2013; Magana 2013).  

Plants and animals move back and forth between adjacent wetlands and the river network. This 
movement is assisted in some cases when flooding events create hydrological connections. For instance, 
these floodplain and riparian wetlands provide refuge, feeding, and rearing habitat for many fish species. 
Id. at 4-17 (citing Wharton et al. 1982; Boltz and Stauffer 1989; Matheney and Rabeni 1995; Pease et al. 
2006; Henning et al. 2007; Jeffres et al. 2008). Seeds of aquatic and riparian plants ingested by animals 
such as carp are dispersed in stream channels and associated waters. See, e.g., id. at 4-16 (citing King et 
al. 2003; Pollux et al. 2007). Also, phytoplankton move between adjacent wetlands located in the 
floodplain and the river network. Id. at 4-16 (citing Angeler et al. 2010). In turn, the primary productivity 
conditions in such adjacent wetlands results in large populations of phytoplankton that enrich river 
networks when hydrological connections form. Id. at 4-16 to 4-17 (citing Lehman et al. 2008). This influx 
of carbon into the river system nourishes the aquatic food webs of downstream foundation waters, for 
example, by supporting fisheries.   

However, even when hydrological connections are absent, some aquatic organisms can move 
between adjacent wetlands and their nearby tributaries by overland movement in order to complete their 
life cycle. River-dwelling mammals, such as river otters, move from the river to riparian/floodplain 
wetlands. Id. at 4-17 (citing Newman and Griffin 1994). In addition, both river otters and beavers have a 
strong preference for riparian areas that are pond- and lake-dominated (Swimley et al. 1999). Several 
species of amphibians and reptiles including frogs, snakes and turtles use both streams and neighboring 
wetlands. Id. at ES-10, 3-47 (Table 3-1), 4-15 (citing Richardson et al. 2005). Movement between 
adjacent wetlands and the river network also occurs by the dispersal of seed and plant fragments and the 
wind dispersal of invertebrates. Id. at 4-15 to 4-16, 4-20 (citing Schneider and Sharitz 1988; Middleton 
2000; Gurnell 2007; Gurnell et al. 2008; Nilsson et al. 2010; Tronstad et al. 2007; Vanschoenwinkel et al. 
2009). Animals, particularly migratory fish, can thus move between adjacent wetlands and traditional 
navigable waters, the territorial seas, and interstate waters. And even when some species do not traverse 
the entire distance from adjacent wetlands to traditional navigable waters, the territorial seas, and 
interstate waters, the larger downstream waters still benefit from the ecological integrity that persists 
because of the close relationship that adjacent wetlands have with the waters to which they are adjacent. 
This is because the chemical and biological properties that arise from interactions between adjacent 
wetlands and tributaries or impoundments move downstream and support the integrity of traditional 
navigable waters, the territorial seas, and interstate waters. 

 

C. Impoundments 

The final rule retains the provision in the 1986 regulations that defines “waters of the United 
States” to include impoundments of “waters of the United States.” Under paragraph (a)(2) of the final 
rule, impoundments of traditional navigable waters, the territorial seas, interstate waters, jurisdictional 
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tributaries, and jurisdictional adjacent wetlands are “waters of the United States.” As discussed in section 
IV.C.3 of the preamble of the final rule, the caselaw supports that damming or impounding a 
jurisdictional water does not make a water non-jurisdictional. Impoundments can be natural (like beaver 
ponds) or artificial (like reservoirs). Impoundments under this rule can be located off-channel or in-line 
with the channel. They vary in size and volume, from small ponds on headwater streams to large 
reservoirs, based in part on the water that is being impounded and type of structure that creates the 
impoundment. 

Asserting Clean Water Act jurisdiction over impoundments also aligns with the scientific 
literature, as well as the agencies’ scientific and technical expertise and experience, which confirm that 
impoundments have chemical, physical, and biological effects on downstream waters through surface or 
subsurface hydrologic connections. Impoundments do not sever the effects the impounded “waters of the 
United States” have on the chemical, physical, or biological integrity of traditional navigable waters, the 
territorial seas, and interstate waters, though the impounding of the jurisdictional water may change the 
nature of the effects that the impoundment has on downstream waters. For example, dams often remove 
much of the sediment from transport, whereas most streams naturally are sediment sources. Science 
Report at 3-16. Impoundments trap water, sediment, and particulate nutrients and result in downstream 
impacts on channel morphology and aquatic function in traditional navigable waters, the territorial seas, 
and interstate waters. See, e.g., id. at 5-8. 

Berms, dikes, and similar features used to create impoundments typically do not block all water 
flow. Even dams, which are specifically designed and constructed to impound large amounts of water 
effectively and safely, generally do not prevent all water flow, but rather allow seepage under the 
foundation of the dam and through the dam itself. See, e.g., International Atomic Energy Agency 2003 
(“All dams are designed to lose some water through seepage”); U.S. Bureau of Reclamation (“All dams 
seep, but the key is to control the seepage through properly designed and constructed filters and drains”); 
Federal Energy Regulatory Commission 2005 (“Seepage through a dam or through the foundations or 
abutments of dams is a normal condition”). As discussed in section III.B.ii.2, seepage occurs not only for 
earthen dams but for concrete structures as well. See, e.g., Texas Commission on Environmental Quality 
2006.  

Further, as an agency with expertise and responsibilities in engineering and public works, the 
Corps extensively studies water retention structures like berms, levees, and earth and rock-fill dams. The 
agency has found that all water retention structures are subject to seepage through their foundations and 
abutments. See, e.g., U.S. Army Corps of Engineers 1992; U.S. Army Corps of Engineers 1993; U.S. 
Army Corps of Engineers 2004. The Supreme Court has recognized that a canal and an impoundment 
area separated by levees were hydrologically connected (and might even be considered a single water 
body) because, inter alia, the “levees continually leak.” South Florida Water Mgmt. District v. 
Miccosukee Tribe of Indians, 541 U.S. 95, 110 (2004). 

The inevitability of seepage is a consequence not of poor design, but of physics: water will flow 
downward where it can and thus will seep through small spaces in the structure and in the ground beneath 
it. See, e.g., U.S. Army Corps of Engineers 1993; U.S. Army Corps of Engineers 2000. Thus, good 
engineering practices do not entail the prevention of all seepage; rather, they assume seepage and entail 
steps to manage it so that it will not compromise the integrity of berms, levees, and dams. See, e.g., U.S. 
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Army Corps of Engineers 1993; U.S. Army Corps of Engineers 2004; U.S. Army Corps of Engineers 
2000; U.S. Army Corps of Engineers 1992; U.S. Army Corps of Engineers 2005a; Federal Energy 
Regulatory Commission 2005. 

Many tributary systems in the United States have impoundments located along their reach. There 
are more than 91,000 dams in the United States as documented in the National Inventory of Dams, with 
over 6,800 exceeding 50 feet (approximately 15 meters) in height. U.S. Army Corps of Engineers 2020a. 
Although, the National Inventory of Dams is comprehensive, it only includes approximately 1-2% of the 
impoundments in the country and likely excludes millions of small impoundments. Renwick et al. 2005. 
Nearly all river networks in prairie regions have been altered by impoundments for irrigation storage and 
flood control, from small farm ponds in headwaters to large reservoirs on river mainstems. Science 
Report at B-28 (Smith et al. 2002; Galat et al. 2005; Matthews et al. 2005). The purpose of a dam is to 
impound (store) water for any of several reasons (e.g., flood control, human water supply, irrigation, 
livestock water supply, energy generation, containment of mine tailings, recreation, erosion control, or 
pollution control such as sediment trapping). See Association of State Dam Safety Officials 2021; Field 
and Lichvar 2007; Renwick et al. 2005. Many dams fulfill a combination of the above functions. Because 
the purpose of a dam is to retain water effectively and safely, the water retention ability of a dam is of 
prime importance. Water may pass from the reservoir to the downstream side of a dam by: passing 
through the main spillway or outlet works; passing over an auxiliary spillway; overtopping the dam; 
seepage through the abutments; and seepage under the dam. Id. All water retention structures are subject 
to seepage through their foundations and abutments. U.S. Army Corps of Engineers 1992. Thus, waters 
behind a dam still maintain a hydrologic connection to downstream waters, though the presence of the 
dam can reduce the hydrological connectivity to downstream traditional navigable waters, the territorial 
seas, or interstate waters. 

Impoundments store water and can have impacts on hydrology downstream. Dams alter the 
natural flow regime of the river, affecting movement of water and sediment. Science Report at 5-4. For 
example, impoundments for irrigation storage and flood control have altered flood magnitude, altered 
flow timing, and reduced flow variability and turbidity across the prairie regions. Id. at B-37 (citing Cross 
and Moss 1987; Hadley et al. 1987; Galat and Lipkin 2000). Under the Federal Flood Control Act of 
1944, detention impoundments were extensively constructed on headwater streams in the Great Plains to 
retard flooding in downstream rivers. Science Report at B-29 (citing Schoof et al. 1978; Van Haveren 
1986). Headwater impoundments reduced runoff to the Washita River in Oklahoma by 36%, but channel 
dredging of streams offset these reductions by increasing flow from ground water and reducing 
transmission loss. Id. (citing Schoof et al. 1978). Downstream, dams decrease peak stream volumes 
during the normal high-runoff seasons, while increasing minimum flows during normal low-flow 
seasons―an overall dampening of stream-flow variability Id. at 2-45 (citing Poff et al. 2007). 

Numerous studies have shown that dams impede biotic movements, reducing biological 
connectivity between upstream and downstream locations. Science Report at 2-45 (citing Greathouse et 
al. 2006; Hall et al. 2011). They also form a discontinuity in the normal stream-order-related progression 
in stream ecosystem structure and function. Id. (citing Stanford and Ward 1984). Dams, however, can 
have the opposite effect with respect to natural lakes: increasing their biological connectivity with respect 
to invasive species by adding impoundments that decrease average distances between lakes and serving as 
stepping stone habitat. Id. (citing Johnson et al. 2008). Dams alter but typically do not sever the 
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hydrologic connection between upstream and downstream waters. Riparian areas are permanently 
inundated upstream of large dams, increasing hydrological connectivity. Downstream, peak flows 
decrease during normal high-runoff seasons, while minimum flows increase during normal low-flow 
seasons—an overall reduction of stream-flow variability. Id. (citing Poff et al. 2007). Many species that 
live in or near rivers are adapted (via life history, behavioral, and morphological characteristics) to the 
seasonality of natural flow regimes, so a reduction in flow variability can have harmful effects on the 
persistence of such species where dams have been built. Id. (citing Lytle and Poff 2004). This reduction in 
high flows also decreases the connectivity of riparian wetlands with the stream by reducing the potential 
for overbank lateral flow. Reducing overbank lateral flow can affect downstream water quality, because 
overbank flow deposits sediment and nutrients that otherwise remain entrained in the river. Id. (citing 
Hupp et al. 2009). 

Dams also modify sediment dynamics within river networks. Science Report at 3-14. The 
reservoirs behind dams are very effective at retaining sediment (see, e.g., O’Melia 1998), which can 
reduce the amount of sediment delivered downstream and affect downstream waters. Kondolf et al. 2014. 
In the early 20th century, government agencies encouraged and funded various soil conservation practices 
and the construction of small impoundments on headwater streams to trap sediment and provide stable 
water supplies for livestock, irrigation, and recreation. Science Report at 3-15 (Person et al. 1936; 
Renwick et al. 2005). Although most such ponds are small (≤1 hectare or 2.5 acre) and represent only 
approximately 20% of the total impounded area (or 0.4% of the total watershed area), they can 
cumulatively have a significant effect on downstream waters. Id. For example, Smith and Kraft (2005) 
estimated that the approximately 2.3 million ponds distributed primarily on headwater streams of the 
Mississippi River network cumulatively captured 25–50% of the eroded soil from the landscape. Id. 
Similarly, Blum and Roberts (2009) estimated that the Mississippi River’s natural sediment load has been 
reduced by an estimated 50% through dam construction in the Mississippi Basin. Sediment concentrations 
and suspended loads can be reduced for hundreds of kilometers downstream of dams, as is especially 
apparent in river networks in the semiarid and arid West. Science Report at 3-14 (citing Williams and 
Wolman 1984). The disruption of downstream sediment supply by dams alters the balance between 
sediment supply and transport capacity. Id. (citing Williams and Wolman 1984; Kondolf 1997). As 
described above in section III.A.i, sediment is a necessary material needed in river networks in certain 
quantities. Id. at 3-13. Too much sediment can impact downstream water integrity, but too little sediment 
can also impact downstream waters. Sediment helps structure stream and river channels by slowing the 
flow of water through channels and providing substrate and habitat for aquatic organisms. Id. at ES-8. At 
some point in the lower portions of river networks, sediment deposition becomes the dominant process 
and floodplains form. Id. at 2-4. Sediment also helps to build wetlands in coastal areas. Mitsch and 
Gosselink 2007. In coastal Louisiana, an estimated 25-38 square miles of wetlands are being lost each 
year to open water areas on the coastline due in part to the loss of sediment upstream behind the levee 
systems. Mitsch and Gosselink 2007. The river is no longer able to naturally replenish the sediment that 
rebuilds the marsh system. The disruption of downstream sediment supply by dams alters the balance 
between sediment supply and transport capacity. Science Report at 3-14 (citing Williams and Wolman 
1984; Kondolf 1997). In addition, water released from dams lacks sediment load and thus has excess 
energy. This energy often downcuts channels downstream of dams, causing channel incision and 
streambed coarsening as finer gravels and sands are transported downstream over time. Id. (citing 
Williams and Wolman 1984; Kondolf 1997). The elimination of floods enables the encroachment of 
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terrestrial vegetation, resulting in channel narrowing and the conversion of complex, multithreaded 
channels into simple, single-thread channels.  

Impoundments can also be created by natural processes, such as the construction of beaver dams. 
Factors such as hydrology, channel characteristics, topography, and building materials can influence the 
size and structure of beaver dams, as can ecological factors. Brazier et al. 2021. For example, primary 
beaver dams that maintained a lodge pond can be much larger than secondary dams, which are often used 
to improve mobility and the transport of woody material. Id. The size of individual beaver dams can be 
large, especially across wetland habitats. Larsen et al. 2021. The area impounded by beaver dams can be 
large: In the Kabetogama Peninsula of Minnesota, impounded area accounted for up to 13% of the 
landscape, with an average pond area of about four hectares. Science Report at 2-44 (citing Johnston and 
Naiman 1990a; Johnston and Naiman 1990b). Beaver dams do not completely restrict transport of water, 
sediment, and biology downstream. Id. at 3-18. Beaver dams typically reduce hydrologic connectivity 
downstream by impounding streams, increasing the extent of open water, and generally modifying 
conditions above the dam from lotic (flowing) to lentic (still). Id. at 2-44; Brazier et al. 2021; Larsen et al. 
2021. Beaver dams, however, can increase connectivity laterally and vertically (e.g., hyporheic 
connectivity) by forcing water into nearby riparian areas, inundating floodplains, creating wetland and 
diverse habitats, and contributing to soil and groundwater recharge. Brazier et al. 2021; Larsen et al. 
2021. These changes in hydrological connectivity are the bases for all subsequent impacts. Larsen et al. 
2021. Beaver dams can hold large volumes of water in the impoundments they create and also expand 
riparian wetlands and water tables. Wegener et al. 2017. In a review of the effects of beaver dams on 
stream ecosystems, Collen and Gibson (2001) noted that, although the hydrologic effects of a single 
beaver dam can be small, the impact of a series of dams on streams can be significant; for example, up to 
30% of the water in an Oregon catchment was impounded by beaver dams. Science Report at 2-44. 
Beaver dams can slow the flow of water, moderating peak flows downstream, and storing and slowly 
releasing waters during times of low flow or drought. Brazier et al. 2021. Westbrook et al. (2006) found 
that beaver dams in the Colorado River affected depth, extent, and duration of inundation resulting from a 
10-year flood event. Science Report at 4-18. In addition, beaver dams attenuated declines in water tables 
during drier summer periods in 25% of their 58-hectare study area. Id. They concluded that the main 
hydrologic effects occurred downstream, however, rather than near the dam. Id. (citing Westbrook et al. 
2006). The hydraulic head generated by the dam raised the water level above the banks, resulting in 
lateral and downstream spreading of flows during high- and low-flow periods; these effects extended over 
hundreds of meters. Id. For example, mottled soils occurred throughout the study area, suggesting that the 
beaver dams caused waterlogged soils for extended periods. Id. Increased overbank flooding increases 
hydrologic connectivity between riparian areas and streams. Id. In contrast, when no dams were present, 
flooding was limited to the area immediately near the stream channel. Id. Similar to human constructed 
dams, beaver dams can directly affect material transport (e.g., the ability of the stream to carry sediment 
is reduced) and alter biogeochemical characteristics. Science Report at 2-44 (citing Naiman et al. 1994; 
Collen and Gibson 2001) and 4-18. For example, beaver dams modify nutrient cycling and decomposition 
dynamics and can affect downstream transport of materials. Id. at 4-18 (citing Naiman et al. 1988; 
Naiman et al. 1994). Wegener et al. (2017) found that a segment of river network with beaver dams 
served as a sink for water, carbon, and nutrients during high flows, while subsequently becoming a source 
of these materials as flows decreased. Beaver dams slow the downstream transport of organic matter, 
enabling instream organisms to process the carbon and slowly leak material downstream Science Report 
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at 3-32 (citing Wohl and Beckman 2014). By slowing the flow of water, beaver dams and the ponds they 
create can result in the storage of sediment and nutrients that might otherwise be transported downstream. 
Brazier et al. 2021; Larsen et al. 2021. Beaver-dam wetlands can serve as a source of methylmercury 
Science Report at 4-18 (citing Roy et al. 2009). Beaver dams also can affect biological connectivity, for 
example, by obstructing upstream migration, and cause changes in fish distributions. Science Report at 2-
44 (citing Collen and Gibson 2001); Brazier et al. 2021; Larsen et al. 2021. However, beaver dams can 
also increase habitat diversity due to the creation of beaver ponds and wetlands, which provide habitat for 
different life cycle needs for fish and other aquatic species that also utilize the water being impounded, 
including breeding, rearing, and feeding habitat. Brazier et al. 2021; Larsen et al. 2021. Beaver dams can 
also potentially stabilize downstream water temperatures. Larsen et al. 2021. Thus, impoundments of 
jurisdictional waters created by beaver dams can have chemical, physical, and biological effects on 
downstream traditional navigable waters, the territorial seas, and interstate waters. 

Many adjacent wetlands are impounded for a variety of purposes, including for waterfowl habitat 
creation, aquaculture, agriculture, flood control, hurricane protection, mosquito control, and control of 
marsh subsidence and erosion. Day et al. 1990; U.S. Army Corps of Engineers b. For example, 
impoundments of wetlands in Louisiana were historically constructed to help control seasonal flooding of 
the Mississippi River or for agricultural purposes, later were constructed for wildlife management, and 
more recently have been constructed in coastal Louisiana to enclose wetlands in an attempt to reduce 
wetland loss. Day et al. 1990. Wetlands can be naturally impounded by beaver dams. Larsen et al. 2021. 
In addition, levees with gated culverts or pumps for controlling water levels can be used to impounded 
wetlands. Bryant et al. 1998. Dikes and constructed dams can also impound adjacent wetlands. One study 
that conducted an inventory of impounded wetlands on the Louisiana coast found that an area equal to 
approximately 30% of the total wetland area in the Louisiana coastal zone was currently or historically 
impounded. Day et al. 1990. Impoundments created in adjacent wetlands are similar to impoundments 
created on flowing bodies of water, like rivers that are traditional navigable waters or streams that are 
tributaries, and the impoundments can serve different functions than that of the wetlands that they are 
created from. Sometimes impoundments created from adjacent wetlands create open water, well other 
times wetland characteristics are maintained, depending on the structure that creates the impoundment. 
See, e.g., id. Levees that are constructed to impound adjacent wetlands restrict water movement between 
the impounded area and the wetland that is impounded and restrict sediment input to the impounded 
wetlands. Bryant et al. 1998. This may be a result of the prevention of delivery of floodwaters and 
associated sediments to the impounded areas, with the exception of overtopping of the levees during 
storm events. Id. Seepage can still occur through or under the levee. When adjacent wetlands are 
impounded by beaver dams, hydrologic connectivity is reduced, impacting the associated movement of 
materials like sediment. See, e.g., Larsen et al. 2021. Thus, the impoundment of adjacent wetlands could 
result in increased sediment deposition in downstream traditional navigable waters, the territorial seas, 
and interstate waters, due to the reduced ability of in-stream sediment to be deposited in the impounded 
portions of the adjacent wetlands. The scientific literature and the agencies’ technical expertise and 
experience support that impoundments of adjacent wetlands can continue to have chemical, physical, and 
biological effects on traditional navigable waters, the territorial seas, and interstate waters.  

Though the impoundment of traditional navigable waters, the territorial seas, interstate waters, 
jurisdictional tributaries, and jurisdictional adjacent wetlands can change the nature of the chemical, 
physical, and biological connections that such waters have downstream, it does not eliminate them. Thus, 
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impoundments continue to serve many important functions as an integral part of the tributary system, 
which in turn impact traditional navigable waters, the territorial seas, and interstate waters. See, e.g., 
Science Report; Kondolf et al. 2014; Schmadel et al. 2019. 

 

D. Intrastate Lakes and Ponds, Streams, or Wetlands Evaluated Under 
Paragraph (a)(5) 

Paragraph (a)(5) of the final rule defines “waters of the United States” to include “intrastate lakes 
and ponds, streams, or wetlands not identified in paragraphs (a)(1) through (4)” that meet either the 
relatively permanent standard or the significant nexus standard. Thus, under paragraph (a)(5) of the final 
rule, jurisdiction over such waters would be based on the relatively permanent or significant nexus 
standards, not based on the interstate commerce test of the 1986 regulations.39 The agencies have made 
important changes to the 1986 regulations to reflect the agencies’ construction of the statutory limits on 
the scope of “waters of the United States” informed by the relevant provisions of the Clean Water Act and 
the statute as a whole, the scientific record, relevant Supreme Court precedent, and the agencies’ 
experience and technical expertise after more than 45 years of implementing the longstanding pre-2015 
regulations defining “waters of the United States.” See section IV.C.6 of the final rule preamble. The final 
rule would provide for case-specific analysis of waters not addressed by any other provision of the 
definition to determine whether they are “waters of the United States” under the relatively permanent or 
significant nexus standards. As described in section III.D.i below, waters assessed under paragraph (a)(5) 
can provide functions that restore and maintain the chemical, physical, and biological integrity of 
traditional navigable waters, the territorial seas, and interstate waters. Therefore, the agencies have 
determined that including the category for paragraph (a)(5) waters in this rule best advances the objective 
of the Clean Water Act. 

Under the final rule, such intrastate waters meet the relatively permanent standard when they are 
relatively permanent, standing or continuously flowing bodies of water with a continuous surface 
connection to traditional navigable waters, the territorial seas, interstate waters, and tributaries that meet 
the relatively permanent standard. For example, an intrastate lake with relatively permanent standing 
water that is not a traditional navigable water, is not a tributary, is not a jurisdictional impoundment, and 
is not an adjacent wetland may have a continuous surface connection to a traditional navigable water. 
Under paragraph (a)(5)(i) of the final rule such a water is evaluated for jurisdiction under the relatively 
permanent standard. Intrastate lakes and ponds, streams, or wetlands not identified in paragraphs (a)(1) 
through (4) of this rule that do not meet the relatively permanent standard are considered for jurisdiction 
under the significant nexus standard, where they are not excluded under paragraph (c) of the final rule. 
Waters assessed under paragraph (a)(5)(i) of the final rule can meet the continuous surface connection 
requirement if they are connected to a traditional navigable water, the territorial seas, or an interstate 
water or a tributary that is relatively permanent by a discrete feature like a non-jurisdictional ditch, swale, 
pipe, or culvert. Similarly, a natural berm, bank, dune, or similar natural landform between a water 
assessed under paragraph (a)(5) and a traditional navigable water, the territorial seas, or an interstate 
water or a tributary that is relatively permanent does not sever a continuous surface connection to the 

 
39 Under the 1986 regulations, such intrastate waters were evaluated under paragraph (a)(3) of that rule and were 
sometimes referred to as “(a)(3) waters” or “other waters.”  
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extent it provides evidence of a continuous surface connection. See section IV.A of this document and 
section IV.C.5.c of the final rule preamble for a description of implementation tools that can be used to 
assess a continuous surface connection for a water assessed under paragraph (a)(5). 

Under the significant nexus standard, waters assessed under paragraph (a)(5)(ii) are jurisdictional 
if they, either alone or in combination with similarly situated waters in the region, significantly affect the 
chemical, physical, or biological integrity of traditional navigable waters, the territorial seas, or interstate 
waters.  

The final rule contains an exclusive list of water types that could be jurisdictional under this 
provision if they are not jurisdictional under the other provisions of the definition: “[i]ntrastate lakes and 
ponds, streams, or wetlands.” The list of water types does not reflect a conclusion that these waters are 
necessarily jurisdictional; rather the list is simply meant to inform the public of types of waters that can be 
jurisdictional if they meet the requisite test (either the relatively permanent standard or the significant 
nexus standard), even though they do not fall within the other provisions of the final rule. Though this list 
differs from the list in the 1986 regulations, this revision to the regulatory text is not meant to reflect a 
change in the types of waters that will be considered for jurisdiction under this provision; rather, based on 
public comment, the agencies believe that a streamlined list provides more clarity to the public. The 
agencies have identified the water types listed in the rule so that the more specific water types that were 
previously listed in paragraph (a)(3) of the 1986 regulations fall within one of the four water types in the 
final rule. For example, prairie potholes were in the list of water types in the 1986 regulations and, 
depending upon the characteristics of a particular prairie pothole, they may fall within the wetlands water 
type on the list (where they meet the regulatory definition of wetlands) or they may be lakes or ponds. 
Other examples include sloughs, as they typically fall within the wetlands water type or the streams water 
type, and playa lakes, which may fall within the lakes or ponds water type depending upon their size. 

Intrastate waters that are not tributaries, jurisdictional paragraph (a)(2) impoundments, or 
adjacent wetlands under the final rule are sometimes referred to in scientific literature as “geographically 
isolated waters” and in policy as “isolated waters.” Some geographically isolated wetlands also meet the 
definition of adjacent, such as wetlands behind berms and the like and wetlands within reasonably close 
proximity of other jurisdictional waters. The term “geographically isolated” should be used with caution, 
and cannot be used to infer a lack of connectivity to downstream waters, as these wetlands are often 
connected to downstream waters through deeper groundwater connections, biological connections, or 
spillage. The degree of connectivity of such wetlands will vary depending on landscape features such as 
distance from downstream waters and proximity to other wetlands of similar nature that as a group 
connect to jurisdictional downstream waters. Science Report at 3-43, 5-2.  

The Science Report shows that intrastate waters evaluated under paragraph (a)(5) of the final 
rule—examples of which include, but are not limited to, depressional non-adjacent wetlands, non-
tributary streams, open waters like lakes and ponds, and non-adjacent peatland wetlands—can provide 
important hydrologic (e.g., flood control), water quality, and habitat functions which vary as a result of 
the diverse settings in which they exist across the country. Id. at 6-1. These functions are particularly 
valuable when considered cumulatively across the landscape or at the watershed scale and are often 
similar to the functions that adjacent wetlands provide, including water storage to control streamflow and 
mitigate or lessen downstream flooding; interruption and delay of the transport of water-borne pollutants 
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(such as excess nutrients and contaminants) over long distances; and retention of sediment. When there is 
a significant nexus, these functions restore and maintain the chemical, physical, or biological integrity of 
downstream traditional navigable waters, the territorial seas, and interstate waters. For non-floodplain 
wetlands and open waters lacking a channelized surface or regular shallow subsurface connection, 
generalizations from the literature available at the time of the Science Report’s publication about their 
specific effects on downstream waters are difficult because information on both function and connectivity 
is needed (Science Report at ES-3) with notable exceptions (for example, the Report concluded that non-
floodplain wetlands situated between a pollution source and a downstream water, intercepting the surface 
or shallow subsurface flowpath, will affect downstream waters through sink functions (Science Report at 
60)), and thus case-specific analysis of significant nexus is appropriate from policy perspective to 
determine the specific effects that intrastate waters that do not meet the relatively permanent standard 
have on traditional navigable waters, the territorial seas, or interstate waters.  

Intrastate waters evaluated under paragraph (a)(5) of the final rule individually span the gradient 
of hydrologic connectivity identified in the Science Report; they can be open waters located in the 
riparian area or floodplain of traditional navigable waters, the territorial seas, or interstate waters (e.g., 
oxbow lakes) and otherwise be physically proximate to the stream network (similar to adjacent wetlands) 
or they can be open waters or wetlands that are fairly distant from the network. See, e.g., Science Report 
at ES-12. They can be connected to traditional navigable waters, the territorial seas, or interstate waters 
via confined surface or subsurface connections (including channels, culverts, pipes, and tile drains), 
unconfined surface connections, shallow subsurface connections, deeper groundwater connections, 
biological connections, or spillage. They can also provide additional functions such as storage and 
mitigation of peak flows, natural filtration by biochemical uptake and/or breakdown of contaminants, and 
in some locations, high volume aquifer recharge that contributes to the baseflow in larger downstream 
waters. Id. at ES-10 to ES-11; McLaughlin et al. 2014; Lane et al. 2018; Neff and Rosenberry 2018. The 
strength of functions provided by such intrastate waters on traditional navigable waters, the territorial 
seas, and interstate waters will vary depending on the type (e.g., chemical, physical or hydrologic, or 
biological) and degree of connection (i.e., from highly connected to highly isolated) to downstream 
waters and landscape features such as proximity to stream networks and similarly situated waters that 
function as a group to influence downstream traditional navigable waters, the territorial seas, or interstate 
waters. See, e.g., Science Report at ES-11. 

Since the publication of the Science Report in 2015, the published literature has expanded 
scientific understanding and quantification of functions that such intrastate waters perform that affect the 
integrity of traditional navigable waters, the territorial seas, and interstate waters, particularly in the 
aggregate. As discussed in section I.C, the more recent literature (i.e., 2014-present) has determined that 
non-floodplain wetlands can have demonstrable hydrologic and biogeochemical downstream effects, such 
as decreasing peak flows (Fossey and Rousseau 2016; Golden et al. 2016; Wang et al. 2019; Yeo et al. 
2019; Rajib et al. 2020), maintaining baseflows (McLaughlin et al. 2014; Golden et al. 2019), and 
performing nitrate removal (Golden et al. 2019; Evenson et al. 2021), particularly when considered 
cumulatively.  

Some intrastate waters considered under paragraph (a)(5) would meet the final rule’s definition of 
“adjacent” if it applied to non-wetland waters like lakes and ponds. This would include, for example, 
lakes and ponds located behind berms but that are not impoundments of jurisdictional waters, non-
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tributary lakes and ponds with an unbroken surface or shallow subsurface connection to jurisdictional 
waters, and lakes and ponds that are in close physical proximity to jurisdictional waters (e.g., oxbow 
lakes). As discussed in section III.B.ii.3.b, the science is clear that a water’s proximity to downstream 
waters influences its impact on those waters. Open waters within close proximity of jurisdictional waters 
improve water quality through assimilation, transformation, or sequestration of nutrients, sediment, and 
other pollutants that can affect the integrity of traditional navigable waters, the territorial seas, or 
interstate waters. These waters also provide important habitat for aquatic-associated species to forage, 
breed, and rest. Some intrastate waters considered under paragraph (a)(5) have a shallow subsurface 
connection to jurisdictional waters. As discussed in section III.B.ii.3.a, the science demonstrates that 
waters with a shallow subsurface connection to jurisdictional waters can have important effects on 
traditional navigable waters, the territorial seas, and interstate waters. Some open waters are located 
within the riparian area or floodplain of the water to which they are proximate. Waters in stream and river 
channels can readily reach open waters in riparian areas via overbank flow, which occurs when 
floodwaters flow over stream and river channels. Science Report at 2-12 (citing Mertes 1997). The 
scientific literature, including the Science Report, supports that open waters in riparian areas and 
floodplains are chemically, physically, and biologically connected to traditional navigable waters, the 
territorial seas, or interstate waters and provide important functions that affect the integrity of such 
waters. See, e.g., ES-2 to ES-3. 

Riparian and floodplain waters take many different forms. Some may be wetlands, while others 
may be ponds, oxbow lakes, or other types of open waters. Intrastate waters considered under paragraph 
(a)(5) of the final rule that are located in riparian areas or floodplains “are physically, chemically and 
biologically integrated with rivers via functions that improve downstream water quality, including the 
temporary storage and deposition of channel-forming sediment and woody debris, temporary storage of 
local ground water that supports baseflow in rivers, and transformation and transport of stored organic 
matter.” Science Report at ES-2 to ES-3. Such wetlands and open waters act as an effective buffer to 
protect larger downstream waters from nonpoint source pollution (such as nitrogen and phosphorus), 
provide habitat for breeding fish and aquatic insects that also live in streams, and retain floodwaters, 
sediment, nutrients, and contaminants that could otherwise negatively impact the condition or function of 
traditional navigable waters, the territorial seas, and interstate waters. This inclusion of a case-specific 
significant analysis for such waters evaluated under paragraph (a)(5) that are located in the floodplain is 
supported by the SAB’s review of a previous proposed rule. The SAB concluded that “distance should not 
be the sole indicator used to evaluate the connection of ‘other waters’ to jurisdictional waters.” SAB 
2014b at 3. In allowing the case-specific evaluation of waters that do not otherwise meet the definition of 
“waters of the United States” under the final rule’s other categories, the agencies are allowing for the 
functional relationship of those floodplain waters to be considered regardless of proximity to the 
jurisdictional water. The SAB also supported the Science Report’s conclusion that “the scientific 
literature strongly supports the conclusions that streams and ‘bidirectional’ floodplain wetlands are 
physically, chemically, and/or biologically connected to downstream navigable waters; however, these 
connections should be considered in terms of a connectivity gradient.” SAB 2014b at 1. In addition, the 
SAB noted, “the literature review does substantiate the conclusion that floodplains and waters and 
wetlands in floodplain settings support the physical, chemical, and biological integrity of downstream 
waters.” Id. at 3. By allowing for intrastate waters, including wetlands, that are located within the 
floodplain of a jurisdictional water to be considered for a case-specific analysis under the significant 
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nexus standard where the water does not meet the jurisdictional criteria under the rule’s other categories 
of waters, the agencies are recognizing the science supporting the important effects that floodplain waters 
have on the chemical, physical, and biological integrity of traditional navigable waters, the territorial seas, 
and interstate waters.  

Oxbow lakes and ponds (hereafter referred to as oxbow lakes), commonly found in floodplains of 
large rivers, are formed when river meanders (curves) are cutoff from the rest of the river. These waters, 
could be evaluated under paragraph (a)(5) of the final rule. Id. at 5-3. The Science Report presents a case 
study of these floodplain waters and concludes that the scientific evidence supports that oxbow lakes 
periodically connect to the active river channel and the connection between oxbow lakes and the active 
river channel provides for several ecological effects on the river ecosystem. Id. at B-8. Oxbow lakes and 
other lakes and ponds that are in close proximity to jurisdictional waters, that are located within 
floodplain or riparian areas, or that are connected via surface and shallow subsurface hydrology to the 
stream network or to other “waters of the United States” also perform critical chemical, physical, and 
biological functions that affect downstream traditional navigable waters, the territorial seas, and interstate 
waters. Like adjacent wetlands, these waters individually and collectively can affect the integrity of 
downstream waters by acting as sinks that retain floodwaters, sediments, nutrients, and contaminants that 
could otherwise negatively impact the condition or function of downstream waters. Id. at B-10, B-11. 
They also provide important habitat for aquatic species to forage, breed, and rest. Oxbow lakes play 
similar roles as floodplain wetlands as they are an integral part of alluvial floodplains of meandering 
rivers. Id. at B-8 (citing Winemiller et al. 2000; Glinska-Lewczuk 2009). They connect to rivers by 
periodic overland flow, typically from the river during flooding events, and bidirectional shallow 
subsurface flow through fine river soils (bidirectional means flow occurs both from the river to oxbow 
lake when the river has a high water stage and from the oxbow lake to the river at low water stage). Id. at 
B-9 to B-10. Oxbow lakes generally have an important influence on the chemical, physical, and biological 
condition and function of rivers. Id. at B-13 to B-14. That influence can vary with the distance from the 
river and the age of the oxbow, reflecting the frequency and nature of the exchange of materials that takes 
place between the two water bodies. Oxbow lakes also have high mineralization rates, suggesting that 
similar to adjacent wetlands they process and trap nutrients in runoff before the runoff reaches the river 
channel. Science Report at B-11 (citing Winemiller et al. 2000). Oxbow lakes in the floodplain provide 
critical fish habitat needed for feeding and rearing, leading researchers to conclude that the entire 
floodplain should be considered a single functional unit, essential to the river’s biological integrity. Id. at 
4-17 (citing Shoup and Wahl 2009). Since ponds that are near the tributary network are structurally and 
biologically similar to oxbow lakes, they serve similar functions relative to the nearby river or stream.  

Waters evaluated under paragraph (a)(5) can be connected downstream through unidirectional 
flow from the wetland or open water to a nearby tributary. Such connections can occur through a surface 
or a shallow subsurface hydrologic connection. Id. at 2-7, 4-1 to 4-2, 4-22. Outside of the riparian zone 
and floodplain, surface hydrologic connections between waters assessed under paragraph (a)(5) of the 
final rule and jurisdictional waters can occur via confined flows (e.g., a swale, gully, ditch, or other 
discrete feature). In some cases, these connections will be a result of “fill and spill” hydrology. A 
directional flowpath is a path where water flows repeatedly from the wetland or open water to the nearby 
jurisdictional water that at times contains water originating in the wetland or open water as opposed to 
just directly from precipitation. Id. at B-12 (citing Winter and Rosenberry 1998; Leibowitz and Vining 
2003). Water connected through such flows originate from the “other water,” travel to the downstream 
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jurisdictional water, and are connected to those downstream waters by swales or other directional 
flowpaths on the surface. Surface connections can also be unconfined (non-channelized flow), such as 
overland flow. Id. at 2-14.  

A confined surface hydrologic connection, which may be perennial, intermittent, or ephemeral, 
supports periodic flows between the water assessed under paragraph (a)(5) and the jurisdictional water. 
For example, wetland seeps are likely to have perennial connections to streams that provide important 
sources of baseflow, particularly during summer. Id. at 4-21 (citing Morley et al. 2011). Some waters 
assessed under paragraph (a)(5) of the final rule are connected to streams via intermittent or ephemeral 
conveyances and can contribute flow to downstream waters via their surface hydrologic connection. Id. 
(citing Rains et al. 2006; Rains et al. 2008; McDonough et al. 2015). The surface hydrologic connection 
of the waters evaluated under paragraph (a)(5) to the jurisdictional water can contribute to the effects 
these waters have on traditional navigable waters, the territorial seas, or interstate waters. Waters 
evaluated under paragraph (a)(5) that are connected to jurisdictional waters through a confined surface 
hydrologic connection can have an impact on traditional navigable waters, the territorial seas, or interstate 
waters, regardless of whether the outflow is permanent, intermittent, or ephemeral. See, e.g., id. at 4-40.  

Waters evaluated under paragraph (a)(5) with confined surface connections can affect the 
physical integrity of waters to which they connect. Such waters can provide an important source of 
baseflow to nearby streams, helping to sustain the water levels in those streams, and ultimately in 
traditional navigable waters, the territorial seas, and interstate waters. Id. at 4-21 to 4-22 (citing Morley et 
al. 2011; Rains et al. 2006; Rains et al. 2008; Wilcox et al. 2011; McDonough et al. 2015); Lee et al. 
2010. Waters evaluated under paragraph (a)(5) with a confined surface connection to downstream 
jurisdictional waters can affect streamflow by altering baseflow or stormflow through several 
mechanisms, including surface storage and groundwater recharge. Science Report at 4-24. Waters 
evaluated under paragraph (a)(5) with confined surface connections can affect water quality of 
jurisdictional waters through source and sink functions, often mediated by transformation of chemical 
constituents. The surface hydrologic connections to nearby jurisdictional waters provide pathways for 
materials transformed in the waters evaluated under paragraph (a)(5) (such as methylmercury or degraded 
organic matter) to reach and affect the nearby waters and the traditional navigable waters, the territorial 
seas, and interstate waters. Id. at 4-26 to 4-27. Waters evaluated under paragraph (a)(5) with confined 
surface connections also can affect the biological integrity of waters to which they connect. Movement of 
organisms between these waters and the nearby jurisdictional water is governed by many of the same 
factors that affect movement of organisms between adjacent wetlands and the river network. See, e.g., id. 
at 4-30. Because such waters evaluated under paragraph (a)(5) are at least periodically hydrologically 
connected to the nearby jurisdictional tributary network on the surface, dispersal of organisms can occur 
actively through the surface connection or via wind dispersal, hitchhiking, walking, crawling, or flying. 
See, e.g., id. at 4-30 to 4-31.  

Biological connections between waters evaluated under paragraph (a)(5) and river systems do not 
always increase with hydrologic connections. In some cases, the lack of connection improves the 
biological contribution provided by such waters to nearby streams, rivers, and lakes and downstream 
traditional navigable waters, the territorial seas, and interstate waters. For instance, the periodic 
hydrologic disconnectedness of oxbow lakes is necessary for the accumulation of plankton, an important 
source of carbon more easily assimilated by the aquatic food chain than terrestrial forms of carbon. Id. at 



Page 208 of 564 

B-11 to B-12 (citing Baranyi et al. 2002; Keckeis et al. 2003). Similarly, some degree of hydrological 
disconnectedness is important in increasing the number of mollusk species and macroinvertebrate 
diversity in oxbow lakes, which in turn support the diversity of mollusks throughout the aquatic system. 
Id. at B-12 (citing Reckendorfer et al. 2006; Obolewski et al. 2009). 

Some waters assessed under paragraph (a)(5) are wetlands that are located too far from 
jurisdictional waters to be considered “adjacent” or are lakes and ponds that are not proximate to 
jurisdictional waters. The agencies have always recognized that adjacency is bounded by proximity. The 
science is clear that a water’s proximity to downstream waters influences its impact on those waters. The 
Science Report states, “[s]patial proximity is one important determinant of the magnitude, frequency and 
duration of connections between wetlands and streams that will ultimately influence the fluxes of water, 
materials and biota between wetlands and downstream waters.” Science Report at ES-11. Generally, 
waters that are closer to a jurisdictional water are more likely to be connected to that water than waters 
that are farther away.  

The specific distance from jurisdictional waters may vary based on the characteristics of the 
aquatic resources being evaluated, but they are often located outside of the riparian area or floodplain, 
lack a confined surface or shallow subsurface hydrologic connection to jurisdictional waters, or exceed 
the minimum distances necessary for aquatic to utilize both the subject waters and the waters in the 
broader tributary network. Some intrastate waters considered under paragraph (a)(5) of the rule may be 
too removed from the stream network or from jurisdictional waters to have significant effects on 
traditional navigable waters, the territorial seas, or interstate waters. However, particularly when 
considered in the aggregate, some intrastate waters considered under paragraph (a)(5) can, in certain 
circumstances, have strong chemical, physical, and biological connections to and effects on traditional 
navigable waters, the territorial seas, or interstate waters. Sometimes it is their relative isolation from the 
stream network (e.g., lack of a hydrologic surface connection) that contributes to the important effect that 
they have downstream; for example, depressional non-floodplain wetlands lacking a confined surface 
outlet can function individually and cumulatively to retain and transform nutrients, retain sediment, 
provide habitat, and reduce or attenuate downstream flooding, depending on site-specific conditions such 
as landscape characteristics (e.g., slope of the terrain, soil permeability). Id. at 4-38; Lane et al. 2018; 
Golden et al. 2019; see section I.C.vii.  

Some waters assessed under paragraph (a)(5) are located outside of the floodplain. Non-
floodplain waters perform many of the same functions as floodplain waters, but as discussed above, their 
connectivity to downstream waters varies. Generalizations about their effects on downstream waters can 
be difficult to ascertain from the available scientific literature. The functions of non-floodplain waters are 
discussed below. 

Waters assessed under paragraph (a)(5) that are located outside the floodplain can affect 
streamflow by altering baseflow or storm flow through several mechanisms, including surface storage and 
groundwater recharge. Science Report at 4-24. Studies at the larger scale have shown that by storing 
water, wetlands, reduce peak flows and thus, downstream flooding. Id. at 4-25 (citing Jacques and Lorenz 
1988; Vining 2002; McEachern et al. 2006; Gleason et al. 2007).  

Non-floodplain waters evaluated under paragraph (a)(5), including wetlands, contain diverse 
microbial populations that perform various chemical transformations, acting as source of compounds and 
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potentially influencing the water quality downstream. Id. at 4-27 (citing Reddy and DeLaune 2008). 
Sulfate-reducing bacteria found in some non-floodplain wetlands produce methylated mercury, which is 
then transported downstream by surface flows. Id. (citing Linqvist et al. 1991; Mierle and Ingram 1991; 
Driscoll et al. 1995; Branfireun et al. 1999). Wetlands, including those that are waters assessed under 
paragraph (a)(5), are the principal sources of dissolved organic carbon (DOC) in forests to downstream 
waters. Id. at 4-28 (citing Mulholland and Kuenzler 1979; Urban et al. 1989; Eckhardt and Moore 1990; 
Koprivnjak and Moore 1992; Kortelainen 1993; Clair et al. 1994; Hope et al. 1994; Dillon and Molot 
1997; Gergel et al. 1999). Export of DOC to traditional navigable waters, the territorial seas, and 
interstate waters from waters evaluated under paragraph (a)(5) can support primary productivity, affect 
pH and buffering capacity, and regulate exposure to UV-B radiation. Id. (citing Eshelman and Hemond 
1985; Hedin et al. 1995; Schindler and Curtis 1997; Nuff and Asner 2001).  

Non-floodplain waters assessed under paragraph (a)(5) also act as sinks and transformers for 
pollutants, including excess nutrients, through such processes as denitrification, ammonia volatilization, 
microbial and plant biomass assimilation, sedimentation, sorption and precipitation, biological uptake, 
and long-term storage of plant detritus. Id. at 4-29 (citing Ewel and Odum 1984; Nixon and Lee 1986; 
Johnston 1991; Detenbeck et al. 1993; Reddy et al. 1999; Mitsch and Gosselink 2007; Reddy and 
DeLaune 2008; Kadlec and Wallace 2009). Specifically, non-floodplain waters evaluated under paragraph 
(a)(5) can reduce phosphorus, nitrate, and ammonium by large percentages. Id. (citing Dierberg and 
Brezonik 1984; Dunne et al. 2006; Jordan et al. 2007; Cheesman et al. 2010). Wetland microbial 
processes reduce other pollutants, such as pesticides, hydrocarbons, heavy metals, and chlorinated 
solvents. Id. at 4-30 (citing Brooks et al. 1977; Kao et al. 2002; Boon 2006). 

Non-floodplain waters considered under paragraph (a)(5) can have biological connections 
downstream that have the potential to impact the integrity of traditional navigable waters, the territorial 
seas, or interstate waters. Emergent and aquatic vegetation found in such non-floodplain waters disperse 
downstream by water, wind, and hitchhiking on (i.e., adhering to) migratory animals. Id. at 4-31 (citing 
Soons and Heil 2002; Soons 2006; Nilsson et al. 2010). Similarly, fish move between the river network 
and non-floodplain waters evaluated under paragraph (a)(5) during times of surface water connections. Id. 
at 4-34 (citing Snodgrass et al. 1996; Zimmer et al. 2001; Baber et al. 2002; Hanson et al. 2005; Herwig 
et al. 2010). Mammals that can disperse overland can also contribute to connectivity. Id. (citing Shanks 
and Arthur 1952; Roscher 1967; Serfass et al. 1999; Clark 2000; Spinola et al. 2008). Insects also 
hitchhike on birds and mammals from non-floodplain wetlands to the stream network, which can then 
serve as a food source for downstream waters. Id. at 4-31 (citing Figuerola and Green 2002; Figuerola et 
al. 2005). Insects that are flight-capable also use both the stream and non-floodplain waters moving from 
the stream to the wetland to find suitable habitat for overwintering, refuge from adverse conditions, 
hunting, foraging, or breeding. Id. at 4-34 (citing Williams 1996; Bohonak and Jenkins 2003). 
Amphibians and reptiles, including frogs, toads, and newts, also move between streams or rivers and non-
floodplain waters to satisfy part of their life history requirements, feed on aquatic insects, and avoid 
predators. Id. at 4-34 to 4-35 (citing Lamoureux and Madison 1999; Babbitt et al. 2003; Adams et al. 
2005; Green 2005; Hunsinger and Lannoo 2005; Petranka and Holbrook 2006; Attum et al. 2007; 
Subalusky et al. 2009a; Subalusky et al. 2009). 

The science itself does not establish bright lines for establishing where waters do not have a 
significant nexus to traditional navigable waters, the territorial seas, and interstate waters. For instance, as 



Page 210 of 564 

noted above, the SAB concluded that distance should not be a sole factor used to evaluate the connection 
of waters to jurisdictional waters. SAB 2014b at 3. A case-specific analysis for waters assessed under 
paragraph (a)(5) of the final rule allows such waters to be considered jurisdictional only where they meet 
the relatively permanent or significant nexus standard.  

The agencies emphasize that they fully support efforts by Tribes and States to protect under their 
own laws any additional waters, including locally important waters that may not be within the federal 
interests of the Clean Water Act as the agencies have interpreted its scope in this final rule. Indeed, the 
final rule and the definition of “waters of the United States” do not foreclose Tribes and States from 
acting consistent with their Tribal and State authorities to establish protection for waters that fall outside 
of the protection of the Clean Water Act.  

Based on the functions that can be provided by intrastate lakes and ponds, streams, and wetlands 
that are not paragraph (a)(1) through (4) waters to traditional navigable waters, the territorial seas, and 
interstate waters, the final rule provides that such waters will be assessed to determine whether they meet 
either the relatively permanent standard or the significant nexus standard reflects proper consideration of 
the objective of the Act, relevant Supreme Court discussions, and the best available science. 

 

i. Intrastate Waters Evaluated Under Paragraph (a)(5) Can Provide 
Functions that Restore and Maintain the Chemical, Physical, and Biological 
Integrity of Traditional Navigable Waters, the Territorial Seas, and Interstate 
Waters 

Intrastate lakes and ponds, streams, and wetlands that do not meet the relatively permanent 
standard can provide functions that restore and maintain the chemical, physical, and biological integrity of 
downstream traditional navigable waters, the territorial seas, and interstate waters, and such waters will be 
evaluated on a case-specific basis under the final rule. This section will focus on intrastate waters 
evaluated under paragraph (a)(5) of the final rule and the functions they provide that benefit traditional 
navigable waters, the territorial seas, and interstate waters. 

Though much of the literature cited in the Science Report relates to waters evaluated under 
paragraph (a)(5) that are streams or wetlands, the Science Report indicates that open waters also can have 
chemical, physical, or biological connections that significantly impact downstream waters. For instance, 
ponds or lakes that are not part of the tributary network can still be connected to downstream waters 
through chemical, physical, and biological connections. Lake storage has been found to attenuate peak 
streamflows in Minnesota. Id. at 4-25 (citing Jacques and Lorenz 1988; Lorenz et al. 2010). Similar to 
wetlands, ponds are often used by invertebrate, reptile, and amphibian species that also utilize 
downstream waters for various life history requirements, particularly because many ponds, particularly 
temporary ponds, are free of predators, such as fish, that prey on larvae. The American toad and Eastern 
newt, for example, are widespread habitat generalists that can move among streams, wetlands, and ponds 
to take advantage of each aquatic habitat, feeding on aquatic invertebrates, and avoiding larger predators. 
See, e.g., Id. at 4-35 (citing Babbitt et al. 2003; Green 2005; Hunsinger and Lannoo 2005; Petranka and 
Holbrook 2006).  
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The physical effect that intrastate waters evaluated under paragraph (a)(5) of the final rule have 
downstream can be less obvious than the physical connections of adjacent wetlands and of tributaries that 
do not meet the relatively permanent standard when such waters are physical distant from the stream 
network or from jurisdictional waters. Despite this physical distance, they are frequently connected in 
some degree through either surface water or groundwater systems; over time, impacts in one part of the 
hydrologic system will be felt in other parts. Winter and LaBaugh 2003. For example, waters assessed 
under paragraph (a)(5) that overspill into downstream water bodies during times of abundant precipitation 
are connected over the long term. Id. Wetlands that lack surface connectivity in a particular season or year 
can, nonetheless, be highly connected in wetter seasons or years. Science Report at 4-24. Floodplain 
waters and non-adjacent wetlands are connected to traditional navigable waters, the territorial seas, or 
interstate waters via both surface and subsurface hydrologic flowpaths and can reduce flood peaks by 
storing floodwaters. Id. at ES-9. Many waters assessed under paragraph (a)(5) interact with groundwater, 
either by receiving groundwater discharge (flow of groundwater to the case-specific water), contributing 
to groundwater recharge (flow of water from the case-specific water to groundwater), or both. Id. at 4-22 
(citing Lide et al. 1995; Devito et al. 1996; Matheney and Gerla 1996; Rosenberry and Winter 1997; 
Pyzoha et al. 2008). Factors that determine whether a water recharges groundwater or is a site of 
groundwater discharge include topography, geology, soil features, and seasonal position of the water table 
relative to the water. Id. at 4-23 (citing Phillips and Shedlock 1993; Shedlock et al. 1993; Lide et al. 
1995; Sun et al. 1995; Rosenberry and Winter 1997; Pyzoha et al. 2008; McLaughlin et al. 2014). 
Similarly, the magnitude and transit time of groundwater flow from a water assessed under paragraph 
(a)(5) to downstream traditional navigable waters, the territorial seas, or interstate waters depend on 
several factors, including the intervening distance and the properties of the rock or unconsolidated 
sediments between the water bodies (i.e., the hydraulic conductivity of the material). Id. at 4-23. Surface 
and groundwater hydrological connections are those generating the capacity for waters assessed under 
paragraph (a)(5) to affect downstream waters, as water from the aquatic resource being assessed may 
contribute to baseflow or stormflow through groundwater recharge. Id. at 4-24. Contributions to baseflow 
are important for maintaining conditions that support aquatic life in downstream traditional navigable 
waters, the territorial seas, and interstate waters. As discussed further below, even in cases where waters 
assessed under paragraph (a)(5) lack a connection to downstream waters, they can influence downstream 
waters through water storage and mitigation of peak flows. Id. at 4-2, 4-42, 4-43. 

The chemical effects that waters assessed under paragraph (a)(5) have on downstream waters are 
linked to their hydrologic connection downstream, though a surface connection is not needed for a water 
to influence the chemical integrity of the downstream traditional navigable water, the territorial seas, or 
interstate water. When waters assessed under paragraph (a)(5) are hydrologically connected to 
downstream waters via surface or groundwater connections, such waters can affect water quality 
downstream (although these connections do not meet the definition of adjacency for wetlands). Whigham 
and Jordan 2003. Waters assessed under paragraph (a)(5) can act as sinks and transformers for nitrogen 
and phosphorus, metals, pesticides, and other contaminants that could otherwise negatively impact 
downstream traditional navigable waters, the territorial seas, and interstate waters. Science Report at 4-29 
to 4-30 (citing Brooks et al. 1977; Hemond 1980; Davis et al. 1981; Hemond 1983; Ewel and Odum 
1984; Moraghan 1993; Craft and Chiang 2002; Kao et al. 2002; Boon 2006; Dunne et al. 2006; Cohen et 
al. 2007; Jordan et al. 2007; Whitmire and Hamilton 2008; Bhadha et al. 2011; Marton et al. 2014). See 
also, e.g., Isenhart 1992. Schmadel et al. (2019) found that small ponds nearby the stream network are the 
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dominant nitrogen sinks in headwater catchments, while small ponds not near the stream network are the 
dominant phosphorus sinks. The body of published scientific literature and the Science Report indicate 
that sink removal of nutrients and other pollutants by waters assessed under paragraph (a)(5) is significant 
and geographically widespread. Science Report at 4-30. Such waters located on floodplains provide water 
quality benefits for the downstream traditional navigable waters, the territorial seas, and interstate waters, 
including retention of sediment and organic matter and retention, cycling, and transformation of 
pollutants like nutrients. Id. at ES-9. Water quality characteristics of waters assessed under paragraph 
(a)(5) are highly variable, depending primarily on the sources of water, characteristics of the substrate, 
and land uses within the watershed. Whigham and Jordan 2003. These variables inform whether a water 
assessed under paragraph (a)(5) has a significant nexus to a traditional navigable water, the territorial 
seas, or an interstate water. See also section III.E.ii. For instance, some prairie potholes may improve 
water quality and may efficiently retain nutrients that might otherwise cause water quality problems in 
larger downstream waters; in such systems it may be their lack of a direct hydrologic connection that 
enables the prairie potholes to retain nutrients more effectively. Whigham and Jordan 2003; Science 
Report at 2-28 to 2-29.  

Waters assessed under paragraph (a)(5) can be biologically connected to each other and to 
downstream traditional navigable waters, the territorial seas, and interstate waters through the movement 
of seeds, macroinvertebrates, amphibians, reptiles, birds, and mammals. Science Report at 4-30 to 4-35; 
Leibowitz 2003. The movement of organisms between such waters and downstream waters is governed 
by many of the same factors that affect movement of organisms between adjacent wetlands and 
downstream waters. See section III.B; Science Report at 4-30. For example, “waters assessed under 
paragraph (a)(5) that are located in the floodplain of a jurisdictional water are hydrologically connected to 
traditional navigable waters, the territorial seas, or interstate waters by lateral expansion and contraction 
of the jurisdictional water in its floodplain, resulting in an exchange of matter and organisms with the 
jurisdictional water and further downstream to traditional navigable waters, the territorial seas, or 
interstate waters. One example of such a connection is fish populations that are adapted to use wetlands 
and open waters in the floodplain for feeding and spawning during high water. Id. at ES-9 to ES-10. 
Many waters assessed under paragraph (a)(5) are further away from stream channels than adjacent 
wetlands, making hydrologic connectivity less frequent, and increasing the number and variety of 
landscape barriers over which organisms must disperse. Id. Plants, though non-mobile, have evolved 
many adaptations to achieve dispersal over a variety of distances, including water-borne dispersal during 
periodic hydrologic connections, “hitchhiking” on or inside highly mobile animals, and more typically via 
wind dispersal of seeds and/or pollen. Id. at 4-31 (citing Galatowitsch and van der Valk 1996; Murkin and 
Caldwell 2000; Amezaga 2002; Figuerola and Green 2002; Soons and Heil 2002; Soons 2006; Haukos et 
al. 2006 and references therein; Nilsson et al. 2010). Mammals that disperse overland can also contribute 
to connectivity and can act as transport vectors for hitchhikers such as algae. Id. at 4-34 (citing Shanks 
and Arthur 1952; Roscher 1967; Serfass et al. 1999; Clark 2000; Spinola et al. 2008). Invertebrates also 
utilize birds and mammals to hitchhike, and these hitchhikers can be an important factor structuring 
invertebrate metapopulations in case-specific waters and in aquatic habitats separated by hundreds of 
kilometers. Id. at 4-31 through 4-32 (Figuerola and Green 2002; Figuerola et al. 2005; Allen 2007; Frisch 
2007). Numerous flight-capable insects use both waters assessed under paragraph (a)(5) and downstream 
traditional navigable waters, the territorial seas, or interstate waters; these insects move outside the 
tributary network to find suitable habitat for overwintering, refuge from adverse conditions, hunting, 
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foraging, or breeding, and then can return back to the tributary network for other life cycle needs. Id. at 4-
34 (citing Williams 1996; Bohonak and Jenkins 2003). Amphibians and reptiles also move between 
waters assessed under paragraph (a)(5) and downstream waters to satisfy part of their life history 
requirements. Id. at 4-34. Alligators in the Southeast, for instance, can move from tributaries to shallow, 
seasonal limesink wetlands for nesting, and also use these wetlands as nurseries for juveniles; sub-adults 
then shift back to the tributary network through overland movements. Id. (citing Subalusky et al. 2009a; 
Subalusky et al. 2009b). Similarly, amphibians and small reptile species, such as frogs, toads, and newts, 
commonly use both tributaries and waters assessed under paragraph (a)(5), during one or more stages of 
their life cycle, and can at times disperse over long distances. Id. at 4-34 to 4-35 (citing Knutson et al. 
1999; Lamoureux and Madison 1999; Babbitt et al. 2003; Adams et al. 2005; Green 2005; Hunsinger and 
Lannoo 2005; Petranka and Holbrook 2006; Attum et al. 2007). 

Even when a surface or groundwater hydrologic connection between a water assessed under 
paragraph (a)(5) of the final rule and a downstream traditional navigable water, the territorial sea, or 
interstate water is visibly absent, many waters still have the ability to have a material influence on the 
integrity of those downstream fundamental waters. Such circumstances would be uncommon, but can 
occur, for instance, where a wetland recharges a deep groundwater aquifer that does not feed surface 
waters, or it is located in a basin where evapotranspiration is the dominant form of water loss. Id. at 4-21 
to 4-24. Aquatic systems that may seem disconnected hydrologically are often connected but at irregular 
timeframes or through subsurface flow, and perform important functions that can be vital to the chemical, 
physical, or biological integrity of downstream traditional navigable waters, the territorial seas, and 
interstate waters. Some wetlands that may be hydrologically disconnected most of the time but connected 
to the stream network during rare high-flow events or during wetter seasons or years. Although the 
Science Report focuses primarily on the benefits that connectivity can have on downstream systems, 
isolation also can have important positive effects on the condition and function of downstream traditional 
navigable waters, the territorial seas, and interstate waters. Id. at 2-28. For instance, the lack of a 
hydrologic connection allows for water storage in such waters, attenuating peak streamflows, and, thus, 
downstream flooding, and also reducing nutrient and soil pollution in downstream waters. Id. at 2-28 to 2-
29, 4-2, 4-38. Prairie potholes a great distance from any tributary, for example, are thought to store 
significant amounts of runoff. Id. at 4-38 (citing Novitzki 1979; Hubbard and Linder 1986; Vining 2002; 
Bullock and Acreman 2003; McEachern et al. 2006; Gleason et al. 2007). Filling wetlands reduces water 
storage capacity in the landscape and causes runoff from rainstorms to overwhelm the remaining available 
water conveyance system. See, e.g., Johnston et al. 1990; Moscrip and Montgomery 1997; Detenbeck et 
al. 1999; Detenbeck et al. 2005. Wetlands, even when lacking a hydrologic connection downstream, 
improve downstream water quality by accumulating nutrients, trapping sediments, and transforming a 
variety of substances. See, e.g., National Research Council 1995.  

The structure and function of a river are highly dependent on the constituent materials that are 
stored in, or transported through, the river. Most of the materials found in rivers originate outside of them. 
Thus, the fundamental way that waters evaluated under (a)(5) are able to affect river structure and 
function is by providing or altering the materials delivered to the river. Science Report at 1-13. Since the 
alteration of material fluxes depends on the functions within these waters evaluated under paragraph 
(a)(5) and the degree of connectivity, it is appropriate to consider both these factors for purposes of the 
significant nexus standard under the final rule. 
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 Based on the functions that can be provided by waters evaluated under paragraph (a)(5) to 
traditional navigable waters, the territorial seas, and interstate waters, the agencies’ assessment of such 
intrastate waters on a case-specific basis to determine whether they meet either the relatively permanent 
standard or the significant nexus standard in the final rule reflects proper consideration of the objective of 
the Clean Water Act and the best available science. 

 

E. Significant Nexus Standard 

i. Waters Subject to the Significant Nexus Standard 

Under the final rule, several categories of waters require a case-specific analysis to determine if 
they meet the significant nexus standard. This includes tributaries not meeting the relatively permanent 
standard, wetlands adjacent to tributaries and impoundments and that do not meet the relatively 
permanent standard, and intrastate waters assessed under paragraph (a)(5) that do not meet the relatively 
permanent standard.  

The agencies have concluded that the significant nexus standard is consistent with the statutory 
text, advances the objective of the Clean Water Act, is informed by the scientific record and Supreme 
Court case law, and appropriately considers the policies of the Act. The agencies have also concluded that 
the relatively permanent standard on its own identifies only a subset of the “waters of the United States,” 
although it is being retained because it provides important administrative efficiencies. The terms in this 
rule are generally familiar and implementable as they reflect consideration of the agencies’ experience 
and expertise, as well as updates in implementation tools and resources. 

The scientific literature documents the functions of waters that do meet the final rule’s relatively 
permanent standard, including the chemical, physical, and biological impact they can have downstream. 
Available literature indicates that such waters can have important hydrologic, water quality, and habitat 
functions that have the ability to affect downstream traditional navigable waters, the territorial seas, and 
interstate waters, if and when a connection exists between the water and those larger downstream waters. 
Science Report at 6-5. Connectivity of waters evaluated under the significant nexus standard to traditional 
navigable waters, the territorial seas, and interstate waters, and for waters evaluated under paragraph 
(a)(5) in particular, will vary within a watershed and over time. The agencies have determined that where 
such waters do not meet the relatively permanent standard, as a matter of policy that a case-specific 
significant nexus evaluation is appropriate. See, e.g., id. The types of chemical, physical, and biological 
connections between such waters and traditional navigable waters, the territorial seas, and interstate 
waters are described below for illustrative purposes. As described in the rule’s preamble, when the 
agencies are conducting a case-specific evaluation for significant nexus, they examine the connections 
between the water (including any similarly situated waters in the region) and downstream traditional 
navigable waters, the territorial seas, or interstate waters, assess the relevant factors that affect 
connectivity and functions, and determine if those waters have a material influence on the chemical, 
physical, or biological integrity of the traditional navigable water, the territorial seas, or the interstate 
water, using any available site-information and field observations, relevant scientific studies or data, or 
other information.  
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The hydrologic connectivity of waters evaluated under the significant nexus standard to 
traditional navigable waters, the territorial seas, or interstate waters occurs on a gradient and can include 
waters in the floodplain, waters that have groundwater or occasional surface water connections (through 
overland flow) to the tributary network, and waters that have no hydrologic connection to the tributary 
network or to jurisdictional waters. Id. at 4-2. The connectivity of waters analyzed under the significant 
nexus standard to downstream traditional navigable waters, the territorial seas, or interstate waters will 
vary within a watershed as a function of local factors (e.g., position, topography, and soil characteristics). 
Id. at 4-41. Connectivity also varies over time, as the tributary network and water table expand and 
contract in response to local climate. Id. Lack of connection does not necessarily translate to lack of 
impact; even when lacking connectivity, waters can still impact chemical, physical, and biological 
conditions downstream. Id. at 4-42 to 4-43. 

Under the final rule, on a case-specific basis, waters that meet the significant nexus standard are 
“waters of the United States” under paragraphs (a)(3)(ii), (a)(4)(iii), and (a)(5)(ii). The scientific literature 
and data cited in the Science Report and this Technical Support Document demonstrate that these waters, 
along with any similarly situated waters in the region, significantly affect the chemical, physical, or 
biological integrity of traditional navigable waters, the territorial seas, and interstate waters. 

The agencies also rely on the extensive experience the Corps has gained in making significant 
nexus determinations since the Rapanos decision. Since the Rapanos decision, the agencies have 
developed extensive experience making significant nexus determinations. The agencies have made 
determinations in every state in the country, for a wide range of waters in a wide range of conditions.  

The rule’s requirements for these waters, coupled with those for waters meeting the relatively 
permanent standard, create an integrated approach that tailors the regulatory regime based on the Supreme 
Court decisions and the agencies’ policy objectives and informed by science. Providing for case-specific 
significant nexus analysis for waters that do not meet the relatively permanent standard is consistent with 
science, agency experience, and longstanding pre-2015 practice and will ensure protection of the 
important waters whose protection will advance the goals of the Clean Water Act.  

For these reasons, the agencies decided to allow case-specific determinations of significant nexus 
for tributaries not meeting the relatively permanent standard, wetlands adjacent to tributaries and 
impoundments and that do not meet the relatively permanent standard, and intrastate waters assessed 
under paragraph (a)(5) that do not meet the relatively permanent standard. Under the rule, these waters are 
jurisdictional only where they individually or cumulatively (if it is determined that there are other 
similarly situated waters in the region) have a significant nexus to traditional navigable waters, the 
territorial seas, or interstate waters.  

 

ii. “Similarly Situated” 

Science supports analyzing the contributions of similarly situated waters in combination with 
each other for their effect on downstream traditional navigable waters, the territorial seas, and interstate 
waters. The agencies are establishing an approach to “similarly situated” for adjacent wetlands and 
tributaries and a different approach to “similarly situated” for intrastate waters assessed under paragraph 
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(a)(5)(ii).  

In implementing the final rule, the agencies consider tributaries and their adjacent wetlands to be 
“similarly situated” waters for purposes of the significant nexus standard. This is consistent with 
longstanding practice, and the agencies believe that this integrated approach to considering tributaries and 
their adjacent wetlands together when assessing the effects of these waters on the chemical, physical, or 
biological integrity of traditional navigable waters, the territorial seas, or interstate waters reflects that 
these waters act together to influence downstream waters, as discussed further in this section. In 
considering how to apply the significant nexus standard, the agencies have long focused on the integral 
relationship between the ecological characteristics of tributaries and those of their adjacent wetlands, 
which determines in part their contribution to restoring and maintaining the chemical, physical, or 
biological integrity of traditional navigable waters, the territorial seas, and interstate waters. 

In implementing the significant nexus standard for waters assessed under paragraph (a)(5) of the 
final rule, the agencies generally intend to analyze such waters individually to determine if they 
significantly affect the chemical, physical, or biological integrity of a paragraph (a)(1) water. This 
approach reflects the agencies’ consideration of public comments, as well as implementation 
considerations for waters assessed under paragraph (a)(5). While the agencies’ regulations have long 
authorized the assertion of jurisdiction on a case-specific basis over waters that do not fall within the 
jurisdictional provisions by water type, since SWANCC and the issuance of the SWANCC guidance with 
its requirement of headquarters approval over determinations under that provision, the agencies have not 
in practice asserted jurisdiction over paragraph (a)(3) “other waters” under the pre-2015 regulatory 
regime.40 The agencies addressed such waters individually on a case-specific basis under pre-2015 
practice and have concluded at this time that individual assessments are practical and implementable for 
significant nexus determinations for waters assessed under paragraph (a)(5). The agencies note that 
generally assessing waters evaluated under paragraph (a)(5) on an individual basis represents a policy 
decision. One conclusion of Science Report was that the incremental effects of individual streams and 
wetlands are cumulative across entire watersheds and therefore should be evaluated in context with other 
streams and wetlands.  

Streams, wetlands, and other surface waters interact with ground water and terrestrial 
environments throughout the landscape, “from the mountains to the oceans.” Id. at 1-2 (citing Winter et 
al. 1998). Thus, an integrated perspective of the landscape, provides the appropriate scientific context for 
evaluating and interpreting evidence about the chemical, physical, and biological connectivity of streams, 
wetlands, and open waters to downstream traditional navigable waters, the territorial seas, and interstate 
waters.  

Connectivity has long been a central tenet for the study of aquatic ecosystems. The River 
Continuum Concept viewed the entire length of rivers, from source to mouth, as a complex hydrologic 

 
40 Note that when the 2015 Clean Water Rule was in effect, the agencies did assert categorical jurisdiction over 
waters if they were adjacent waters as defined by that rule and asserted jurisdiction on a case-specific basis over 
waters that fell within the provisions requiring case-specific significant nexus determinations where such waters 
were determined to have a significant nexus. Under the pre-2015 regulatory regime, such waters would have been 
assessed under paragraph (a)(3) of the agencies’ 1986 regulations. The 2020 NWPR also asserted jurisdiction over 
certain lakes and ponds that would have been considered under the paragraph (a)(3) “other waters” category under 
the pre-2015 regulatory regime. 
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gradient with predictable longitudinal patterns of ecological structure and function. Id. (citing Vannote et 
al. 1980). The key pattern is that downstream communities are organized, in large part, by upstream 
communities and processes. Id. (citing Vannote et al. 1980; Battin et al. 2009). The Serial Discontinuity 
Concept built on the River Continuum Concept to improve our understanding of how dams and 
impoundments disrupt the longitudinal patterns of flowing waters with predictable downstream effects. 
Id. (citing Ward and Stanford 1983). The Spiraling Concept described how river network connectivity can 
be evaluated and quantified as materials cycle from dissolved forms to transiently stored forms taken up 
by living organisms, then back to dissolved forms, as they are transported downstream. Id. at 1-3 (citing 
Webster and Patten 1979; Newbold et al. 1981; Elwood et al. 1983). These three conceptual frameworks 
focused on the longitudinal connections of river ecosystems, whereas the subsequent flood pulse concept 
examined the importance of lateral connectivity of river channels to floodplains, including wetlands and 
open waters, through seasonal expansion and contraction of river networks. Id. (citing Junk et al. 1989). 
Ward (1989) summarized the importance of connectivity to lotic ecosystems along four dimensions: 
longitudinal, lateral, vertical (surface-subsurface), and temporal connections; he concluded that running 
water ecosystems are open systems that are highly interactive with both contiguous habitats and other 
ecosystems in the surrounding landscape. Id. As these conceptual frameworks illustrate, scientists have 
long recognized the hydrologic connectivity the physical structure of river networks represents.  

More recently, scientists have incorporated this connected network structure into conceptual 
frameworks describing ecological patterns in river ecosystems and the processes linking them to other 
watershed components, including wetlands and open waters. Id. (citing Power and Dietrich 2002; Benda 
et al. 2004b; Nadeau and Rains 2007; Rodriguez-Iturbe et al. 2009). Sheaves (2009) emphasized the key 
ecological connections―which include process-based connections that maintain habitat function (e.g., 
nutrient dynamics, trophic function) and movements of individual organisms―throughout a complex of 
interlinked freshwater, tidal wetlands, and estuarine habitats as critical for the persistence of aquatic 
species, populations, and communities over the full range of time scales. Id. 

Scientists routinely aggregate the effects of groups of waters, multiplying the known effect of one 
water by the number of similar waters in a specific geographic area, or to a certain scale. This kind of 
functional aggregation of non-adjacent (and other types of waters) is well-supported in the scientific 
literature. See, e.g., Stevenson and Hauer 2002; Leibowitz 2003; Gamble et al. 2007; Lane and D’Amico 
2010; Wilcox et al. 2011. Similarly, streams and rivers are routinely aggregated by scientists to estimate 
their combined effect on downstream waters in the same watershed. This is because chemical, physical, or 
biological integrity of downstream waters is directly related to the aggregate contribution of upstream 
waters that flow into them, including any tributaries and connected wetlands. As a result, the scientific 
literature and the Science Report consistently document that the health of larger downstream waters is 
directly related to the aggregate health of waters located upstream, including waters such as wetlands that 
may not be hydrologically connected but function together to prevent floodwaters and contaminants from 
reaching downstream traditional navigable waters, the territorial seas, and interstate waters.  

Stream and wetland connectivity to downstream waters, and the resulting effects on the integrity 
of downstream traditional navigable waters, the territorial seas, and interstate waters, is best understood 
and assessed when considered cumulatively. Science Report at 1-10. First, when considering the effect of 
an individual stream or wetland, including the cumulative effect of all the contributions and functions that 
a stream or wetland provides is essential. For example, the same stream transports water, removes excess 
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nutrients, mitigates flooding, and provides refuge for fish when conditions downstream are unfavorable; 
ignoring any of these functions would underestimate the overall effect of that stream. 

Secondly, and perhaps more importantly, stream channel networks and the watersheds they drain 
are fundamentally cumulative in how they are formed and maintained. Excess precipitation that is not 
evaporated, taken up by organisms, or stored in soils and geologic layers moves downgradient as overland 
flow or through channels, which concentrate flows and carry sediment, chemical constituents, and 
organisms. As flows from numerous headwater channels combine in larger channels, the volume and 
effects of those flows accumulate as they move through the river network. As a result, the incremental 
contributions of individual streams and wetlands accumulate in the downstream waters. Important 
cumulative effects are exemplified by ephemeral flows in arid landscapes, which are key sources of 
baseflow for downgradient waters, and by the high rates of denitrification in headwater streams. Id. 
(citing Schlesinger and Jones 1984; Baillie et al. 2007; Izbicki 2007). The amount of nutrients removed 
by any one stream over multiple years or by all headwater streams in a watershed in a given year can have 
substantial consequences for downstream waters. Id. (citing Alexander et al. 2007; Alexander et al. 2009; 
Böhlke et al. 2009; Helton et al. 2011). Similar cumulative effects on downstream waters have been 
documented for other material contributions from headwater streams in the Science Report. For example, 
although the probability of a large-magnitude transfer of organisms from any given headwater stream in a 
given year might be low (i.e., a low-frequency connection when each stream is considered individually), 
headwater streams are the most abundant type of stream in most watersheds. Thus, the overall probability 
of a large-magnitude transfer of organisms is higher when considered for all headwater streams in a 
watershed—that is, there is a high-frequency connection when considered cumulatively at the watershed 
scale, compared with probabilities of transport for streams individually. Similarly, a single pollutant 
discharge might be negligible but the cumulative effect of multiple discharges could degrade the integrity 
of downstream traditional navigable waters, the territorial seas, or interstate waters.  

Evaluating cumulative contributions over time is critical in streams and wetlands with variable 
degrees of connectivity. Id. at 1-11. For example, denitrification in a single headwater stream in any given 
year might affect downstream waters; over multiple years, however, this effect could accumulate. 
Western vernal pools provide another example of cumulative effects over time. These pools typically 
occur as complexes in which the hydrology and ecology are tightly coupled with the local and regional 
geological processes that formed them. When seasonal precipitation exceeds wetland storage capacity and 
wetlands overflow into the river network and generate stream discharge, the vernal pool basins, swales, 
and seasonal streams function as a single surface-water and shallow ground-water system connected to 
the river network.  

In the aggregate, similarly situated waters may have significant effects on the quality of water 
many miles away, particularly in circumstances where numerous similarly situated waters are located in 
the region and are performing like functions that combine to influence downstream waters. See, e.g., 
Jansson et al. 1998; Mitsch et al. 2001; Forbes et al. 2012. Cumulatively, many small wetlands can hold a 
large amount of snowmelt and precipitation, reducing the likelihood of flooding downstream. Science 
Report at 4-24 (citing Hubbard and Linder 1986). 

Scientists can and do routinely classify similar waters and wetlands into groups for a number of 
different reasons; because of their inherent physical characteristics, because they provide similar 
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functions, because they were formed by similar geomorphic processes, and by their level of biological 
diversity, for example. Classifying wetlands based on their functions is also the basis for the U.S. Army 
Corps of Engineers hydrogeomorphic (HGM) classification of wetlands. Brinson 1993. The HGM 
method is a wetlands assessment approach pioneered by the Corps in the 1990s, and extensively applied 
via regional handbooks since then. The Corps HGM method uses a conceptual framework for identifying 
broad wetland classes based on common structural and functional features, which includes a method for 
using local attributes to further subdivide the broad classes into regional subclasses. Assessment methods 
like the HGM provide a basis for determining if waters provide similar functions based on their structural 
attributes and indicator species. Scientists also directly measure attributes and processes taking place in 
particular types of waters during in-depth field studies that provide reference information that informs the 
understanding of the functions performed by many types of aquatic systems nationwide.  

Consideration of the aggregate effects of wetlands and other types of waters often gives the most 
complete information about how such waters influence the chemical, physical, or biological integrity of 
downstream traditional navigable waters, the territorial seas, and interstate waters. In many watersheds, 
wetlands have a disproportionate effect on water quality relative to their surface area because wetland 
plants slow down water flow, allowing suspended sediments, nutrients, and pollutants to settle out. They 
filter these materials out of the water received from large areas, absorbing or processing them, and then 
releasing higher quality water. National Research Council 1995. For an individual wetland, this is most 
pronounced where it lies immediately upstream of a drinking water intake, for example. See, e.g., 
Johnston et al. 1990. The cumulative influence of many individual wetlands within watersheds can 
strongly affect the spatial scale, magnitude, frequency, and duration of hydrologic, biological, and 
chemical fluxes or transfers of water and materials to downstream waters. Science Report at ES-11. 

For example, as discussed in section III.A.ii, excess nutrients discharged into small tributary 
streams in the aggregate can cause algal blooms downstream that reduce dissolved oxygen levels and 
increase turbidity in traditional navigable waters, traditional navigable waters, the territorial seas, and 
interstate waters. This oxygen depletion in waters, known as hypoxia, has impacted commercial and 
recreational fisheries in the northern Gulf of Mexico, as water low in dissolved oxygen cannot support 
living aquatic organisms. Committee on Environment and Natural Resources 2000; Rabalais et al. 2002; 
Freeman et al. 2007; Colvin 2019. In this instance, the cumulative effects of nutrient export from the 
many small headwater streams of the Mississippi River have resulted in large-scale ecological and 
economically harmful impacts hundreds of miles downstream. See, e.g., Goolsby et al. 1999; Rabotyagov 
et al. 2014; Colvin 2019. 

In their review of the scientific and technical adequacy of a previous rulemaking effort, the SAB 
panel members “generally agreed that aggregating ‘similarly situated’ waters is scientifically justified, 
given that the combined effects of these waters on downstream waters are often only measurable in 
aggregate. Panelists also were generally comfortable with the idea of using “similarly situated” waters to 
guide aggregation.” SAB 2014a at 4 to 5. One of the main conclusions of the Science Report is that the 
incremental contributions of individual streams and wetlands are cumulative across entire watersheds, and 
their effects on downstream waters should be evaluated within the context of other streams and wetlands 
in that watershed. For example, the Science Report finds, “[t]he amount of nutrients removed by any one 
stream over multiple years or by all headwater streams in a watershed in a given year can have substantial 
consequences for downstream waters.” Science Report at 1-10. Cumulative effects of streams, wetlands, 
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and open waters across a watershed must be considered because “[t]he downstream consequences (e.g., 
the amount and quality of materials that eventually reach a river) are determined by the aggregate effect 
of contributions and sequential alterations that begin at the source waters and function along continuous 
flowpaths to the watershed outlet.” Id. at 1-19. 

 

iii. “In the Region” 

For the reasons discussed in section III.E.ii, the agencies believe that science supports analyzing 
the contributions of similarly situated waters “in the region” for their effect on traditional navigable 
waters, the territorial seas, or interstate waters because the incremental contributions of individual streams 
and wetlands are cumulative, and their effect on downstream waters should be evaluated within the 
context of other streams and wetlands in the appropriate region.  

For tributaries and their adjacent wetlands, the agencies consider similarly situated waters to be 
“in the region” when they lie within the catchment area of the tributary of interest. Identifying the 
catchment area for purposes of this significant nexus analysis is described below. The agencies developed 
this updated evaluation method from the current pre-2015 implementation approach informed by their 
experience, the best available science, Supreme Court decisions, and public comments. Accordingly, in 
implementing the significant nexus standard under this rule, all tributaries and adjacent wetlands within 
the catchment area of the tributary of interest will be analyzed as part of the significant nexus analysis.41 
This approach to significant nexus analysis recognizes the ecological relationship between the tributaries 
and their adjacent wetlands, and the role those similarly situated waters have in influencing the chemical, 
physical, or biological integrity of downstream traditional navigable waters, the territorial seas, and 
instated waters. 

In the case of wetlands adjacent to tributaries, science supports the consideration of the effects of 
not just a singular adjacent wetland, but any wetland adjacent to the tributary for assessing if there is 
significant effect on the integrity of downstream waters. Additionally, science supports that similarly 
situated waters are “in the region” when they lie within the catchment area of the tributary of interest 
because all the upstream tributaries and their adjacent wetlands in that catchment cumulatively have an 
impact on larger downstream waters. Because the adjacent wetlands are integrated with the tributary, 
science also supports the consideration of all wetlands adjacent to that tributary in combination with the 
tributary itself when conducting a significant nexus analysis.  

Using a catchment (i.e., the watershed of the tributary of interest) as the framework for 
conducting significant nexus evaluations for tributaries and their adjacent wetlands is also scientifically 
supportable. Watersheds are generally regarded as the most appropriate spatial unit for water resource 
management. See, e.g., Omernik and Bailey 1997; Montgomery 1999; Winter 2001; Baron et al. 2002; 
Allan 2004; U.S. Environmental Protection Agency 2008; Wigington et al. 2013. The watershed 
framework is consistent with over two decades of practice by EPA and many other governmental, 
academic, and other entities which recognize that a watershed approach is generally the most effective 

 
41 This implementation approach to the region for purposes of the significant nexus standard is a change from the 
Rapanos Guidance. See section IV.C.9.c of the preamble and section IV.B of this document for additional discussion 
on implementing the significant nexus analysis. 
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framework to address water resource challenges. See, e.g., U.S. Environmental Protection Agency 1996; 
U.S. Environmental Protection Agency 2010. In addition, the Science Report also supports evaluating 
waters on a watershed scale, concluding, “[c]umulative effects across a watershed must be considered 
when quantifying the frequency, duration, and magnitude of connectivity, to evaluate the downstream 
effects of streams and wetlands.” Science Report at ES-14 (emphasis added). In addition, the Science 
Report notes, “[a] river is the time-integrated result of all waters contributing to it, and connectivity is the 
property that spatially integrates the individual components of the watershed. In discussions of 
connectivity, the watershed scale is the appropriate context for interpreting technical evidence about 
individual watershed components.” Id. at 2-1 (citing Newbold et al. 1982b; Stanford and Ward 1993; 
Bunn and Arthington 2002; Power and Dietrich 2002; Benda et al. 2004b; Naiman et al. 2005; Nadeau 
and Rains 2007; Rodriguez-Iturbe et al. 2009). The Science Report also states that watersheds are 
integrated at multiple spatial and temporal scales by flows of surface water and ground water, transport 
and transformation of physical and chemical materials, and movements of organisms. Id. at 6-8. The 
movement of water from watershed drainage basins to river networks and lakes shapes the development 
and function of these systems in a way that is critical to their long-term health. See, e.g., Montgomery 
1999. Anthropogenic actions and natural events can have widespread effects within the watershed that 
collectively impact the quality of the traditional navigable water, the territorial seas, or interstate water. 
Levick et al. 2008. From a water quality management perspective, science supports the evaluation of the 
effects of tributaries and their adjacent wetlands on a catchment scale as the integrity of downstream 
traditional navigable waters, the territorial seas, and interstate waters is dependent on the condition of the 
contributing upstream waters, including streams, lakes, and ponds connected to the tributary network and 
wetlands adjacent to such waters. The functions of the contributing waters are inextricably linked and 
have a cumulative effect on the integrity of the downstream traditional navigable water, the territorial sea, 
or interstate water. Thus, the watershed reflects specific water management objectives and can be scaled 
up or down as is appropriate to meet that objective or to meet specific policy needs. For purposes of 
implementing this final rule, the agencies have scaled the watershed to the “catchment level”—meaning, 
as described above, the catchment of the tributary of interest.  

Because waters assessed under paragraph (a)(5) of the final rule will generally be evaluated 
individually for their effects on traditional navigable waters, the territorial seas, or interstate waters, the 
agencies have not established what would be considered “in the region” for this such waters, as it is not 
needed to implement the final rule, as such waters will generally be considered on an individually basis. 

Other potential approaches were considered in the Technical Support Document for the Proposed 
Rule, including ecoregions (Omernik 1987; Omernik 1995; Omernik and Griffith 2014; U.S. EPA 2022j; 
U.S. EPA 2022k), hydrologic landscape units (Winter 2001; Wolock 2003), and physiographic divisions 
(Fenneman 1917; Fenneman and Johnson 1946), or a combination of hydrologic landscape regions and 
physiographic divisions for further refinement of regions (e.g., Blackburn-Lynch et al. 2017). These 
methods could present implementation challenges, whereby the region is too large and obscures the 
measurable effects of single aquatic resources or is difficult to implement in the field. The agencies 
solicited comment on what constitutes an appropriate “region” for purposes of analyzing if waters 
significantly affect the chemical, physical, or biological integrity of downstream traditional navigable 
waters, the territorial seas, or interstate waters. Based on a review of the public comments, the best 
available science, and the agencies’ technical expertise and experience, the agencies have determined that 
the final rule’s approach to implementing “in the region” under the significant nexus standard for 
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tributaries and their adjacent wetlands is clear and implementable. The agencies have determined that the 
catchment of the tributary is a reasonable and technically appropriate scale. The catchment is an easily 
identified and scientifically defensible unit for identifying the scope of waters that together may have an 
effect on the chemical, physical, or biological integrity of a particular traditional navigable water, the 
territorial seas, or an interstate water. 

 

iv. “Significantly Affect” 

Paragraph (c)(6) of the final rule defines the term “significantly affect” for purposes of 
determining whether a water meets the significant nexus standard to mean “a material influence on the 
chemical, physical, or biological integrity of” traditional navigable waters, the territorial seas, or interstate 
waters. Under this rule, waters, including wetlands, are evaluated either alone, or in combination with 
other similarly situated waters in the region,42 based on the functions the evaluated waters perform. The 
final rule identifies specific functions that will be assessed and identifies specific factors that will be 
considered when assessing whether the functions provided by the water, alone or in combination, have a 
material influence on the chemical, physical, or biological integrity of a traditional navigable water, the 
territorial seas, or an interstate water. The agencies are not requiring the use of “functional assessments” 
for significant nexus analyses under this rule; see section IV.C.9.c of the preamble for further discussion. 

The functions in this rule are indicators that are tied to the chemical, physical, and biological 
integrity of traditional navigable waters, the territorial seas, and interstate waters. The functions include 
contribution of flow; trapping, transformation, filtering, and transport of materials (including nutrients, 
sediment, and other pollutants); retention and attenuation of floodwaters and runoff; modulation of 
temperature in traditional navigable waters, the territorial seas, or interstate waters; or provision of habitat 
and food resources for aquatic species located in traditional navigable waters, the territorial seas, or 
interstate waters.  

The factors in this rule are readily understood criteria that influence the types and strength of 
chemical, physical, or biological connections and associated effects on those downstream traditional 
navigable waters, the territorial seas, or interstate waters. These factors include the distance from a 
paragraph (a)(1) water; hydrologic factors, such as the frequency, duration, magnitude, timing, and rate of 
hydrologic connections, including shallow subsurface flow; the size, density, or number of waters that 
have been determined to be similarly situated; landscape position and geomorphology; and climatological 
variables such as temperature, rainfall, and snowpack.  

The definition of “significantly affect” is derived from the objective of the Clean Water Act and 
is informed by and consistent with Supreme Court case law. It is also informed by the agencies’ technical 
and scientific judgment and supported by the best available science regarding the functions performed by 
upstream waters relevant to achieving the Clean Water Act’s objective. The significant nexus standard 
established by the final rule is carefully constructed to fall within the bounds of the Clean Water Act. Not 
all waters subject to evaluation under the significant nexus standard will have a material influence on 

 
42 See sections III.E.ii and IV.B.i for discussion of how the agencies’ intend to implement “similarly situated” and 
sections III.E.iii and IV.B.ii for discussion of how the agencies’ intend to implement “in the region” as discussed in 
the final rule’s preamble. 
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traditional navigable waters, the territorial seas, or interstate waters sufficient to be determined 
jurisdictional. First, the standard is limited to consideration of effects on traditional navigable waters, the 
territorial seas, and interstate waters. Second, the standard is limited to effects only on the three statutorily 
identified aspects of those fundamental waters: chemical, physical, or biological integrity. Third, the 
standard cannot be met by merely speculative or insubstantial effects on those aspects of those traditional 
navigable waters, the territorial seas, and interstate waters, but rather requires the demonstration of a 
“material influence.” In the final rule, the phrase “material influence” establishes that the agencies will be 
assessing the influence of the waters either alone or in combination have on the chemical, physical, or 
biological integrity of a traditional navigable water, the territorial seas, or an interstate water and will 
provide qualitative and/or quantitative information (based on the factual record, relevant scientific data 
and information, and available tools) and articulate a reasoned basis for determining that the waters being 
assessed significantly affect that fundamental downstream water.  

Under the significant nexus standard, to be jurisdictional, waters, alone or in combination with 
other similarly situated waters in the region, must have a material influence on the chemical, physical, or 
biological integrity of a traditional navigable water, the territorial seas, or an interstate water. The final 
definition is generally consistent with the pre-2015 regulatory regime. Under the Rapanos Guidance, the 
agencies evaluate whether waters “are likely to have an effect that is more than speculative or 
insubstantial on the chemical, physical, and biological integrity of a traditional navigable water.” Rapanos 
Guidance at 11. Under the final rule, a water may be determined to meet the definition of “waters of the 
United States” when it “significantly affects” any one form of chemical, physical, or biological integrity 
of a traditional navigable water, the territorial seas, or an interstate water, consistent with the pre-2015 
regulatory regime.  

Significant nexus is not purely a scientific determination. Further, the opinions of the Supreme 
Court have noted that as the agencies charged with interpreting the statute, EPA and the Corps, must 
develop the outer bounds of the scope of the Clean Water Act, while science does not provide bright lines 
with respect to where “water ends” for purposes of the Clean Water Act. Therefore, the agencies’ 
interpretation of the Clean Water Act is informed by science, but not dictated by it.  

With this context, this section of the Technical Support Document addresses the factors that will 
be considered in a significant nexus evaluation as well as the relevant scientific functions that streams, 
wetlands, and open waters perform that will be evaluated to determine whether such waters, either alone 
or with similarly situated waters in the region, significantly affect the chemical, physical, or biological 
integrity of traditional navigable waters, the territorial seas, or interstate waters. 

The agencies are adding to the final rule’s definition of “significantly affect” a specific list of 
functions to be assessed when making a significant nexus determination after soliciting comment on 
whether it would be useful to add such a list to the definition. The Rapanos Guidance identified some of 
the relevant functions upstream waters can provide for downstream traditional navigable waters, the 
territorial seas, or interstate waters including temperature regulation; sediment trapping and transport; 
nutrient recycling, retention, and export; pollutant trapping, transformation, filtering, and transport; 
retention and attenuation of floodwaters and runoff; contribution of flow; provision of habitat for aquatic 
species that also live in traditional navigable waters, the territorial seas, or interstate waters (e.g., for 
refuge, feeding, nesting, spawning, or rearing young); and provision and export of food resources for 
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aquatic species located in traditional navigable waters, the territorial seas, or interstate waters. Evaluation 
of such functions is consistent with the agencies’ implementation of the pre-2015 regulatory regime. See 
Rapanos Guidance at 8, 9.  

Under the final rule, a water does not need to perform all of the listed functions. This is consistent 
with the pre-2015 regulatory regime. See U.S. Army Corps of Engineers 2007a. If a water, either alone or 
in combination with similarly situated waters, performs just one function, and that function has a more 
than speculative or insubstantial impact on the integrity of a traditional navigable water, the territorial 
seas, or an interstate water, that water has a significant nexus under the final rule, consistent with the pre-
2015 regulatory regime.43 The functions listed in the final rule’s definition of “significantly affect” and 
how they can affect the chemical, physical, or biological integrity of traditional navigable waters, the 
territorial seas, or interstate waters are discussed below and throughout sections I and III of this 
document.  

Contribution of flow. The contribution of flow downstream is an important role, as upstream 
waters can be a cumulative source of the majority of the total mean annual flow to larger downstream 
rivers and waters, including via the recharge of baseflow. Streams, wetlands, and open waters contribute 
surface and subsurface water downstream, and are the dominant sources of water in most rivers. 
Contribution of flow can significantly affect the physical integrity of traditional navigable waters, the 
territorial seas, and interstate waters, helping to sustain the volume of water in these larger waters.  

Trapping, transformation, filtering, and transport of materials (including nutrients, sediment, and 
other pollutants). States identify sediment and nutrients as the primary contaminants in the nation’s 
waters. Sediment storage and export via streams to downstream waters is critical for maintaining the river 
network, including the formation of channel features. Although sediment is essential to river systems, 
excess sediment can impair ecological integrity by filling interstitial spaces, reducing channel capacity, 
blocking sunlight transmission through the water column, and increasing contaminant and nutrient 
concentrations. Streams and wetlands can prevent excess deposits of sediment downstream and reduce 
pollutant concentrations in downstream waters. Thus, the function of trapping of excess sediment, along 
with export of sediment, can have a significant effect on the chemical, physical, and biological integrity 
of downstream waters. 

Nutrient recycling results in the uptake and transformation of large quantities of nitrogen and 
other nutrients that otherwise would be transported directly downstream, thereby decreasing nutrient 
loads and associated impairments due to excess nutrients in downstream waters. Streams, wetlands and 
open waters improve water quality through the assimilation, transformation, or sequestration of 
pollutants, including excess nutrients and chemical contaminants such as pesticides and metals that can 
degrade downstream water integrity. Nutrient transport exports nutrients downstream and can degrade 
water quality and lead to stream impairments. Nutrients are necessary to support aquatic life, but excess 
nutrients lead to excessive plant growth and hypoxia, in which over-enrichment causes dissolved oxygen 
concentrations to fall below the level necessary to sustain most aquatic animal life in the downstream 

 
43 See, e.g., Memorandum to Assert Jurisdiction for SPL-2007-261-FBV (December 6, 2007), available at 
https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll5/id/1433.  

https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll5/id/1433
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waters. Nutrient recycling, retention, and export can significantly affect downstream chemical integrity by 
impacting downstream water quality. 

Streams, wetlands, and open waters improve water quality through the assimilation and 
sequestration of pollutants, including excess nutrients and chemical contaminants such as pesticides and 
metals that can degrade downstream water integrity. In addition to nutrient recycling, removal of nutrients 
by streambed algal and microbial populations, subsequent feeding by fish and insects, and release by 
excretion or decomposition, delays the export of nutrients downstream. Riparian, floodplain and non-
floodplain wetlands and open waters are active sites for aerobic and anaerobic microbial processes (e.g., 
denitrification) and physical processes (e.g., settling, photo-degradation) that enhance the assimilation and 
sequestration of pollutants, thereby limiting their transport to downstream waters. When pollutants reach 
a wetland, they can be trapped in sediments, assimilated into wetland plants and animals, 
biogeochemically transformed into less harmful or mobile forms or compounds, or lost to the atmosphere. 
Importantly, many of the functions performed by non-floodplain wetlands and open waters that affect 
downstream waters (e.g., surface water storage) result from the disconnections (often hydrological) that 
create and maintain conditions conducive to the performance of beneficial functions (frequently 
hydrological and biogeochemical, e.g., mitigation of flood peak flows, sequestration of contaminants). 

Retention and attenuation of floodwaters and runoff. Small streams and wetlands are particularly 
effective at retaining and attenuating floodwaters. By subsequently releasing floodwaters and retaining 
large volumes of stormwater and runoff (i.e., overland flow) that could otherwise negatively affect the 
condition or function of downstream waters, streams, wetlands, and open waters can affect the physical 
integrity of traditional navigable waters, the territorial seas, or interstate waters. This function can reduce 
flood peaks downstream and can also maintain downstream river baseflows by recharging alluvial 
aquifers. Runoff occurs when rain, snowmelt, or stormflow exceeds the infiltration rate of soils or storage 
capacity of soils, streams, wetlands, and open waters. Runoff is an important source of stream and river 
baseflow. Runoff also carries deposits of sediment and human-made contaminants such as petroleum, 
pesticides, and fertilizers and is therefore a major source of non-point pollution. Annual runoff generally 
reflects water surplus and varies widely across the United States. The flowing portions of river networks 
tend to have their maximum extent during seasons with the highest water surplus, when conditions for 
flooding are most likely. The Southwest experiences summer monsoonal rains, while the West Coast and 
Pacific Northwest receive most precipitation during the winter season. Throughout the West, winter 
precipitation in the mountains occurs as snowfall, where it is stored as seasonal snowpack and is released 
during the spring and summer melt seasons to sustain streamflow during late spring and summer months. 
Typically, the occurrence of ephemeral and intermittent streams is greatest in watersheds with low annual 
runoff and high water-surplus seasonality. Ephemeral tributaries in arid and semi-arid areas convey large 
volumes of stormflow into alluvial aquifer storage; runoff through ephemeral tributaries that is not stored 
as groundwater provides baseflow for rivers like the Rio Grande. Precipitation and water surplus in the 
Eastern United States is less seasonal than in Western states. In temperate climates, headwater tributaries 
store water and sediment from runoff, reducing the volume and velocity of flows that cause bank erosion, 
streambed down-cutting, and reduced infiltration to ground water. Riparian, floodplain, and non-
floodplain wetlands and open waters store and subsequently release stormflows, desynchronizing 
floodwaters and retaining large volumes of runoff (i.e., stormwater, sediment, and contaminants) that 
could otherwise negatively affect the condition or function of downstream waters. 
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Modulation of temperature in traditional navigable waters, the territorial seas, or interstate 
waters. Tributaries can greatly influence water temperatures in tributary networks. See section III.A.i. 
This is important because water temperature is a critical factor governing the distribution and growth of 
aquatic life, both directly (through its effects on organisms) and indirectly (through its effects on other 
physiochemical properties, such as dissolved oxygen and suspended solids). For example, water 
temperature controls metabolism and level of activity in cold-blooded species like fish, amphibians, and 
aquatic invertebrates. Temperature can also control the amount of dissolved oxygen in streams, as colder 
water holds more dissolved oxygen, which fish and other fauna need to breathe. Tributaries provide both 
cold and warm water refuge habitats that are critical for protecting aquatic life. Because headwater 
tributaries often depend on groundwater inputs, temperatures in these systems tend to be warmer in the 
winter (when groundwater is warmer than ambient temperatures) and colder in the summer (when 
groundwater is colder than ambient temperatures) relative to downstream waters. Thus, tributaries provide 
organisms with both warm water and coldwater refuges at different times of the year. Id. at 3-42. For 
example, when temperature conditions in downstream waters are adverse, fish can travel upstream and 
use tributaries as refuge habitat. Tributaries also help buffer temperatures in downstream waters that are 
many kilometers away. Adjacent wetlands and open waters located in floodplains also exert substantial 
controls on water temperature in the downgradient tributary network and ultimately in the traditional 
navigable water, the territorial seas, or the interstate water. 

Provision of habitat and food resources for aquatic species located in traditional navigable 
waters, the territorial seas, or interstate waters. Streams, wetlands, and open waters provide life-cycle 
dependent aquatic habitat (such as foraging, feeding, nesting, breeding, spawning, and use as a nursery 
area) for species located in traditional navigable waters, the territorial seas, or interstate waters. Many 
species require different habitats for different resources (e.g., food, spawning habitat, overwintering 
habitat), and thus move throughout the river network over their life cycles. For example, headwater 
streams can provide refuge habitat under adverse conditions, enabling fish to persist and recolonize 
downstream areas once conditions have improved. These upstream systems form integral components of 
downstream food webs, providing nursery habitat for breeding fish and amphibians, colonization 
opportunities for stream invertebrates, and maturation habitat for stream insects, including for species that 
are critical to downstream ecosystem function. Streams, wetlands, and open waters can also serve as a 
refuge for aquatic species also located in traditional navigable waters, the territorial seas, and interstate 
waters. The provision of life-cycle dependent aquatic habitat for species located in such larger 
downstream waters significantly affects the biological integrity of those downstream waters. 

Streams, wetlands, and open waters supply habitat and food resources for downstream waters, 
such as dissolved and particulate organic matter (e.g., leaves, wood), which support biological activity 
throughout the river network. In addition to organic matter, streams, wetlands, and open waters can also 
export other food resources downstream, such as aquatic insects that are the food source for fish in 
downstream waters. The export of organic matter and food resources downstream is important to 
maintaining the food webs and thus the biological integrity of traditional navigable waters, the territorial 
seas, and interstate waters.  

It is also important to note that the agencies’ significant nexus standard in the final rule is 
carefully tailored so that only particular types of functions provided by upstream waters can be considered 
for their effects on traditional navigable waters, the territorial seas, and interstate waters. Wetlands, 
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streams, and open waters are well-known to provide a wide variety of functions that translate into 
ecosystem services. See section I.H.i. A significant nexus analysis, however, is limited to an assessment 
of only those functions identified in the final rule that have a nexus to the chemical, physical, or 
biological integrity of traditional navigable waters, the territorial seas, or interstate waters. Thus, there are 
some important functions provided by wetlands, tributaries, and waters evaluated under paragraph (a)(5) 
that will not be considered by the agencies when making jurisdictional decisions under the final rule.  

For example, for purposes of a jurisdictional analysis under the significant nexus standard, the 
agencies will not be taking into account the carbon sequestration benefits that aquatic resources like 
wetlands provide. Provision of habitat for non-aquatic species, such as migratory birds, and endemic 
aquatic species would not be considered as part of a significant analysis under the final rule.44 
Furthermore, the agencies would not assess soil fertility in terrestrial systems, which is enhanced by 
processes in stream and wetland soils and non-floodplain wetlands that accumulate sediments, prevent or 
reduce soil erosion, and retain water on the landscape, benefiting soil quality and productivity in uplands. 
There are also a wide variety of functions that streams, wetlands, and open waters provide that translate 
into ecosystem services that benefit society that would not be assessed in a significant nexus analysis 
under the final rule. These include provision of areas for recreation and personal enjoyment (e.g., fishing, 
hunting, boating, and birdwatching areas); ceremonial or religious uses; production of fuel, forage, and 
fibers; extraction of materials (e.g., biofuels, food, such as shellfish, vegetables, seeds, nuts, rice); plants 
for clothes and other materials; and medical compounds from wetland and aquatic plants or animals. 
While these types of ecosystem services can contribute to the economy, they are not relevant to the 
chemical, physical, or biologic integrity of paragraph traditional navigable waters, the territorial seas, and 
interstate waters and would not be considered in a significant nexus analysis under the final rule.  

In evaluating a water individually or in combination with other similarly situated waters for the 
presence of a significant nexus to a traditional navigable water, the territorial seas, or an interstate water, 
the agencies will consider factors that influence the types and strength of the chemical, physical, or 
biological connections and associated effects on those downstream waters. The agencies include in the 
definition of “significantly affect” the factors to be considered in assessing the strength of the effects: (1) 
the distance from the traditional navigable water, the territorial seas, or interstate water; (2) hydrologic 
factors, such as the frequency, duration, magnitude, timing, and rate of hydrologic connections, including 
shallow subsurface flow; (3) the size, density, or number of waters that have been determined to be 
similarly situated (and thus can be evaluated in combination); (4) landscape position and geomorphology; 
and (5) climatological variables such as temperature, rainfall, and snowpack.  

These factors influence the strength of the connections and associated effects that streams, 
wetlands, and open waters have on the chemical, physical, and biological integrity of traditional navigable 
waters, the territorial seas, and interstate waters and are not the functions themselves that the agencies will 

 
44 As the agencies have discussed, consideration of biological functions such as provision of habitat is relevant for 
purposes of significant nexus determinations under the final rule only to the extent that the functions provided by 
tributaries, adjacent wetlands, and waters assessed under paragraph (a)(5) significantly affect the biological integrity 
of a traditional navigable water, the territorial seas, or an interstate water. For example, to protect Pacific and 
Atlantic salmon in traditional navigable waters (and their associated commercial and recreational fishing industries), 
protections must be provided from the headwater streams where the fish are born and spawn to the marine waters 
where they spend most of their lives. See, e.g., Science Report at 2-40.   
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consider as part of the significant nexus standard. These factors also cannot be considered in isolation, but 
rather must be considered together and in the context of the case-specific analysis. For example, the 
likelihood of a connection with associated significant effects is generally greater with increasing number 
and size of the aquatic resource or resources being considered and decreasing distance from the identified 
traditional navigable water, the territorial seas, or interstate water as well as with increased density of the 
waters for such waters that can be considered in combination as similarly situated waters. However, the 
agencies also recognize that in watersheds with fewer aquatic resources, even a small number or low 
density of similarly situated waters can have disproportionate effects on traditional navigable waters, the 
territorial seas, or interstate waters. Hydrologic factors include volume (or magnitude), duration, timing, 
rate, and frequency of flow, size of the watershed or subwatershed, and surface and shallow subsurface 
hydrologic connections. The presence of a surface or shallow subsurface hydrologic connection, as well 
as increased frequency, volume, or duration of such connections, can increase the chemical, physical (i.e., 
hydrologic), or biological impact that a water has on traditional navigable waters, the territorial seas, or 
interstate waters. In other situations, streams with low duration but a high volume of flow can 
significantly affect downstream traditional navigable waters, the territorial seas, or interstate waters by 
transporting large volumes of water, sediment, and woody debris that help maintain the integrity of those 
larger downstream waters. Science Report at ES-5, ES-8, 6-9. The lack of hydrologic connections can 
also contribute to the strength of effects for certain functions such as floodwater attenuation or the 
retention and transformation of pollutants. Id. at 4-26. Climatological factors like temperature, rainfall, 
and snowpack in a given region can influence the agencies’ consideration of the effects of subject waters 
on downstream traditional navigable waters, the territorial seas, or interstate waters by providing 
information about expected hydrology and the expected seasonality of connections and associated effects.  

The agencies have more than a decade of experience implementing the significant nexus standard 
by making determinations of whether a water alone or in combination with similarly situated waters in the 
region significantly affects the chemical, physical, and biological integrity of downstream traditional 
navigable waters, the territorial seas, or interstate waters. The agencies under the pre-2015 regulatory 
regime routinely concluded that there was no significant nexus. Based on the agencies’ experience, many 
waters under the final rule will not have a significant nexus to downstream traditional navigable waters, 
the territorial seas, or interstate waters, and thus will not be jurisdictional under the Act. The agencies also 
note that the vast majority of resources assessed in approved jurisdictional determinations under the 
Rapanos Guidance were not assessed under the significant nexus standard. Historically, roughly 11% of 
resources assessed in approved jurisdictional determinations under the Rapanos Guidance required a 
significant nexus analysis. It is the agencies’ expectation that the number of significant nexus analyses 
will increase under this rule due to the assessment of paragraph (a)(5) waters, but it is correspondingly 
expected that the percent of resources found to be jurisdictional under significant nexus analyses will 
decrease. See section IV below for more information on significant nexus determinations. 

The scientific record demonstrates that the aquatic functions provided by smaller streams, ponds, 
wetlands, and other types of waters are important for protecting the chemical, physical, and biological 
integrity of larger downstream traditional navigable waters, the territorial seas, and interstate waters. For 
example, states have identified sediment and nutrients as the primary contaminants in the nation’s waters. 
See, e.g., U.S. Environmental Protection Agency 2003; U.S. Environmental Protection Agency 2008; 
U.S. Environmental Protection Agency 2017. Sediment storage and export via streams to downstream 
waters is critical for maintaining the river network, including the formation of channel features. Science 
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Report at 3-13. Although sediment is essential to river systems, excess sediment can impair ecological 
integrity by filling interstitial spaces (e.g., burying gravel or cobble habitats in streambeds that are 
essential for the sustainability of aquatic insects and fish spawning sites), reducing channel capacity 
which can lead to increased flood risk downstream;, blocking sunlight transmission through the water 
column which impacts fish feeding and schooling practices and can deprive aquatic plants of light needed 
for photosynthesis, increasing water temperatures which can negatively impact fish and other aquatic 
species, clogging and irritating the gills of fish, and increasing contaminant and nutrient concentrations. 
Id. (citing Wood and Armitage 1997). Thus, too much sediment in streams can reduce water clarity, harm 
aquatic species, interfere with the recreational use of streams, and affect drinking water supplies (see, e.g., 
Mukundan et al. 2013). Streams and wetlands can prevent excess deposits of sediment downstream and 
reduce pollutant concentrations in downstream waters. Id. at ES-2 to ES-3; ES-8. Degraded streams can 
be a source of excess sediment to downstream waters. The function of trapping excess sediment, along 
with export of sediment, has an effect on the chemical, physical, and biological integrity of downstream 
waters. 

Streams, wetlands, and open waters improve water quality through the assimilation, 
transformation, or sequestration of pollutants, including excess nutrients and chemical contaminants such 
as pesticides and metals that can degrade downstream water integrity. Id. at ES-2 to ES-3, ES-13. 
Nutrients, for example, are necessary to support aquatic life, but excess nutrients lead to excessive plant 
growth and hypoxia or “dead zones,” in which over-enrichment causes dissolved oxygen concentrations 
to fall below the level necessary to sustain most aquatic animal life in the downstream waters. Id. at ES-8. 
Nutrient recycling that occurs in streams, wetlands, and open waters results in the uptake and 
transformation of large quantities of nitrogen and other nutrients that otherwise would be transported 
directly downstream, thereby decreasing nutrient loads and associated impairments due to excess 
nutrients in downstream waters. Id. at ES-8. Streams can transport excess nutrients downstream, which 
can degrade water quality and lead to stream impairments. Id. at ES-2. Nutrient recycling, retention, and 
export thus can affect downstream chemical integrity by impacting downstream water quality. 

The contribution of flow downstream is also an important function of streams, wetlands, and open 
waters, as upstream waters can be a cumulative source of the majority of the total mean annual flow to 
bigger downstream rivers and waters, including via the recharge of baseflow. Id. at ES-8. Streams, 
wetlands, and open waters contribute surface and subsurface water downstream, and are the dominant 
sources of water in most rivers. Id. at ES-2, ES-7, ES-9, ES-11. Contribution of flow can affect the 
physical integrity of downstream waters, helping to sustain the volume of water in larger waters.  

Small streams and wetlands are particularly effective at retaining and attenuating floodwaters, 
thereby contributing to maintaining the integrity of downstream waters. Id. at ES-2, ES-8, ES-9, ES-10. 
By subsequently and slowly releasing (desynchronizing) floodwaters and retaining large volumes of 
stormwater that could otherwise negatively affect the condition or function of downstream waters, 
streams, wetlands, and open waters affect the physical integrity of downstream traditional navigable 
waters, the territorial seas, or interstate waters. Id. at ES-3. This function can reduce flood peaks 
downstream and can also maintain downstream river baseflows by recharging alluvial aquifers (shallow 
aquifers near stream channels). 
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Streams, wetlands, and open waters supply downstream waters with dissolved and particulate 
organic matter (e.g., leaves, wood), which support biological activity throughout the river network. Id. at 
ES-2, ES-3. In addition to organic matter, streams, wetlands, and open waters can also export other food 
resources downstream, such as aquatic insects that are the food source for fish in downstream waters. Id. 
The export of organic matter and food resources downstream is important to maintaining the food webs 
and thus the biological integrity of traditional navigable waters, the territorial seas, or interstate waters.  

Streams, wetlands, and open waters provide life-cycle dependent aquatic habitat (such as 
foraging, feeding, nesting, breeding, spawning, and use as a nursery area) for species that travel to and 
from traditional navigable waters, the territorial seas, or interstate waters. Id. at ES-2, ES-3, ES-8, ES-9, 
ES-11. Many species require different habitats for different resource needs (e.g., food, spawning habitat, 
overwintering habitat), and thus move throughout the river network to over their life-cycles. Id. at ES-11, 
3-38 (citing Schlosser 1991; Fausch et al. 2002). For example, headwater streams can provide refuge 
habitat when adverse conditions exist in the larger waterbodies downstream, enabling fish to persist and 
recolonize downstream areas once conditions have improved. Id. at 3-38 (citing Meyer and Wallace 2001; 
Meyer et al. 2004; Huryn et al. 2005). These upstream systems form integral components of downstream 
food webs, providing nursery habitat for breeding fish and amphibians, transport of aquatic insects and 
other food resources to downstream communities, colonization opportunities for stream invertebrates, and 
maturation habitat for stream insects, including for species that are critical to downstream ecosystem 
function. Id. at ES-3. The provision of life-cycle dependent aquatic habitat for species located in 
traditional navigable waters, the territorial seas, and interstate waters has important affects the biological 
integrity of those downstream waters. 

To be clear, the agencies would consider biological functions for purposes of significant nexus 
determinations under the final rule only to the extent that the functions provided by tributaries, adjacent 
wetlands, and waters assessed under paragraph (a)(5) significantly affect the integrity of the downstream 
traditional navigable waters, the territorial seas, or interstate waters. For example, to protect Pacific and 
Atlantic salmon in traditional navigable waters (and their associated commercial and recreational fishing 
industries), headwater streams must be protected because Pacific and Atlantic salmon require both 
freshwater and marine habitats over their life cycles and therefore migrate along river networks, providing 
one of the clearest illustrations of biological connectivity. See, e.g., id. at 2-40. Many Pacific salmon 
species spawn in headwater streams, where their young grow for a year or more before migrating 
downstream, living their adult life stages in the ocean, and then migrating back upstream to spawn. Id. 
Even where they do not provide direct habitat for salmon themselves, ephemeral streams can contribute to 
the habitat needs of salmon by supplying sources of cold water that these species need to survive (i.e., by 
providing appropriate physical conditions for cold water upwelling to occur at downstream confluences, 
see, e.g., Ebersole et al. 2015), by transporting sediment that supports fish habitat downstream (Marteau 
et al. 2020), and by providing and transporting food for juveniles and adults downstream. See, e.g., 
Science Report. These species thereby create a biological connection along the entire length of the river 
network and functionally help to maintain the biological integrity of the downstream traditional navigable 
water. Id. at 2-40. Many other species of anadromous fish like certain species of lamprey; American eels 
and other species of catadromous fish; and species of freshwater fish like rainbow trout and brook trout 
also require small headwater streams to carry out life cycle functions. 
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Streams, wetlands, and open waters can perform multiple functions, including functions that 
change depending upon the season. Id. at 2-24. For example, the same stream can contribute flow when 
evapotranspiration is low and can retain water when evapotranspiration is high. Id. These functions, 
particularly when considered in aggregate with the functions of similarly situated waters in the region, can 
significantly affect the chemical, physical, or biological integrity of a traditional navigable water, the 
territorial seas, or an interstate water. When considering the effect of an individual stream, wetland, or 
open water, the science supports that all contributions and functions that the water provides should be 
evaluated cumulatively. Id. at 6-10. For example, the same wetland retains sediment, removes excess 
nutrients, mitigates flooding, and provides habitat for amphibians that also live downstream; if any of 
these functions is ignored, the overall effect of that wetland would be underestimated. See, e.g., id. at ES-
7, 6-10. It is important to note, however, that a water or wetland can provide just one function that may 
significantly affect the chemical, physical or biological integrity of the downstream water.  

 

1. The significant nexus standard allows for consideration of the effects of 
climate change on water resources consistent with the best available science 

There are ways the agencies can consider a changing climate under the significant nexus 
standard, but only to the extent it is relevant to the evaluation of whether upstream waters significantly 
affect the chemical, physical, or biological integrity of traditional navigable waters, the territorial seas, or 
interstate waters. For example, a lake that dries up from warming temperatures due to climate change and 
no longer has a surface hydrologic connection to downstream waters might become non-jurisdictional, 
whereas another lake that previously had limited surface hydrologic connectivity might have increased 
hydrologic connectivity with higher precipitation conditions under a changing climate.  

In addition, under the significant nexus standard the agencies can consider the functions of 
streams, wetlands, and open waters that support the resilience of the chemical, physical, or biological 
integrity of traditional navigable waters, the territorial seas, or interstate waters to climate change. For 
example, as more intense and frequent storms and other shifts in precipitation cause floods to increase in 
frequency and volume in some areas of the United States, a significant nexus determination can evaluate 
the strength of the effect of runoff storage in wetlands, open waters, and headwater tributaries in 
mitigating increased flood risk associated with climate change in downstream traditional navigable 
waters, the territorial seas, and interstate waters. In addition, as drought leads to decreased baseflows in 
traditional navigable waters or interstate waters in other areas of the country, the transmission of flows 
into alluvial or regional aquifer storage through tributaries and wetlands can mitigate for these climate 
change-related conditions, and those benefits to downstream traditional navigable waters or interstate 
waters can be assessed as part of a significant nexus analysis. Changes in flow in tributaries caused by 
climate change will also be relevant to the relatively permanent standard, but that standard may not allow 
the agencies to take into account the contribution of upstream waters to the resilience of the integrity of 
downstream waters.  

As discussed in section III.E.iv, the agencies believe that there are climate benefits that streams, 
wetlands, and open waters provide that are not related to restoring or maintaining the integrity of 
downstream traditional navigable waters, the territorial seas, or interstate waters, such as carbon 
sequestration. Those functions would not be considered under this rule because they are not directly 
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related to the chemical, physical, and biological integrity of downstream waters. However, considering a 
changing climate when conducting jurisdictional decisions by considering on a case-specific basis the 
functions of aquatic resources that contribute to the resilience of the integrity of downstream traditional 
navigable waters, the territorial seas, and interstate waters to climate change is consistent with the policy 
and goals of the Clean Water Act, case law, and the policy goals of this administration as articulated in 
Executive Order 13990. 

F. The Relatively Permanent Standard  

The agencies also conclude that federal protection is appropriate where a water meets the 
relatively permanent standard. Waters that are evaluated under the standard include tributaries, adjacent 
wetlands, and intrastate lakes and ponds, streams, and wetlands that do not meet the jurisdictional criteria 
under one of the final rule’s other categories. Waters that meet the relatively permanent standard are an 
example of a subset of waters that will virtually always significantly affect traditional navigable waters, 
the territorial seas, or interstate waters, and therefore properly fall within the Clean Water Act’s scope. As 
discussed in section IV.A.3.a.ii of the preamble to the final rule, the relatively permanent standard is 
administratively useful but is insufficient as the sole standard for geographic jurisdiction under the Clean 
Water Act because by itself it is inconsistent with the Act’s text and objective. Protecting only waters that 
meet the relatively permanent standard also runs counter to the scientific principles underlying protection 
of water quality. The agencies are thus promulgating an approach to tributaries, adjacent wetlands, and 
waters evaluated under paragraph (a)(5) of the final rule that includes, but that is not limited, to the 
relatively permanent standard.  

Under the final rule, tributaries meet the relatively permanent standard when they are relatively 
permanent, standing or continuously flowing bodies of water. This category includes surface waters that 
have flowing or standing water year-round or continuously during certain times of the year and more than 
in direct response to precipitation. The agencies have decided to implement this approach for tributaries 
under the relatively permanent standard because it is consistent with the Rapanos plurality opinion, it 
reflects and accommodates regional differences in hydrology and water management, and it can be 
implemented using available, easily accessible tools, as discussed further in section IV.A.ii.1. 

The agencies decided not to establish a minimum flow duration for the relatively permanent 
standard for tributaries because flow duration varies extensively by region. Establishing a uniform 
number equally applicable to the deserts in the arid West, the Great Lakes region, and New England 
forests would not be scientifically sound. The agencies instead have chosen to establish a more flexible 
approach to implementing this rule that accounts for specific conditions in each region. Moreover, it 
would often be infeasible for the regulated community or agency staff to determine whether a stream 
ordinarily flows or whether a lake contains standing water, for example, 12 weeks as opposed to 11 weeks 
per year. Even if this determination was possible, such a bright line cutoff would not reflect hydrological 
diversity among different regions and alterations in flow regimes. The agencies’ conclusion that a 
minimum duration is not feasible is consistent with the pre-2015 regulatory regime, which did not 
establish a bright line cutoff (though provided three months as an example of seasonal flow)45 and with 

 
45 See, e.g., Memorandum to Assert Jurisdiction for NWP-2007-945 (January 23, 2008), available at 
https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll5/id/1437 (joint EPA-Corps memorandum in 
 

https://usace.contentdm.oclc.org/utils/getfile/collection/p16021coll5/id/1437
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the approach of the 2020 NWPR. See 85 FR 22292. 

Implementation of relatively permanent tributaries in this rule does not require that relatively 
permanent flow come from particular sources. This rule’s approach is consistent with the plurality 
opinion in Rapanos, which lays out the relatively permanent standard and does not require that relatively 
permanent waters originate from any particular source. See, e.g., 547 U.S. at 739. This rule’s approach is 
also science-based, as the source of a tributary’s flow does not influence its effect on downstream waters, 
including traditional navigable waters, the territorial seas, or interstate waters. This rule’s approach is 
similar to the familiar approach taken in the Rapanos Guidance and the 2020 NWPR, which also did not 
specify that relatively permanent flow come from particular sources.  

Sources of flow in relatively permanent tributaries may include an elevated groundwater table 
that provides baseflow to a channel bed. Relatively permanent flow could also result from upstream 
contributions of flow, effluent flow, or snowpack that melts slowly over time in certain geographic 
regions or at high elevations. In addition, in certain regions relatively permanent flow could result from a 
concentrated period of back-to-back precipitation events that leads to sustained flow through a 
combination of runoff and upstream contributions of flow or an elevated groundwater table that provides 
baseflow to the channel bed. In contrast, non-relatively permanent tributaries may flow only during or 
shortly after individual precipitation events (including rainfall or snowfall events). Non-relatively 
permanent flow may occur simply because it is raining or has very recently rained, or because a recent 
snow has melted.  

Streamflow that occurs during the monsoon season in certain parts of the country (typically June 
through September in the arid West) may be relatively permanent or non-relatively permanent, depending 
on the conditions at the location. Many tributaries in the arid West are dominated by coarse, alluvial 
sediments and exhibit high transmission losses, resulting in streams that often dry rapidly following a 
storm event (e.g., within minutes, hours, or days). These streams are not relatively permanent under this 
rule. However, relatively permanent flow may occur as a result of multiple back-to-back storm events 
throughout a watershed, during which the combination of runoff and upstream contributions of flow is 
high enough to exceed rates of transmission loss for an extended period of time. Relatively permanent 
flow may also follow one or more larger storm events, when floodwaters locally recharge the riparian 
aquifer through bank infiltration, which supplies sustained baseflow throughout the monsoon season.  

As discussed in section III.A.vi, tributaries encompass lakes, ponds, and impoundments that are 
part of the tributary network, as such waters outlet to the tributary network and contribute flow 
downstream at the outlet point. In addition, “flowing water” under the final rule is meant to encompass 
those tributaries that are frozen for parts of the year. Such tributaries typically have flowing water 
underneath the frozen surface. Although some streams may appear to have standing water without a 
current, particularly at certain times of the year, such waters do contribute flow downstream, either slowly 
or episodically. The phrase “standing water” is intended to describe waters assessed under paragraph 
(a)(5) that are lentic or “still” systems, such as lakes, ponds, and impoundments, which are characterized 

 
which the agencies found that two months of continuous flow, for example, is considered “seasonal” flow in certain 
regions of the country and could be sufficient to support a relatively permanent designation under the pre-2015 
regulatory regime).     
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by standing water.  

The phrase “certain times of the year” is intended to include extended periods of standing or 
continuously flowing water occurring in the same geographic feature year after year, except in times of 
drought. The defining characteristic of relatively permanent waters with flowing or standing water 
continuously during only certain times of the year is a temporary lack of surface flow, which may lead to 
isolated pools or dry channels during certain periods of the year. The phrase “direct response to 
precipitation” is intended to distinguish between episodic periods of flow associated with discrete 
precipitation events versus continuous flow for extended periods of time.  

Tributaries under the final rule that are “relatively permanent” include those that are “relatively 
permanent” under the Rapanos Guidance, though the standard under the rule encompasses additional 
tributaries. Thus, tributaries that meet the relatively permanent standard under the final rule include those 
that flow year-round or at least seasonally (e.g., typically three months). See Rapanos Guidance at 6-7. 
While relatively permanent flow may occur seasonally, the phrase is also intended to encompass 
tributaries in which extended periods of standing or continuously flowing water are not linked to naturally 
recurring annual or seasonal cycles. Specifically, relatively permanent waters may include tributaries in 
which flow is driven more by various water management regimes and practices, such as tributaries with 
extensive flow alteration (e.g., diversions, bypass channels, water transfers) and effluent-dependent 
streams. For example, in areas of the West where water withdrawals or groundwater pumping can 
substantially modify flow characteristics, onset and cessation of streamflow in some tributaries may be 
more closely tied to changes in water use associated with irrigation than with seasons of the year. See, 
e.g., Kustu et al. 2010; Science Report at B-39; Vogl and Lopes 2009. In such flow-altered tributaries, 
streamflow may change abruptly throughout the year due to adjustments in facility operations or may 
vary from year to year due to changes in water rights or water management regimes. In addition, 
tributaries that typically flow throughout the spring may run dry in years following a drought while 
storage reservoirs are being refilled. When evaluating these types of artificially manipulated regimes, the 
agencies may consider information about the regular manipulation schedule and may potentially consider 
other remote resources or on-site information to assess flow frequency. 

Under the relatively permanent standard for adjacent wetlands, wetlands meet the continuous 
surface connection requirement if they physically abut, or touch, a relatively permanent paragraph (a)(2) 
impoundment or a jurisdictional tributary when the jurisdictional tributary meets the relatively permanent 
standard, or if the wetlands are connected to these waters by a discrete feature like a non-jurisdictional 
ditch, swale, pipe, or culvert. A natural berm, bank, dune, or similar natural landform between an adjacent 
wetland and a relatively permanent water does not sever a continuous surface connection to the extent it 
provides evidence of a continuous surface connection. Wetlands that have a continuous surface 
connection to a relatively permanent paragraph (a)(2) impoundment or a jurisdictional tributary when the 
jurisdictional tributary meets the relatively permanent standard are a subset of adjacent wetlands. 
Wetlands that do not have a continuous surface connection but are adjacent to paragraph (a)(2) 
impoundments or jurisdictional tributaries will be evaluated for jurisdiction under the significant nexus 
standard. 

Under the relatively permanent standard for adjacent wetlands and waters evaluated under 
paragraph (a)(5), the continuous surface connection is a physical connection that does not have to be 
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hydrologic—for example, a pond with relatively permanent standing water that touches a tributary of a 
traditional navigable water that meets the relatively permanent standard but that does not contribute flow 
downstream and thus is not a tributary could be considered under the standard. The continuous surface 
connection could include a confined surface connection like a swale or non-jurisdictional ditch that 
connects a pond with relatively permanent standing water to tributary that meets the relatively permanent 
standard. As discussed in section III.B.ii.3.a, waters with a visible (e.g., channelized) surface-water 
connection to the river network clearly have effects on downstream waters. Science Report at ES-3. In 
addition, a natural berm, bank, dune, or similar natural landform between an adjacent wetland and a 
relatively permanent water does not sever a continuous surface connection to the extent it provides 
evidence of a continuous surface connection. 

Waters that meet the relatively permanent standard are within the scope of the Clean Water Act 
because scientific evidence supports the conclusion that tributaries of traditional navigable waters, the 
territorial seas, and interstate waters with relatively permanent, standing, or continuously flowing water 
perform important functions that either individually, or cumulatively with similarly situated waters in the 
region, have a material influence on the chemical, physical, or biological integrity of downstream 
traditional navigable waters, the territorial seas, or interstate waters. See section III.A. For example, 
tributaries that meet the relatively permanent standard contribute consistent flow to downstream 
traditional navigable waters, the territorial seas, or interstate waters, and with that flow export nutrients, 
sediment, and food resources, contaminants, and other materials that can both positively (e.g., by 
contributing to downstream baseflow, providing food for aquatic species, contributing to downstream 
aquatic habitat) and negatively (e.g., if exporting too much sediment, runoff, or nutrients or if exporting 
pollutants) affect the integrity, including the water quality, of those larger downstream waters. In addition, 
wetlands with a continuous surface connection to such relatively permanent waters can attenuate 
floodwaters, trap sediment, and process and transform nutrients that might otherwise reach downstream 
traditional navigable waters, the territorial seas, or interstate waters. The relatively permanent standard is 
useful because it generally requires less information gathering and assessment and because it focuses on 
flow and includes wetlands with a continuous surface connection. As such, while both the significant 
nexus and relatively permanent standards require case-specific, fact-specific inquiries before determining 
whether a water is meets the definition of “waters of the United States,” the relatively permanent standard 
will generally require less assessment.  

Standing alone as the sole test for Clean Water Act jurisdiction, the relatively permanent standard 
is insufficient. The standard’s apparent exclusion of major categories of waters from the protections of the 
Clean Water Act, specifically with respect to tributaries that are not relatively permanent (such as 
ephemeral streams) and adjacent wetlands that do not have a continuous surface water connection to other 
jurisdictional waters, is inconsistent with the Act’s text and objective and runs counter to the science 
demonstrating how such waters can affect the integrity of downstream waters, including traditional 
navigable waters, the territorial seas, and interstate waters. The 2020 NWPR, for example, excluded 
federal jurisdiction over the many ephemeral tributaries that regularly and directly provide sources of 
freshwater to the sparse traditional navigable waters in the arid Southwest, such as portions of the Gila 
River.  

As discussed in sections III.A.v and III.B, there is overwhelming scientific information 
demonstrating the effects ephemeral streams can have on downstream waters and the effects wetlands can 
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have on downstream waters when they do not have a continuous surface connection. The science is clear 
that aggregate effects of ephemeral streams “can have substantial consequences on the integrity of the 
downstream waters” and that the evidence of such downstream effects is “strong and compelling.” 
Science Report at 6-10, 6-13. The SAB explained that ephemeral streams “are no less important to the 
integrity of the downgradient waters” than perennial or intermittent streams. SAB 2014c at 22-23, 54 fig. 
3.  

The science is also clear that wetlands may significantly affect downstream waters when they 
have other types of surface connections, such as wetlands that overflow and flood jurisdictional waters or 
wetlands with less frequent surface water connections due to long-term drought; wetlands with shallow 
subsurface connections to other protected waters; or other wetlands proximate to jurisdictional waters. 
Such wetlands provide a number of functions, including water storage that can help reduce downstream 
flooding, recharging groundwater that contributes to baseflow of downstream rivers, improving water 
quality through processes that remove, store, or transform pollutants such as nitrogen, phosphorus, and 
metals, and serving as unique and important habitats including for aquatic species that also utilize larger 
downstream waters. See, e.g., Science Report at 4-20 to 4-38. For example, adjacent, interdunal wetlands 
separated from the Atlantic Ocean only by beach dunes would not meet the relatively permanent standard, 
but provide numerous functions, including floodwater storage and attenuation, storage and transformation 
of sediments and pollutants, and important habitat for species that utilize both the wetlands and the ocean, 
that significantly affect the Atlantic Ocean (both a traditional navigable water and territorial sea). 

The relatively permanent standard includes waters that will virtually always significantly affect traditional 
navigable waters, the territorial seas, or interstate waters, and thus waters that meet the standard properly 
fall within the Act’s protections. As a result, the final rule’s incorporation of jurisdictional limitations 
based upon the relatively permanent standard and the significant nexus standard reflect the agencies’ 
careful consideration of the science and their technical expertise and experience. Waters that meet the 
relatively permanent standard under the final rule include certain tributaries, certain adjacent wetlands, 
and certain intrastate lakes and ponds assessed under paragraph (a)(5).46 The many functions that such 
waters provide that can significantly affect the chemical, physical, and biological integrity of traditional 
navigable waters, the territorial seas, and interstate waters are discussed in more detail in sections III.A, 
III.B, and III.D above. For waters that meet the relatively permanent standard, their impacts on traditional 
navigable waters, the territorial seas, or interstate waters are facilitated by the surface connections that 
have to such paragraph (a)(1) waters. For example, tributaries that meet the relatively permanent standard 
have flowing or standing water year-round or continuously during certain times of the year and that flow 
directly or indirectly through another water or waters to a paragraph (a)(1) water or to a paragraph (a)(2) 
impoundment. Scientific evidence supports the conclusion that such tributaries perform important 
functions that either individually, or cumulatively with similarly situated waters in the region, have 
significant effects on the chemical, physical, or biological integrity of paragraph (a)(1) waters. See section 
III.A above. The same is true of adjacent wetlands and relatively permanent open waters with continuous 
surface connections to tributaries that meet the relatively permanent standard. See sections III.B and III.D. 
Tributaries that meet the relatively permanent standard contribute consistent flow to paragraph (a)(1) 

 
46 Streams that meet the relatively permanent standard under the final rule would be considered tributaries. 
Similarly, wetlands that meet the relatively permanent standard under the final rule would be considered adjacent 
wetlands. Thus, under paragraph (a)(5), waters that meet the relatively standard under the final rule will typically be 
lakes and ponds.  
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waters and, with that flow, export nutrients, sediment, food resources, contaminants, and other materials 
that can both positively (e.g., by contributing to downstream baseflow, providing food for aquatic species, 
and contributing to downstream aquatic habitat) and negatively (e.g., by exporting too much sediment, 
runoff, or nutrients or exporting pollutants) affect the integrity of those paragraph (a)(1) waters. In such 
cases, the frequency and duration of hydrologic connections help contribute to the influence that such 
tributaries have on paragraph (a)(1) waters, either alone or in combination with similarly situated waters 
in the region. In addition, wetlands with a continuous surface connection to tributaries that meet the 
relatively permanent standard can and do attenuate floodwaters, trap sediment, and process and transform 
nutrients that might otherwise reach traditional navigable waters, the territorial seas, or interstate waters. 
Similarly, lakes and ponds that meet the relatively permanent standard and that are assessed under 
paragraph (a)(5), such as oxbow lakes and ponds, are often physically proximate to a traditional navigable 
water, the territorial seas, an interstate water, or a relatively permanent tributary and have a continuous 
surface connection to such waters. The proximity and the continuous surface connection impact the 
frequency and nature of the exchange of materials that takes place between the lake or pond and the 
jurisdictional water. Intrastate lakes and ponds that meet the relatively permanent standard process and 
trap nutrients in runoff that might otherwise reach a paragraph (a)(1) water, provide critical habitat needed 
for feeding and rearing for semi-aquatic and aquatic species, contribute flow downstream, and serve other 
functions that are similar to adjacent wetlands. If the agencies assessed waters that meet the relatively 
permanent standard (e.g., tributaries that meet the relatively permanent standard or adjacent wetlands with 
a continuous surface connection to such tributaries) they would virtually always find evidence of strong 
factors, particularly hydrologic factors like flow frequency and duration, that lead to strong connections 
and associated effects on paragraph (a)(1) waters. Therefore, the agencies have concluded that waters that 
meet the relatively permanent standard will virtually always meet the significant nexus standard. 

 

 

IV. Implementation of the Final Rule 

The preamble to the final rule contains information on implementing the final rule. This 
Technical Support Document provides additional citations.  

A. Resources for Making Jurisdictional Determinations 

The final rule preamble provides implementation guidance informed by sound science, 
implementation tools, and other resources, drawing on more than a decade of post-Rapanos 
implementation experience. The following discussion is provided to clarify how available data, tools, and 
methods inform the agencies’ determinations and to confirm that interested parties may use these same 
resources to inform their own siting decisions, if so desired. 

Many field-based and remote tools and sources of data are available to determine Clean Water 
Act jurisdiction under the final rule. In some cases, a property owner may be able to determine whether a 
property includes a jurisdictional water based on observation or experience. In other cases, a property 
owner may seek assistance from a consultant to assess the jurisdictional status of features on their 
property. Property owners may also seek a jurisdictional determination from the Corps, which provides 
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jurisdictional determinations as a public service. When conducting a jurisdictional determination, the 
Corps will review any documentation that a property owner, or consultant, provides to assist in making a 
jurisdictional determination. EPA staff also regularly assess the jurisdictional status of waters in 
implementing Clean Water Act programs. The agencies expect that EPA and Corps staff, as well as 
private consultants, would be the primary users of the tools and sources of remote data described below, 
and they have ample experience in using them from prior regulatory regimes.  

The agencies utilize many tools and many sources of information to help support decisions on 
jurisdiction, including USGS and State and local topographic maps, geospatial datasets, aerial 
photography, satellite imagery, gage data, soil surveys, NWI maps, floodplain maps, watershed studies, 
modeling tools, scientific literature and references, and field work. As discussed further in section IV.G of 
the preamble for the final rule and section IV.A.i.3 of this document, these tools have undergone 
important technological advances, and have become increasingly available, since the Rapanos decision. 
For example, USGS, Tribal, State, and local stream maps and datasets, aerial photography, gage data, 
watershed assessments, monitoring data, and field observations are often used to help assess the flow 
contributions of tributaries, including intermittent and ephemeral streams, to downstream traditional 
navigable waters, the territorial seas, or interstate waters. Similarly, floodplain and topographic maps 
from federal, State, and local agencies, modeling tools, and field observations can be used to assess how 
wetlands are storing floodwaters that might otherwise affect the integrity of traditional navigable waters, 
the territorial seas, or interstate waters. Further, the agencies utilize the large body of scientific literature 
regarding the functions of tributaries, including tributaries with ephemeral, intermittent, and perennial 
flow, and of wetlands and open waters to inform their significant nexus analyses. In addition, the agencies 
have experience and expertise from decades of making decisions on jurisdiction that considered 
hydrology, ordinary high water mark and its associated indicators (see section IV.C.8.d of the preamble), 
biota, and other technical factors in implementing Clean Water Act programs. The agencies’ immersion in 
the science, along with the practical expertise developed over more than decade of case-specific 
determinations across the country, have helped the agencies determine which waters have a significant 
nexus and where to draw boundaries demarking the “waters of the United States.” 

The resources covered in this section include tools for identifying tributaries, including tributaries 
that meet the relatively permanent standard; tools for identifying wetlands, including wetlands adjacent to 
traditional navigable waters, the territorial seas, interstate waters, impoundments, or tributaries; tools for 
identifying impoundments; and tools for applying a significant nexus standard. This section presents a 
non-exclusive list of tools that the agencies have used in the past and will continue to use to assist in 
making jurisdictional decisions, but other tools could also be used to determine jurisdiction. The agencies 
have also identified a number of recent advancements in the data, tools, and methods that can be used to 
make jurisdictional decisions (section IV.A.i.3).  

 

i. Available Tools 

In this section, tools and resources that can be used to support jurisdictional decisions are 
discussed more generally, with more detail on they can be used in implementation for different categories 
of the final rule in the sections that follow. Additional tools are also discussed in those sections.  
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1. Mapping and Remote Sensing 

Multiple federal agencies provide data, maps, web-based viewers and tools that can help 
implement this rule. These include, but are not limited to, USGS, U.S. FWS, NRCS, NOAA, Federal 
Emergency Management Agency (FEMA), EPA, and the Corps.  

The USGS provides publicly and freely available historic and recent topographic maps, aerial 
photography, the National Hydrography Dataset (NHD), and other data and applications which depict and 
classify many features relevant to identifying “waters of the United States.” One of the most commonly 
used geospatial datasets from the USGS is the NHD, which was created to assist scientists in modeling 
hydrologic features and for cartographic mapping purposes. Simley 2018. The NHD depicts aquatic 
resources such as lakes, ponds, streams, rivers, wetlands, and oceans throughout the United States 
(including many canals and ditches). Id. NHD High Resolution is at the 1:24,000 scale47 or higher. In 
Alaska, the NHD is available at the 1:63,360 scale. Stream and river “flowlines” in NHD are 
characterized as “ephemeral,” “intermittent,” or “perennial.” This hydrographic categorization was 
initially based on the original pre-digital mapping effort of USGS topographic maps, with periodic 
updates from the USGS and data stewards. In NHD, perennial reaches are presumed to carry water 
throughout the year except during drought, whereas intermittent reaches are assumed to lack flow for 
some duration.48 The NHD defines ephemeral as having water only during or after, a local rainstorm or 
heavy snowmelt, although the NHD did not start classifying some streams in the digital dataset as 
“ephemeral” until the 2000s. Simley 2006; Simley 2015; Dewald 2017. Although many ephemeral 
streams are not mapped, those that are mapped are primarily mapped in NHD at high resolution. That 
said, even in the high-resolution dataset, many ephemeral streams are included in the “intermittent” 
category, particularly those outside of the arid West. Many, but not all, canals and ditches, lakes and 
ponds, wetlands, and reservoirs are also mapped in the NHD. The high-resolution dataset is currently the 
most up-to-date and detailed hydrography dataset for the nation, mapping more streams and other aquatic 
resources than the medium resolution dataset.  

In 2006, USGS and EPA developed the first medium-resolution version of the NHDPlus to 
support modeling the occurrence of water and to provide the ability to connect detailed information from 
the surrounding landscape to the stream network. Buto and Anderson 2020. The NHDPlus is a suite of 
geospatial products that that build upon and extend the capabilities of the NHD, the National Elevation 
Dataset, and the Watershed Boundary Dataset. The NHDPlus includes a stream network, catchments, and 
streamflow estimates, as well as other attributes that enable stream “navigation” (e.g., allow users to 
“navigate” up- and downstream from a given point in the stream network).49 An NHDPlus catchment is 

 
47 Scale is the relationship between distance on the map and distance on the ground. If the scale were 1:24,000, for 
instance, then one inch on the map would represent 24,000 inches or 2,000 feet on the ground. If the scale were 
1:63,360, then one inch on the map would represent 63,360 inches or one mile on the ground. See USGS 1992.  
48 Definitions of terms used in the NHD and additional information on NHD features are available in the National 
Hydrography Dataset Feature Catalog, available at 
https://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/NHD_Feature_Catalog.htm.   
49 “Navigate” and “navigation” in this context refer to the ability to trace a stream network upstream and 
downstream using GIS. The terms do not refer to actual navigability of a water and do not imply that a feature is or 
is not navigable. 

https://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/NHD_Feature_Catalog.htm
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the land surface area that flows directly to an NHDPlus feature (e.g., a single stream (reach)) in the NHD 
stream network. Moore et al. 2019. For most features, the catchment represents the incremental area that 
drains directly to each feature or stream segment. The medium resolution NHDPlus is currently available 
for the conterminous United States, Hawaii, and the U.S. territories at 
https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus. USGS has also developed the 
NHDPlus High Resolution (NHDPlus HR) in an iterative fashion throughout the country using updated, 
high-resolution datasets (high-resolution NHD, Watershed Boundary Dataset (WBD) data, and 3D 
Elevation Program (3DEP) 10-meter digital elevation model (DEM)) to create a modern, scalable, and 
openly accessible hydrography framework for the inland waters of the nation. Id. Data are available for 
download and as web-based map services at https://www.usgs.gov/national-hydrography/access-national-
hydrography-products. An initial production of NHDPlus HR has been created for the conterminous 
United States, Hawaii, and several U.S. territories including Puerto Rico, Guam, and American Samoa. 
USGS 2021. USGS is in the process of creating a second or updated production in those areas. As part of 
a longer-term project to update the NHD and WBD in Alaska, NHDPlus HR is currently in production in 
that state, with some areas in Alaska are currently available. Id. NHDPlus HR contains a set of value-
added attributes, in addition to the standard NHD attributes, that enhance stream network navigation, 
analysis and display, including (a) catchment characteristics, including mean annual precipitation, mean 
annual temperature, and mean annual runoff, and mean latitude; (b) cumulative drainage area 
characteristics; and (c) mean annual flow (1971-2000) and velocity estimates for each flowline in the 
stream network. Id.; USGS d. NHDPlus HR will provide a consistent modeling framework to enable a 
better understanding of the water quality and contaminant transport in the nation’s streams by models 
such as SPARROW (SPAtially Referenced Regression On Watershed attributes). Buto and Anderson 
2020. NHDPlus HR will also provide the hydrography base for the National Water Model, which 
simulates streamflow volume and velocity over the entire continental United States to help forecasters 
predict when and where flooding can be expected. Id.; see also section IV.D.iii.2 for a discussion of 
models. The USGS is also starting to implement the new 3D Hydrography Program (3DHP), which will 
greatly improve the level of detail, currency, and content of hydrography data by deriving updated stream 
networks and watersheds from high-quality 3DEP data. USGS a. The USGS believes that 3DHP will 
better support hydrologic modeling and improve attribution of important hydrologic characteristics like 
streamflow permanence. Id. 

Historic and recent USGS topographic maps can be found at https://www.usgs.gov/the-national-
map-data-delivery/topographic-maps. In addition to the traditional topographic maps the USGS also 
provides map viewers, data download capability, and application tools relevant to implementing this rule. 
In addition to NHD data, USGS watershed and elevation data can viewed and downloaded via the 
National Map at https://apps.nationalmap.gov/downloader/#/.  

The Watershed Boundary Dataset (WBD) is a seamless, national dataset depicting hydrologic 
units or watersheds—that is, the area of the landscape that drains to a portion of the stream network. 
USGS e. In the WBD, a hydrologic unit may represent all or only part of the total drainage area to an 
outlet point so that multiple hydrologic units may be required to define the entire drainage area at a given 
outlet. Id. Topographic, hydrologic, and other relevant landscape characteristics are used to delineate the 
hydrologic unit boundaries in the WBD. Id. The WBD’s hydrologic units (HU) are arranged in a nested, 
hierarchical system with each HU in the system identified using a unique code called the hydrologic unit 
code (HUC). Id. WBD contains eight levels of progressive hydrologic units identified by unique 2- to 16-

https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus
https://www.usgs.gov/national-hydrography/access-national-hydrography-products
https://www.usgs.gov/national-hydrography/access-national-hydrography-products
https://www.usgs.gov/the-national-map-data-delivery/topographic-maps
https://www.usgs.gov/the-national-map-data-delivery/topographic-maps
https://apps.nationalmap.gov/downloader/#/
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digit codes. Id. The dataset is complete for the United States at the HUC-12 level, while the 14- and 16-
digit hydrologic units are optional and are not complete for the nation. Id. 

The USGS has several elevation products and programs, including managing the interagency 3D 
Elevation Program (3DEP). The goal of the 3DEP is to complete nationwide three-dimensional (3D) 
elevation data acquisition by 2023 in the form of light detection and ranging (LIDAR) data to provide the 
first-ever national baseline of consistent high-resolution 3D data, including bare earth elevations and 3D 
point clouds, collected in a timeframe of less than a decade. Lukas and Baez 2021. The 3DEP products 
and services available through the National Map consist of standard digital elevation models (DEMs) at 
various horizontal resolutions (e.g., 10 meter, 30 meter), and elevation source (e.g., LIDAR) and 
associated datasets.  

The USGS has several different portals for accessing remote sensing data and geospatioal 
information. The National Map (https://apps.nationalmap.gov/downloader/#/) includes high resolution 
aerial images from USDA’s National Agriculture Imagery Program (NAIP), high-resolution elevation 
data from 3DEP, hydrography data from the NHD, wetland data from NWI, topographic maps, and 
landcover data from the NLCD. In addition to the online mapper, the National Map supports data 
download and geospatial data services. The EarthExplorer data portal (https://earthexplorer.usgs.gov/) 
allows the public to obtain earth imagery across available geospatial data types. USGS b. This includes 
Landsat satellite imagery, Radar data, unmanned aircraft systems (UAS) data, digital line graphs, digital 
elevation model data, aerial photography, Sentinel satellite data, some commercial satellite imagery 
including IKONOS and OrbView3, land cover data, digital map data from the National Map, and many 
other datasets. Id. Users can search by exact location via the interactive map or input specific coordinates 
to view what data types are available. Id. Date searches can also be made for specific date ranges. USGS 
2012. The Global Visualization Viewer (GloVis) is another tool for accessing remote sensing data 
(https://glovis.usgs.gov/app).  

The U.S. FWS established the National Wetlands Inventory (NWI) to conduct a nationwide 
inventory of wetlands to provide biologists and others with information on the distribution and type of 
wetlands to aid in conservation efforts. U.S. FWS a; U.S. FWS 2020. Today, the NWI Wetlands Data 
Layer is used for general mapping of wetlands50 and deepwater habitats and for purposes of data analyses 
and modeling. Id. The NWI Wetlands Data Layer is a mapping dataset that provides detailed information 
on the extent, characteristics, functions, and distribution of wetlands and deepwater habitats across the 
United States. Id. These data are primarily derived from manual aerial image interpretation. The NWI is 
available as digital data at the 1:24,000 scale or higher throughout the country, except for portions of 
Alaska (data in Alaska are at the 1:63,360 scale). The NWI data are available for download (available at 
https://www.fws.gov/program/national-wetlands-inventory/data-download), as an interactive web 
mapping application (available at https://www.fws.gov/program/national-wetlands-inventory/wetlands-
mapper), and as web mapping services (https://www.fws.gov/program/national-wetlands-inventory/web-
mapping-services).  

USDA, mainly through the NRCS, produces several products and online mappers relevant to 
evaluating aquatic resources. NAIP (https://naip-usdaonline.hub.arcgis.com/) is administered through the 
USDA’s Farm Production and Conservation Business Center, and the imagery program acquires aerial 

 
50 The NWI uses the Cowardin (1979) definition of “wetlands.” 

https://apps.nationalmap.gov/downloader/#/
https://earthexplorer.usgs.gov/
https://glovis.usgs.gov/app
https://www.fws.gov/program/national-wetlands-inventory/data-download
https://www.fws.gov/program/national-wetlands-inventory/wetlands-mapper
https://www.fws.gov/program/national-wetlands-inventory/wetlands-mapper
https://www.fws.gov/program/national-wetlands-inventory/web-mapping-services
https://www.fws.gov/program/national-wetlands-inventory/web-mapping-services
https://naip-usdaonline.hub.arcgis.com/


Page 242 of 564 

imagery during the agricultural growing seasons in the United States (i.e., “leaf-on” imagery). The 
imagery is available to the public through the NAIP website and through the National Map. The NRCS 
produces data and maps which contain information relative to implementing the final rule including, but 
not limited to, the potential presence of wetlands, the locations of tributaries and details on the properties 
of soils, including flood frequency and duration, ponding frequency and duration, hydric soils, and 
drainage class. These NRCS resources can be obtained through 
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx or via the NRCS Soil Survey 
Geographic Database (SSURGO) available at https://catalog.data.gov/dataset/soil-survey-geographic-
database-ssurgo). The NRCS National Water and Climate Center is responsible for producing and 
disseminating accurate and reliable water supply forecasts and other climatic data. NRCS b. The Center 
administers the Snow Telemetry (SNOTEL) program which consists of over 900 automated and semi-
automated data collection sites across the western United States and tracks snowpack depths, 
precipitation, and other climate information (available at https://www.wcc.nrcs.usda.gov/snow/). NRCS a. 
All the data collected at the National Water and Climate Center are placed in a comprehensive database 
known as the Water and Climate Information System (WCIS), available at 
https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/wcis/ (see 
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/imap for an interactive map of WCIS data). 
NRCS b. In addition to the data collected through SNOTEL and manual snow data collection processes, 
the Center also incorporates precipitation, streamflow, and reservoir data from the Corps, the U.S. Bureau 
of Reclamation (BOR), the Applied Climate Information System (ACIS), the USGS, various water 
districts, and other entities into the WCIS database. Id. Information in the WCIS database which may be 
useful in estimating tributary runoff in the areas of the country where data are collected and available. 

NOAA publishes a variety of climate information that may be relevant to accessing jurisdiction. 
The National Centers for Environmental Information, for example, publishes precipitation records 
(available at https://www.ncdc.noaa.gov/cdo-web/) and the National Weather Service publishes snow 
analysis maps (available at https://www.nohrsc.noaa.gov/nsa/). This information may be useful for 
understating tributary runoff frequency and duration.  

FEMA produces flood zone or other floodplain maps which can give an estimate of frequency of 
flooding and other physical floodplain factors (FEMA 2021) that may have relevance in implementing 
this rule. These maps are publicly available and provide a readily accessible and transparent tool for 
locating the 100-year floodplain, where FEMA has mapped such information. The FEMA Map Service 
Center allows the public to search for flood maps by address or location (available at 
https://msc.fema.gov/portal/home), and the National Flood Hazard Layer Viewer is an interactive web 
mapping application that displays the current effective flood hazard data (available at 
https://msc.fema.gov/nfhl).  

EPA also has several resources useful for the implementation of this rule. EPA’s How’s My 
Waterway (available at https://www.epa.gov/waterdata/hows-my-waterway) maps streams and identifies 
Clean Water Act section 303(d) listed waters, water quality impairments, and Total Maximum Daily 
Loads (TMDLs). EPA’s NEPAssist (available at https://www.epa.gov/nepa/nepassist), provides locations 
and information on wastewater discharge facilities and hazardous-waste sites. EPA also publishes 
ecoregion maps (https://www.epa.gov/eco-research/ecoregions-north-america). The EPA Watershed 
Assessment, Tracking, and Environmental Results System (WATERS) GeoViewer is an example of a 

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
https://catalog.data.gov/dataset/soil-survey-geographic-database-ssurgo
https://catalog.data.gov/dataset/soil-survey-geographic-database-ssurgo
https://www.wcc.nrcs.usda.gov/snow/
https://www.nrcs.usda.gov/wps/portal/wcc/home/aboutUs/monitoringPrograms/wcis/
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/imap
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncdc.noaa.gov%2Fcdo-web%2F&data=04%7C01%7CKwok.Rose%40epa.gov%7Cb472725468d84226b5ee08d98346ee26%7C88b378b367484867acf976aacbeca6a7%7C0%7C0%7C637685162924056890%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=%2BVUFJZlrXr1K0qmzB20BHPpe0AZrRr%2FxTmill7QG45k%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nohrsc.noaa.gov%2Fnsa%2F&data=04%7C01%7CKwok.Rose%40epa.gov%7Cb472725468d84226b5ee08d98346ee26%7C88b378b367484867acf976aacbeca6a7%7C0%7C0%7C637685162924056890%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=RvXKBZS6xfMtHPu8BY0K2zylhR4tG530RBhIbKHvago%3D&reserved=0
https://msc.fema.gov/portal/home
https://msc.fema.gov/nfhl
https://www.epa.gov/waterdata/hows-my-waterway
https://www.epa.gov/nepa/nepassist
https://www.epa.gov/eco-research/ecoregions-north-america
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webmapping application that provides accessibility to many spatial dataset layers like NHDPlus and 
watershed reports for analysis and interpretation (https://www.epa.gov/waterdata/waters-geoviewer). This 
includes EPA’s Stream-Catchment (StreamCat) Dataset, which provides metrics for approximately 2.65 
million stream segments and their associated catchments (https://www.epa.gov/national-aquatic-resource-
surveys/streamcat-dataset-0). See Hill et al. 2016. The GeoViewer also allows users to conduct 
upstream/downstream searches and to delineate watersheds. Although not available in WATERS, the 
EPA’s Lake-Catchment (LakeCat) Dataset is similar to StreamCat, and currently contains over 300 
metrics for over 375,000 lakes and their associated catchments. See Hill et al. 2018. Data are available at 
https://www.epa.gov/national-aquatic-resource-surveys/lakecat-dataset.  

The Corps’ Geospatial Platform provides Corps geospatial data, services, and applications for use 
by partner agencies and the public (https://geospatial-usace.opendata.arcgis.com/). For example, the 
Corps manages geospatial data related to navigation (e.g., the Navigation Data Center) and reservoirs and 
lakes owned and operated by the Corps. In addition, the Corps manages the National Inventory of Dams 
(https://nid.usace.army.mil/#/), which contains information from states and federal agencies on the 
location of over 91,000 dams across the country. U.S. Army Corps of Engineers 2020a.  

In addition to these federal agencies most states have geo-spatial data gateways for viewing and 
downloading both USGS and potentially other federal agency data but also sometimes state specific aerial 
photography and geo-spatial data. A web search of a specific state plus “geo-spatial” should provide 
information on available resources. Some Tribal, Territorial, and local governments may also have 
geospatial information.  

2. Hydrologic Models 

Golden et al. (2014) provided a review and critique of modeling approaches to quantify the 
connectivity and (cumulative) effects of geographically isolated wetlands on other types of waters. They 
include (listed in Table 1 of the paper) Soil and Water Assessment Tool (SWAT), Hydrologic Simulation 
Program - FORTRAN (HSPF), DRAINMOD for Watershed (DRAINWAT), TOPMODEL, Grid Based 
Mercury Model (GBMM), and Visualizing Ecosystems for Land Management Assessment (VELMA)). 
The authors also explored different groundwater (e.g., MODFLOW Wetlands Package; Table 2 of the 
paper) and coupled surface-subsurface flow models (e.g., GS-FlOW; Table 3 of the paper) for modeling 
geographically isolated wetland hydrologic connectivity. Jones et al. (2019) provided an update to 
modeling connectivity and effects between non-floodplain wetlands and other systems using process-
based models (such as SWAT), providing case studies to inform best modeling to guide the model 
application. Additional models noted by Jones et al. (2019) as applicable include (but are not limited to) 
MODFLOW (Harbaugh et al. 2005; available at https://www.usgs.gov/mission-areas/water-
resources/science/modflow-and-related-programs), the Wetland Hydrologic Capacitance model 
(Mclaughlin et al. 2014), the USGS model VS2DI (Hsieh et al. 2000; Rossi and Nimmo 1994), and fully 
distributed coupled surface and subsurface models (Ameli and Creed 2017). Model application examples 
in Jones et al. (2019) include Wetland Hydrologic Capacitance (e.g., Watts et al. 2015; Jones et al. 
2018b), modifications to the SWAT model by Evenson et al. (2016; 2018), and Lee et al. (2018), and 
application of VS2DI by Neff and Rosenberry (2018) (available at https://www.usgs.gov/software/vs2di-
version-13). From the case studies presented, Jones et al. (2019) provided a table summarizing the 
models, including their fidelity and resource requirements (Table 2 of the paper). 

https://www.epa.gov/waterdata/waters-geoviewer
https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset-0
https://www.epa.gov/national-aquatic-resource-surveys/streamcat-dataset-0
https://www.epa.gov/national-aquatic-resource-surveys/lakecat-dataset
https://geospatial-usace.opendata.arcgis.com/
https://nid.usace.army.mil/#/
https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs
https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs
https://www.usgs.gov/software/vs2di-version-13
https://www.usgs.gov/software/vs2di-version-13
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Additional application of hydrologic models and/or advancements to models (e.g., SWAT) 
include the hydrologic equivalent wetland approach (Golden et al. 2014, citing Wang et al. 2008; Yang et 
al. 2010; Neitsch et al. 2011), P2P (puddle-to-puddle) modeling (Chu et al. 2013), and a hybrid 
SWAT/empirical (Spatial Stream Network) modeling approach (Golden et al. 2016). EPA has developed 
a web-based interactive water quality and quantity modeling system (Hydrologic and Water Quality 
System, HAWQS, see U.S. EPA 2022l) that is being used to assess the cumulative effects of wetlands on 
downgradient waters (G. Evenson, personal communication). HAWQS employs SWAT as its core 
modeling engine and is available at https://www.epa.gov/waterdata/hawqs-hydrologic-and-water-quality-
system. U.S. EPA 2022l. Recently, Driscoll et al. (2020) used the USGS’s National Hydrologic Model to 
analyze the surface-depression storage. Rajib et al. (2020) applied a modified SWAT model to assess 
surface water storage and stream-effects of non-floodplain wetlands across the ~500,000 km2 Upper 
Mississippi River basin, finding that including non-floodplain wetlands into the modeling domain 
improved the modeling accuracy of stream flows (e.g., the non-floodplain wetland storage effect, once 
quantified, increased model performance hence demonstrating the substantive effect of non-floodplain 
wetlands on downgradient systems). Further, Golden et al. (2021a) recently noted that the effects of non-
floodplain wetlands on water storage were substantive and important such that ignoring the systems 
would lead to erroneous model responses. 

Additional approaches to quantifying hydrologic storage include statical models, such as 
including LIDAR-based topography with precipitation totals. See, e.g., Green et al. 2019. Both statistical 
and process-based models have been used to quantify downgradient nutrient assimilation and mitigation 
effects of non-floodplain wetlands. Golden et al. 2019. These include applying SWAT residence times to 
assess potential (e.g., Evenson et al. 2018), to incorporating non-floodplain wetlands into large basin-
scale nutrient analyses (e.g., Evenson et al. 2021). Golden et al. (2019) found incorporating non-
floodplain wetlands into a SWAT watershed model for Iowa resulted in a 7% reduction in nitrate 
concentrations. Mengistu et al. (2020), which looked at how wetlands mediate the amount of nitrogen and 
phosphorus reaching streams and rivers, is an additional statistical model. 

3. Advancements in Implementation Data, Tools, and Methods 

Since the Rapanos decision, there have been dramatic advancements in the data, tools, and 
methods used to make jurisdictional determinations, including in the digital availability of information 
and data. In 2006, when the agencies began to implement the Rapanos and Carabell decisions, there were 
fewer implementation tools and support resources to guide staff in jurisdictional decision-making under 
the relatively permanent and significant nexus standards. Agency staff were forced to rely heavily on 
information provided in applicant submittals and available aerial imagery to make jurisdictional decisions 
or to schedule an in-person site visit to review the property themselves. The 2007 U.S. Army Corps of 
Engineers Jurisdictional Determination Form Instructional Guidebook encouraged practitioners to utilize 
maps, aerial photography, soil surveys, watershed studies, scientific literature, previous jurisdictional 
determinations for the review area, and local development plans to complete accurate jurisdictional 
decisions or analysis. U.S. Army Corps of Engineers 2007a. For more complicated situations or decisions 
involving significant nexus evaluations, the Guidebook encouraged practitioners to identify and evaluate 
the functions relevant to the significant nexus by incorporating literature citations and/or references from 
studies pertinent to the parameters being reviewed. Id. For significant nexus decisions specifically, the 
Guidebook instructed practitioners to consider all available hydrologic information (e.g., gage data, 

https://www.epa.gov/waterdata/hawqs-hydrologic-and-water-quality-system
https://www.epa.gov/waterdata/hawqs-hydrologic-and-water-quality-system


Page 245 of 564 

precipitation records, flood predictions, historic records of water flow, statistical data, personal 
observations/records, etc.) and physical indicators of flow including the presence and characteristics of a 
reliable OHWM. Id. 

The Corps also issued Regulatory Guidance Letter (RGL) No. 07-0151 in 2007. U.S. Army Corps 
of Engineers 2007b. RGL No. 07-01 laid out principal considerations for evaluating the significant nexus 
of a tributary and its adjacent wetlands which included the volume, duration, and frequency of flow of 
water in the tributary, proximity of the tributary to a traditional navigable water, and functions performed 
by the tributary and its adjacent wetlands. Id. This RGL highlighted wetland delineation data sheets, 
delineation maps, and aerial photographs as important for adequate information to support all 
jurisdictional decision-making. Id. Gathering the data necessary to support preliminary or approved 
jurisdictional decisions was often time consuming for staff and the regulated public. There were not many 
nationally available repositories for much of the information that the agency staff utilized in decision-
making, particularly during the first years of implementing of the guidance. Despite these challenges, the 
agencies and others in the practitioner community gained substantial collective experience implementing 
the relatively permanent and significant nexus standards from 2006 to 2015.  

Since 2015, there have been dramatic improvements to the quantity and quality of water resource 
information available on the internet. The agencies and other practitioners can use online mapping tools to 
determine whether waters are connected or sufficiently close to “waters of the United States,” and new 
user interfaces have been developed that make it easier and quicker to access information from a wide 
variety of sources. Furthermore, some information used to only be available in hard-copy paper files, 
including water resource inventories and habitat assessments, and many of these resources have been 
made available online or updated with new information.  

The following overview of several tools and data that have been developed or improved since 
2015 is intended to demonstrate how case-specific evaluations can be made more quickly and consistently 
than ever before. Advancements in geographic information systems (GIS) technology and cloud-hosting 
services have led to an evolution in user interfaces for publicly available datasets frequently used in 
jurisdictional decision-making such as the NWI, USGS NHD, soil surveys, aerial imagery, and other 
geospatial analysis tools like USGS StreamStats (https://streamstats.usgs.gov/ss/). Not only are the 
individual datasets more easily accessible to users, but it has also become much easier for users to quickly 
integrate these various datasets using desktop or online tools like map viewers to consolidate and evaluate 
the relevant data in one visual platform. Such map viewers can assist, for example, with considering the 
factors and assessing the functions in paragraph (c)(6) of the final rule that are relevant to the significant 
nexus analysis. The EPA WATERS GeoViewer (https://www.epa.gov/waterdata/waters-geoviewer) is an 
example of a web mapping application that provides accessibility to many spatial dataset layers like 
NHDPlus and watershed reports for analysis and interpretation. Another web mapping application is the 
EPA’s EnviroAtlas (https://www.epa.gov/enviroatlas/enviroatlas-interactive-map), which provides 
information and interpretative tools to help facilitate surface water assessments using multiple data layers 
such as land cover, stream hydrography, soils, and topography. Several States also have state specific 
interactive online mapping tools called Water Resource Registries (WRRs). Watershed Resources 

 
51 It should be noted that RGL No. 07-01 was later superseded by RGL 08-02 and RGL 16-01, neither of which 
addressed significant nexus evaluations.   

https://streamstats.usgs.gov/ss/
https://www.epa.gov/waterdata/waters-geoviewer
https://www.epa.gov/enviroatlas/enviroatlas-interactive-map
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Registry 2022. WRRs host publicly available GIS data layers providing various information such as the 
presence of wetlands, land use/cover, impaired waters, and waters of special concern. Other websites like 
the Corps’ Jurisdictional Determinations and Permits Decision site 
(https://permits.ops.usace.army.mil/orm-public) and webservices like EPA’s Enforcement and 
Compliance History Online (ECHO) Map Services (https://echo.epa.gov/tools/map-service) allow users 
to find geospatial and technical information about Clean Water Act section 404 and NPDES permitted 
discharges. Information on approved jurisdictional determinations finalized by the Corps is also available 
on the Corps’ Jurisdictional Determinations and Permit Decisions site 
(https://permits.ops.usace.army.mil/orm-public) and EPA’s Clean Water Act Approved Jurisdictional 
Determinations website (https://watersgeo.epa.gov/cwa/CWA-JDs/). 

The data that are available online have increased in quality as well as quantity. The NHD has 
undergone extensive improvements in data availability, reliability, and resolution since 2015, including 
the release of NHDPlus High Resolution datasets for the conterminous U.S. and Hawaii, with Alaska 
under development. Buto and Anderson 2020; USGS 2021. One notable improvement in NHD data 
quality is that the flow-direction network data are much more accurate than in the past. Improvements 
have also been made to the NWI website and geospatial database, which has served as the primary source 
of wetland information in the United States for many years. In 2016, NWI developed a more 
comprehensive dataset (NWI Version 2) that is inclusive of all surface water features in addition to 
wetlands. U.S. FWS a. This NWI Version 2 dataset provides more complete geospatial data on surface 
waters and wetlands than has been available in the past and provides a more efficient means to make 
determinations of flow and water movement in surface water basins and channels, as well as in wetlands. 
The agencies and other practitioners can use this dataset to help assess potential hydrologic connectivity 
between waterways and wetlands. For example, it can be used in part to help the agencies identify 
wetlands that do not meet the definition of “adjacent” (waters assessed under paragraph (a)(5) of the final 
rule).  

The availability of aerial and satellite imagery has improved dramatically since 2015. This 
imagery is used to observe the presence or absence of flow and identify relatively permanent flow in 
tributary streams and hydrologic connections to waters. The agencies often use a series of aerial and 
satellite images, spanning multiple years and taken under normal climatic conditions, to determine the 
flow characteristics for a tributary, as a first step to determine if additional field-based information is 
needed to determine the flow characteristics, such as timing and duration of flow. Other practitioners may 
also use aerial and satellite images to identify aquatic resources and inform assessments of those aquatic 
resources. The growth of the satellite imagery industry through services such as DigitalGlobe (available at 
https://discover.maxar.com/) in addition to resources for aerial photography and imagery, such as USGS 
EarthExplorer (available at https://earthexplorer.usgs.gov/) and National Aeronautics and Space 
Administration (NASA) Earth Data (available at https://earthdata.nasa.gov/) have reduced the need to 
perform as many field investigations to verify Clean Water Act jurisdiction. Some of these services 
charge a fee for use, but others are freely available. The USGS Landsat Level-3 Dynamic Surface Water 
Extent (DSWE) product (available at https://www.usgs.gov/landsat-missions/landsat-dynamic-surface-
water-extent-science-products?qt-science_support_page_related_con=0#qt-
science_support_page_related_con) is a specific example of a tool that may be useful for identifying 
surface water inundation on the landscape in certain geographic areas (e.g., large rivers in the arid 

https://permits.ops.usace.army.mil/orm-public
https://echo.epa.gov/tools/map-service
https://permits.ops.usace.army.mil/orm-public
https://watersgeo.epa.gov/cwa/CWA-JDs/
https://discover.maxar.com/
https://earthexplorer.usgs.gov/
https://earthdata.nasa.gov/
https://www.usgs.gov/landsat-missions/landsat-dynamic-surface-water-extent-science-products?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/landsat-missions/landsat-dynamic-surface-water-extent-science-products?qt-science_support_page_related_con=0#qt-science_support_page_related_con
https://www.usgs.gov/landsat-missions/landsat-dynamic-surface-water-extent-science-products?qt-science_support_page_related_con=0#qt-science_support_page_related_con
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Southwest).52   

Similarly, LIDAR data have increased in availability and utility for informing decisions on Clean 
Water Act jurisdiction. LIDAR produces high-resolution elevation data (<1-3 meter) which can be used to 
create maps of local topography. The high-resolution maps can highlight the potential hydrologic 
connections and flowpaths at a site. See, e.g., Lang et al. 2012. Where LIDAR data have been processed 
to create a bare earth model, detailed depictions of the land surface reveal subtle elevation changes and 
characteristics of the land surface, including the identification of tributaries. See, e.g., id.; Grau et al. 
2021. Hydrologists, for example, have long used digital elevation models of the earth’s surface to model 
watershed dynamics (see, e.g., Tarboton 1997), and the agencies have used such information where 
available to help inform jurisdictional decisions. LIDAR-derived digital elevation models tend to be high 
resolution (<1-3 meter), so they are particularly helpful for identifying fine-scale surface features. For 
example, LIDAR-indicated tributaries can be correlated with aerial photography or other tools to help 
identify channels and to help determine flow permanence (e.g., relatively permanent flow) in the absence 
of a field visit. The agencies have been using such remote sensing and desktop tools to assist with 
identifying jurisdictional tributaries for many years, and such tools are particularly critical where data 
from the field are unavailable or a field visit is not possible. High-resolution LIDAR data are becoming 
more widespread for engineering and land use planning purposes. The USGS is in the process of 
collecting LIDAR data for the entire United States. USGS f. LIDAR data are available for download via 
the National Map Download Client (available at https://apps.nationalmap.gov/downloader/#/) and 
LIDAR-derived digital elevation models are available via the 3DEP LidarExplorer (available at 
https://apps.nationalmap.gov/lidar-explorer/#/). However, LIDAR-derived elevation maps are not always 
available, so the agencies use other elevation data, including digital elevation models derived from other 
sources (e.g., 10-meter digital elevation models) and topographic maps to help determine the elevation on 
a site and to assess the potential location of tributaries.  

Since 2015, tools have been developed that automate some of the standard practices the agencies 
rely on to assist in jurisdictional determinations. One example of this automation is the Antecedent 
Precipitation Tool (APT), which was released to the public in 2020 and had been used internally by the 
agencies prior to its public release. The APT is a desktop tool developed by the Corps and is commonly 
used by the agencies to help determine whether field data collection and other site-specific observations 
occurred under normal climatic conditions. Gutenson and Deters 2022; Sparrow et al. 2022. In addition to 
providing a standardized methodology to evaluate normal precipitation conditions (“precipitation 
normalcy”), the APT can also be used to assess the presence of drought conditions, as well as the 
approximate dates of the wet and dry seasons for a given location. Gutenson and Deters 2022. As 
discussed in section IV.B.3 of the final rule preamble and section II.B above, precipitation data are often 
not useful in providing evidence as to whether a surface water connection exists in a typical year, as 
required by the 2020 NWPR. See also Sparrow et al. 2022. However, the agencies have long used the 
methods employed in the APT to provide evidence that wetland delineations are made under normal 
circumstances or to account for abnormalities during interpretation of data. See, e.g., Gutenson and Deters 
2022; Sprecher and Warne 2000. The development and public release of the APT has accelerated the 

 
52 Though DSWE is a useful product for many water-related applications (Jones 2019), due to its resolution (30 
meters) and potential issues with canopy cover (see, e.g., Taylor et al. 2022), it may be useful only in certain 
geographic areas for purposes of supporting jurisdictional decisions.  

https://apps.nationalmap.gov/downloader/#/
https://apps.nationalmap.gov/lidar-explorer/#/
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speed at which these analyses are completed; has standardized methods, which reduces errors; and has 
enabled more people to perform these analyses themselves, including members of the public. Automated 
tools like the APT will continue to be important for supporting jurisdictional decision-making.  

Site visits are still sometimes needed to perform on-site observations of surface hydrology or 
collect regionally-specific field-based indicators of relatively permanent flow (e.g., the presence of 
riparian vegetation or certain aquatic macroinvertebrates). The methods and instruments used to collect 
field data have also improved since 2015, such as the development of rapid, field-based stream duration 
assessment methods (SDAMs) that use physical and biological indicators to determine the flow duration 
class of a stream reach. The agencies have previously used existing SDAMs developed by federal and 
State agencies to identify perennial, intermittent, or ephemeral streams. See Nadeau 2015; Fritz et al. 
2020; Mazor et al. 2021. The agencies will continue to use these tools whenever they are determined to be 
a reliable source of information for the specific water feature of interest. See Nadeau 2015; Fritz et al. 
2020; Mazor et al. 2021. The agencies are currently working to develop region-specific SDAMs for 
nationwide coverage (U.S. EPA 2022m), which will promote consistent implementation across the United 
States in a manner that accounts for differences between each ecoregion (see, e.g., Fritz et al. 2020). The 
region-specific SDAMs will be publicly available, with user manuals that will guide not only the 
agencies, but also other practitioners, in applying the methods to assess aquatic resources. Additional 
information on the agencies’ efforts to develop SDAMs is available on the Regional Streamflow Duration 
Assessment Methods webpage, available at https://www.epa.gov/streamflow-duration-assessment. 
Consistent with longstanding practice, the agencies will make decisions based on the best available 
information. 

ii. Identifying Tributaries 

Tributaries, including those that are relatively permanent, under the final rule include rivers, 
streams, lakes, ponds, and impoundments that flow directly or indirectly through another water or waters 
to a traditional navigable water, the territorial seas, an interstate water, or a paragraph (a)(2) 
impoundment. A tributary may flow through a number of downstream waters, including non-
jurisdictional features. The lateral limits of tributaries, in the absence of adjacent wetlands, is typically 
delineated by the ordinary high water mark. The final rule at paragraph (c)(4) defines ordinary high water 
mark, retaining the pre-2015 definition, as “that line on the shore established by the fluctuations of water 
and indicated by physical characteristics such as clear, natural line impressed on the bank, shelving, 
changes in the character of soil, destruction of terrestrial vegetation, the presence of litter and debris, or 
other appropriate means that consider the characteristics of the surrounding areas.”  

While EPA and Corps field staff must exercise judgment to identify the OHWM on a case-
specific basis, the regulations at 33 CFR 328.3(e) and 329.11(a)(1) list the factors to be applied. 
Regulatory Guidance Letter (RGL) 05-05 further explains these regulations. U.S. Army Corps of 
Engineers 2005b. Delineation of an OHWM in tributaries relies on identification and interpretation of 
physical features, including topographic breaks in slope, changes in vegetation characteristics (e.g., 
destruction of terrestrial vegetation and change in plant community), and changes in sediment 
characteristics (e.g., sediment sorting and deposition). Gartner et al. 2016a (citing U.S. Army Corps of 
Engineers 2005b; Lichvar and McColley 2008; Mersel and Lichvar 2014). Field indicators, remote 
sensing, and mapping information can also help identify an OHWM. The Corps continues to improve 

https://www.epa.gov/streamflow-duration-assessment
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regulatory practices across the country through ongoing research (see, e.g., Lichvar et al. 2009; Gartner et 
al. 2016b; Wohl et al. 2016; Hamill and David 2021) and the development of regional and national 
ordinary high water mark delineation procedures (see Lichvar and McColley 2008; Mersel and Lichvar 
2014). For example, the Corps has developed field indicators to help field staff identify the OHWM in 
common stream types in the arid West. Lichvar and McColley 2008. A series of Corps manuals and 
technical reports aims to clarify procedures and to reduce some of the difficulties in delineating the 
OHWM in rivers and streams (e.g., Lichvar et al. 2006; Lichvar and McColley 2008; Curtis et al. 2011; 
Mersel and Lichvar 2014). These resources focus on the use of field evidence for delineating the OHWM, 
especially three primary indicators—lateral topographic breaks in slope, changes in vegetation 
characteristics, and changes in sediment characteristics.  

While OHWM delineation is principally a field-based exercise, delineating the OHWM based on 
visual observations alone can be challenging in some circumstances. In such circumstances, hydraulic 
modeling, hydrologic modeling and flow frequency analysis, or a combination of the two can be used as 
an additional line of evidence to help support potential OHWM locations observed in the field. Gartner et 
al. 2016a; Gartner et al. 2016b; Gartner et al. 2016c. Hydraulic and hydrologic modeling each have 
advantages and disadvantages. Hydraulic modeling can be used to simulate the water surface elevation 
and lateral extent of water and other hydraulic parameters at a given location for a given discharge. 
Gartner et al. 2016a. Hydrologic modeling can be used to determine the amount of flow discharge at a 
given location for a given recurrence interval, and in this use, it is one of several methods used in flow 
frequency analysis. Gartner et al. 2016a; Gartner et al. 2016b. The scale of the two different types of 
modeling also differs. Hydraulic modeling focuses on the reach scale (i.e., a given length of a river or 
stream), often taking the amount of water delivered to a reach as a given input and then simulating the 
hydraulic properties of the water as it flows through a reach. Gartner et al. 2016a. Hydrologic modeling 
often is conducted on a basin-wide view because the conditions throughout a contributing area can affect 
the amount of water delivered to the location of interest. Id. 

Computational hydraulic modeling can be helpful in OHWM delineations but can be misleading 
if performed or applied improperly. Id. Hydraulic models use a set of algebraic and differential equations 
based on fundamental physical processes, such as Newton’s laws of motion, or well-established empirical 
relations, such as the Manning equation. Gartner et al. 2016c. The models convert a measured or 
estimated input (e.g., geometry, discharge rate, and channel roughness) into an output (e.g., water 
elevation and flow velocity). Id. These models usually make certain assumptions to simplify the 
calculations, such as assuming that the water flows only directly downstream and that the water surface 
elevation varies in only the downstream direction, not from one side of a channel to the other. Id. (citing 
Novak et al. 2010). With a hydraulic model, a user can test if a physical feature or potential OHWM 
location corresponds with flow levels that are reasonably associated with the OHWM. Gartner et al. 
2016a. Gartner et al. (2016a) demonstrated that one-dimensional models, such as the Manning equation 
(it is well established and relatively simple), the Hydraulic Engineering Center River Analysis System 
(HEC-RAS) (it is a free and widely used hydraulic modeling program), and HEC-GeoRAS (it enhances 
visualization of the OHWM in concert with digital elevation models (DEMs) and remotely sensed 
imagery and allows interpolation of model results between surveyed cross sections), are the most suitable 
choices if one were to model the OHWM because one-dimensional models have reasonable data 
requirements and long-standing records of use in simulating water elevations.  
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The goal of flow frequency analysis is to determine how often flows of various magnitudes occur, 
for example, the peak flow that occurs once every 5 years on average. Gartner et al. 2016b. Each of the 
three primary ways to determine flood flow frequencies has benefits and limitations: (1) stream-gage 
analysis, (2) regression equations, and (3) rainfall-runoff modeling. Id. Broadly, these are all hydrologic 
models in that they use a set of inputs (such as stream- or rain-gage records or watershed characteristics) 
to mathematically compute a desired hydrologic result (in this case, recurrence-interval estimates of high 
flows). Id. Gartner et al. (2016b) found that in most cases, regional regression equations are the first 
choice for estimating flood recurrence intervals for OHWM purposes, unless there is a gage at the site, in 
which case Log-Pearson Type III analysis may be preferred because of the narrower confidence intervals.  

In some circumstances, field observations of OHWM indicators may not be possible due to 
potential illegal activity (e.g., filling in a stream). In some cases, knowledge of the flow characteristics at 
a site can assist in OHWM delineation beyond the information provided by field evidence. Gartner et al. 
2016b. The OHWM is not associated with a specific streamflow recurrence interval (or flow frequency); 
however, it is generally associated with streamflow levels well above mean discharge but less than 
extreme and infrequent flood events. Gartner et al. 2016a. (citing Lichvar and McColley 2008; Mersel 
and Lichvar 2014). In non-perennial arid streams, for instance, the OHWM signature has been associated 
with flows generally ranging from about the 1- to 15-year flood event. Id. (citing Curtis et al. 2011). 
Some streams may have conflicting field indicators or multiple potential OHWM locations based on the 
available field evidence, particularly in arid and semi-arid stream systems with one or more low-flow 
channels within a broader active channel. Gartner et al. 2016b. In challenging OHWM delineation 
situations, knowledge of the streamflow recurrence intervals associated with various field indicators can 
sometimes be used to rule out or support potential OHWM locations. Id. (citing Gartner et al. 2016a). For 
example, in a situation in the arid West, conflicting field indicators can be evaluated in the context of 
modeled recurrence-interval flows; the larger channel corresponds with approximately a 5- to 10- year 
flood event, which is consistent with the range of recurrence intervals associated with the OHWM in 
semi-arid systems. Id. (citing Lichvar et al. 2006; Curtis et al. 2011). Thus, in this example, quantitative 
analysis can effectively be used to rule out the field indicators associated with the smaller channel and to 
provide supporting evidence for the field indicators associated with the larger channel. Id. 

In addition, the agencies will assess any discontinuity in the OHWM and, consistent with pre-
2015 practice, a natural or human-made discontinuity in the OHWM does not necessarily sever 
jurisdiction upstream. A discontinuity may exist where the stream temporarily flows underground. 
Tributaries may temporarily flow underground in regions with karst geology or topography or lava tubes, 
for example, often maintaining similar flow characteristics underground and at the downstream point 
where they return to the surface. See section III.A. The agencies will also continue their familiar practice 
that a discontinuity in the OHWM also does not typically sever jurisdiction upstream where the OHWM 
has been removed by development, agriculture, or other land uses. For example, tributaries can be 
relocated below ground to allow reasonable development to occur. In urban areas, surface waters are 
often rerouted through an artificial tunnel system to facilitate development. See, e.g., Science Report at 3–
3, and section III.A of this Technical Support Document. Underground streams are distinct from 
groundwater due to their very direct hydrologic connection to the portions of the tributaries that are or re-
surface above ground. Typically, groundwater connections would be much slower than connections via 
underground streams. Tributaries that have been rerouted underground are contained within a tunnel 
system or other similar channelized subsurface feature, while naturally occurring subterranean streams 



Page 251 of 564 

flow within natural conduits like karst formations or lava tubes. See, e.g., Science Report at 3-3; U.S. 
EPA 2002; Weary and Doctor 2014. The agencies will look for indicators of flow both above and below 
the discontinuity. For example, a discontinuity in the OHWM may exist due to constructed breaks (e.g., 
culverts, pipes, or dams)53 or natural breaks (e.g., debris piles or boulder fields). Site specific conditions 
will continue to determine the distance up the tributary network that is evaluated to see if the feature 
creates a temporary break or if it severs the upstream connection and constitutes the start of the tributary 
system. 

The agencies will apply the regulations, RGL 05-05, and applicable OHWM delineation manuals 
and tools and take other steps as needed to ensure that the OHWM identification factors are applied 
consistently nationwide. See Rapanos Guidance at 10-11 n.36. 

A variety of field and remote tools can be used to determine whether a water is a tributary. Due to 
limitations associated with some remote tools, field verification for accuracy may be necessary (e.g., due 
to scale or vegetation cover, not all tributaries may be visible in aerial photographs, satellite imagery, or 
mapped in the NHD). Examples of field indicators will be discussed in more detail below. 

Tributaries can be identified on the landscape using direct observation or various remote sensing 
resources such as USGS stream gage data (available at https://waterdata.usgs.gov/nwis/rt), USGS 
topographic maps (available at https://www.usgs.gov/the-national-map-data-delivery/topographic-maps), 
high-resolution elevation data (including digital terrain depictions created from LIDAR) and associated 
derivatives (e.g., slope or curvature metrics), FEMA flood zone maps (available at 
https://msc.fema.gov/portal/home), NRCS soil maps (available at 
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx), NHD data, NWI data, maps and 
geospatial datasets from Tribal, State, Territorial, or local governments, and/or aerial or satellite imagery. 
For example, tributaries are often observable in aerial imagery and high-resolution satellite imagery by 
their topographic expression, characteristic linear and curvilinear patterns, dark photographic tones, or the 
presence of riparian vegetation. USGS topographic maps often include different symbols to indicate 
mapped hydrographic features such as perennial, intermittent, and ephemeral streams and rivers. See 
USGS 2005. Due to limitations associated with some remote tools, field verification for accuracy may be 
necessary (e.g., due to scale or vegetation cover, not all tributaries may be visible in satellite imagery and 
aerial photographs or mapped in the NHD). 

Determining whether a waterbody is a tributary under the final rule includes identifying whether 
the waterbody is part of the tributary system of a traditional navigable water, the territorial seas, or an 
interstate water. The tributary must flow directly or indirectly through another water or waters to a 
traditional navigable water, the territorial seas, or interstate water, as discussed further in section 
IV.C.4.c.i of the preamble. Waters through which a tributary may flow indirectly include, for example, 
impoundments, wetlands, lakes, ponds, and streams. A tributary may flow through a number of 
downstream waters, including non-jurisdictional features and jurisdictional waters that are not tributaries, 

 
53 Under past practice, the agencies have sometimes characterized bridges as artificial breaks, such as under the 2015 
Clean Water Rule. See 80 FR 37106. However, bridges do not necessarily create discontinuity in the OHWM, and 
the agencies recognize that tributaries flowing under bridges may still show evidence of an OHWM and in such 
circumstances would continue to be jurisdictional where they meet either the relatively permanent or significant 
nexus standard.  

https://waterdata.usgs.gov/nwis/rt
https://www.usgs.gov/the-national-map-data-delivery/topographic-maps
https://msc.fema.gov/portal/home
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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such as an adjacent wetland. But, the tributary must be part of a tributary system that eventually flows to a 
traditional navigable water, the territorial seas, or an interstate water to be jurisdictional. A tributary may 
flow through another stream that flows infrequently, and only in direct response to precipitation, and the 
presence of that stream is sufficient to demonstrate that the tributary flows to a traditional navigable 
water, the territorial seas, or an interstate water. Tributaries are not required to have a surface flowpath all 
the way down to the traditional navigable water, the territorial seas, or the interstate water. For example, 
tributaries can contribute flow through certain natural and artificial breaks (including certain non-
jurisdictional features), some of which may involve subsurface flow. 

In evaluating the flowpath from a water feature, the agencies can use USGS maps and 
hydrography data; NWI data; Tribal, State, Territorial, and local knowledge or maps; dye tests, tracers, or 
other on the ground tests; field observations; aerial photography; or other remote sensing information. 
The agencies can also use available models, including models developed by federal, Tribal, State, 
Territorial, and local governments, academia, and the regulated community. One such available GIS tool 
is the USGS StreamStats “Flow (Raindrop) Path,” which allows the user to click a point on a map, after 
which a flow path is drawn to estimate where water may flow from that point to the stream network, 
eventually making its way to the ocean if the tributary network allows for it. The StreamStats “Flow 
(Raindrop) Path” tool may potentially be used to identify the flow path from the subject waters to the 
downstream traditional navigable water, the territorial seas, or interstate water. The tool is available on 
USGS’s website at https://streamstats.usgs.gov/ss/. Similarly, via WATERS, EPA provides both its web-
based mapping application (WATERS GeoViewer, available at https://www.epa.gov/waterdata/waters-
geoviewer) and application programming interface (API) services (available at 
https://watersgeo.epa.gov/openapi/waters/#/Navigation) that can perform downstream network 
“navigation” to trace the flowpath downstream. See supra note 49. These tools could be used in 
conjunction with field observations, data, and other desktop tools to evaluate whether a tributary flows 
directly or indirectly to a traditional navigable water, the territorial seas, or an interstate water. For 
tributaries to impoundments of “waters of the United States,” a flowpath to the impoundment and to a 
traditional navigable water, the territorial sea, or an interstate water can be identified using these same 
tools. 

The following section discusses tools for identifying tributaries that meet the relatively permanent 
standard. Many of the tools discussed below can also be used for identifying tributaries more generally.  

1. Identifying Tributaries That Meet the Relatively Permanent Standard 

Under the final rule, tributaries meet the relatively permanent standard when they are relatively 
permanent, standing or continuously flowing bodies of water. Under the final rule, this category includes 
surface waters that have flowing or standing water year-round or continuously during certain times of the 
year and more than in direct response to precipitation. In contrast, tributaries not meeting the relatively 
permanent standard may flow only during or shortly after individual precipitation events (including 
rainfall or snowfall events). In implementing the relatively permanent standard, the agencies draw key 
concepts from the 2020 NWPR’s interpretation, but modify that rule’s approach to ensure the term can be 
practically implemented. The approach in the final rule would encompass tributaries considered relatively 
permanent under the 2020 NWPR, as well as those considered relatively permanent under the Rapanos 
Guidance, providing continuity in approach for the regulated community and other stakeholders. Under 

https://streamstats.usgs.gov/ss/
https://www.epa.gov/waterdata/waters-geoviewer
https://www.epa.gov/waterdata/waters-geoviewer
https://watersgeo.epa.gov/openapi/waters/#/Navigation
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the final rule, tributaries that do not meet the relatively permanent standard will be evaluated according to 
the significant nexus standard, as discussed in section IV.A.v of this document and section IV.C.4.c.iii of 
the final rule preamble.  

A key factor that the agencies typically consider when assessing relatively permanent flows54 is 
the geographic region. Many factors, including climate, hydrology, topography, soils, and other 
conditions, may affect the period in which relatively permanent flow may occur for those relatively 
permanent waters that do not have continuously flowing or standing water year-round. The factors which 
affect streamflow and flow cessation are climatically and geographically specific and therefore the 
periods during which a tributary might have relatively permanent flow vary by region. Non-relatively 
permanent tributaries are similarly diverse, and the mechanisms which differentiate relatively permanent 
flow from non-relatively permanent flow also vary by region.  

For example, in parts of the Southeastern United States (Southeast), precipitation is distributed 
somewhat uniformly throughout the year, but increased evapotranspiration during the growing season can 
reduce surficial ground water levels and reduce or remove surface flows late in the growing season (e.g., 
late summer or early autumn). See, e.g., Anandhi et al 2018; Mulholland et al. 1997. Consequently, 
certain streams in the Southeast may flow primarily in the winter or early spring. Non-relatively 
permanent tributaries in the Southeast may often be characterized by the repeated sequence of 
streamflow, flow cessation, and channel drying throughout the year, where the onset of streamflow 
coincides with distinct rainfall events and is driven primarily by storm runoff. Streamflow in these 
systems may persist anywhere from a few hours to days at a time, where the cessation of flow is most 
often associated with termination of overland flow, hillslope runoff recession, and the depletion of water 
in saturated soils. Although streamflow in these tributaries may occur regularly, off and on, over the 
duration of a season or longer, they do not exhibit continuously flowing water for an extended period at 
any point during the year. In other areas, snowpack melt drives streamflow more than rainfall, and 
relatively permanent flow may therefore coincide with warming temperatures typically in the spring or 
early summer.  

Many headwater streams in mountainous regions flow through channels incised in bedrock with 
no groundwater interface with the bed of the stream. Instead, these streams are often fed primarily by high 
elevation snowpack melt. The same scenario may also exist in Northern regions, where flows could be fed 
almost exclusively through melting snowpack absent elevated groundwater tables. In these regions, 
relatively permanent flows coincide with warming temperatures in the spring or early summer and may 
persist well into the summer until there are no longer enough inputs to sustain surface water, or later into 
autumn when more permanent sources of meltwater (e.g., glaciers or snowfields) begin to freeze. Non-
relatively permanent flows in these regions may occur in basins with thin layers of snow, where snow 
melts rapidly at the onset of spring thaw, and the snowmelt produced is not sufficient to sustain flows for 
an extended period and into the summer.  

Sources of flow in tributaries that meet the relatively permanent standard may include an elevated 
groundwater table that provides baseflow to a channel bed. Relatively permanent flow could also result 

 
54 While “flow” is used throughout this section, it is meant to include circumstances where tributaries such as lakes, 
ponds, or impoundments have standing water during certain parts of the year, as such waters outlet to the tributary 
network and contribute flow downstream at the outlet point.  
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from upstream contributions of flow, effluent flow, or snowpack that melts slowly over time in certain 
geographic regions or at high elevations. In addition, relatively permanent flow could result from a 
concentrated period of back-to-back precipitation events in certain regions that leads to sustained flow 
through a combination of runoff and upstream contributions of flow or an elevated groundwater table that 
provides baseflow to the channel bed. In contrast, non-relatively permanent tributaries may flow only 
during or shortly after individual precipitation events (including rainfall or snowfall events). Non-
relatively permanent flow may occur simply because it is raining or has very recently rained, or because a 
recent snow has melted.  

Streamflow that occurs during the monsoon season in certain parts of the country (typically June 
through September in the arid West) may be relatively permanent or non-relatively permanent, depending 
on the conditions at the location. Many tributaries in the arid West are dominated by coarse, alluvial 
sediments and exhibit high transmission losses, resulting in streams that often dry rapidly following a 
storm event (e.g., within minutes, hours, or days). Such streams are not relatively permanent under this 
rule. However, relatively permanent flow may occur as a result of multiple back-to-back storm events 
throughout a watershed, during which the combination of runoff and upstream contributions of flow is 
high enough to exceed rates of transmission loss for an extended period of time. Relatively permanent 
flow may also follow one or more larger storm events, when floodwaters locally recharge the riparian 
aquifer through bank infiltration, which supplies sustained baseflow throughout the monsoon season.  

Similar to the 2020 NWPR’s approach, the agencies will consider tributaries that flow in direct 
response to “snowfall” for only a short duration during or shortly after that snowfall event to be non-
relatively permanent waters under this rule. Streams that flow as a result of “snowpack melt” will be 
considered relatively permanent waters under this rule, where snowpack is defined as “layers of snow that 
accumulate over extended periods of time in certain geographic regions or at high elevation (e.g., in 
northern climes or mountainous regions).” See 85 FR at 22275.  

As a general matter, the agencies will assess tributaries as they find them, based on current 
conditions. For example, if a tributary were not a relatively permanent water because of routine water 
withdrawals, the agencies would assess the tributary under the significant nexus standard. Conversely, if a 
tributary routinely receives effluent flow that makes it a relatively permanent water, the agencies will 
assess it under the relatively permanent standard, even if the tributary would otherwise be a non-relatively 
permanent water without the inputs of effluent. 

To determine the flow characteristics of a tributary for purposes of implementing this rule, the 
agencies will evaluate the entire reach of the tributary that is of the same Strahler stream order (i.e., from 
the point of confluence, where two lower order streams meet to form the tributary, downstream to the 
point such tributary enters a higher order stream). Science Report at 2-2; Strahler 1957; see Figure 12. 
The flow characteristics of lakes, ponds, and impoundments that are part of the tributary network will be 
assessed in conjunction with the stream they connect to. Consistent with the pre-2015 regulatory regime, 
the agencies will assess the flow characteristics of a particular tributary at the farthest downstream limit of 
such tributary (i.e., the point the tributary enters a higher order stream). Rapanos Guidance at 6, n. 24. 
Where data indicate the flow characteristics at the downstream limit are not representative of the entire 
reach of the tributary, the flow characteristics that best characterize the entire tributary reach will be used. 
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Figure 12: A generalized example of a stream network to illustrate stream order. Blue lines illustrate 
the river network, within the light green area of its watershed. Numbers represent Strahler stream order, 
with streams increasing in order when two streams of equal order join. Blue squares indicate channel 
heads, and orange dots depict confluences. Source: Science Report (Figure 2-1). 
 

Direct observations and various remote tools and resources can be used to identify tributary 
reaches based on stream order, and topographic characteristics can assist in determining stream order. 
USGS topographic map blue line symbology and contour line patterns can be used to interpret the 
connectivity and contribution of flow within a river network, as well as topography within an evaluation 
area. LIDAR-based elevation models may also illustrate tributary connectivity and flow patterns, as well 
as topography. In addition, aerial and satellite imagery along with maps or geospatial mapping products 
(e.g., NHD, NWI, soil maps, and state, tribal, or local maps) can be used to help identify tributary reaches 
based on stream order. In addition to remote tools and resources, factors identified through field 
observations can also be used to help determine the extent of a tributary reach. For example, tributary 
systems can be traversed to identify and characterize the branches of the network that contribute flow to a 
particular evaluation area. Certain geographic features (e.g., ditches, swales) may also be found to 
contribute to a tributary’s surface hydrology. The agencies also have experience evaluating relatively 
permanent flow and will continue to use multiple tools, including direct observations and remote and 
field-based indicators to inform decisions.  
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Direct observation and various remote or desktop tools can help the agencies and the public better 
understand streamflow and inform determinations of relatively permanent flow. These tools include local 
maps, StreamStats by the USGS (available at https://streamstats.usgs.gov/ss/; see Ries et al. 2017), 
Probability of Streamflow Permanence (PROSPER) by the USGS, which provides streamflow 
permanence probabilities during the summer for stream reaches in the Pacific Northwest (available at 
https://www.usgs.gov/centers/wy-mt-water/science/probability-streamflow-permanence-prosper?qt-
science_center_objects=0#qt-science_center_objects), and NRCS hydrologic tools and soil maps.  

Other tools include regional desktop tools or models that provide for the hydrologic estimation of 
a discharge sufficient to generate intermittent or perennial flow (e.g., a regional regression analysis or 
hydrologic modeling), or modeling tools using drainage area, precipitation data, climate, topography, land 
use, vegetation cover, geology, and/or other publicly available information. Some models that are 
developed for use at the reach scale may be localized in their geographic scope. The USGS has developed 
models for some states for estimating the probability of perennial or non-perennial (e.g., intermittent) 
flow, including Arizona (Anning and Parker 2009), Idaho (Rea and Skinner 2009), Massachusetts (Bent 
and Steeves 2006), and Vermont (Olson and Brouillette 2006). Other similar models have been developed 
for different regions of the United States for classifying different flow classes, including for arid regions 
of the United States (Merritt et al. 2021), California (Lane et al. 2017), North Carolina (Russell et al. 
2015), the northern Rocky Mountains (Sando and Blasch 2015), the upper Colorado River Basin 
(Reynolds et al. 2015). In addition, several models have been developed to classify ephemeral, 
intermittent, and perennial stream reaches in the Appalachian coal basin of eastern Kentucky. Villines et 
al. 2015; Williamson et al. 2015.  

Remote or desktop tools can also help the agencies and the public better understand stream flow 
and whether tributaries have continuously flowing or standing water year-round or during certain times of 
the year for more than for a short duration and more than in direct response to precipitation. Aerial 
photographs showing visible water on multiple dates can provide evidence about the presence and 
duration of continuously flowing or standing water. Aerial photographs may also show other indicators 
commonly used to identify the presence of an OHWM (see definition of OHWM in section IV.A.ii and 
U.S. Army Corps of Engineers 2020b for additional information on OHWM). Lichvar and McColley 
2008; Mershal and Lichvar 2014. These indicators may include the destruction of terrestrial vegetation, 
the absence of vegetation in a channel, and stream channel morphology with evidence of scour, material 
sorting, and deposition. These indicators from aerial photographs can be correlated to the presence of 
USGS stream data (e.g., NHD or topographic maps) to support an assessment of the duration and timing 
of flow for a tributary.  

In addition to aerial photographs, desktop tools, such as a regional regression analysis and the 
Hydrologic Modeling System (HEC-HMS), provide for the hydrologic estimation of stream discharge in 
tributaries under regional conditions. The increasing availability of LIDAR derived data can also be used 
to help implement this final rule. Where LIDAR data have been processed to create elevation data such as 
a bare earth model, detailed depictions of the land surface are available and subtle elevation changes can 
indicate a tributary’s bed and banks and channel morphology. Visible linear and curvilinear incisions on a 
bare earth model can help inform the potential duration and timing of flow of a water in greater detail 
than aerial photography interpretation alone. Several tools (e.g., TauDEM, Whitebox, GeoNet) can assist 
in developing potential stream networks based on contributing areas, curvature and flowpaths using GIS. 

https://streamstats.usgs.gov/ss/
https://www.usgs.gov/centers/wy-mt-water/science/probability-streamflow-permanence-prosper?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/wy-mt-water/science/probability-streamflow-permanence-prosper?qt-science_center_objects=0#qt-science_center_objects
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Potential LIDAR-indicated tributaries can be correlated with aerial photography or high-resolution 
satellite imagery interpretation and USGS stream gage data, to reasonably conclude the presence of an 
OHWM and shed light on the potential flow characteristics.  

Sources of information that can facilitate the evaluation of relatively permanent flow from 
snowmelt are NOAA national snow analyses maps (available at https://www.wcc.nrcs.usda.gov/snow/), 
NRCS sources (available at https://www.wcc.nrcs.usda.gov/snow/), or use of hydrographs to indicate a 
large increase in stream discharge due to the late spring/early summer thaws of melting snow. 

Regional field observations can be used to verify desktop assessments of whether a tributary 
meets the relatively permanent standard, when necessary. Geomorphic indicators could include 
active/relict floodplain, substrate sorting, clearly defined and continuous bed and banks, depositional bars 
and benches, and recent alluvial deposits. Hydrologic indicators might include wrack/drift deposits, 
hydric soils, or water-stained leaves. Biologic indicators could include aquatic mollusks, crayfish, benthic 
macroinvertebrates, algae, and wetland or submerged aquatic plants. The agencies have been working to 
develop regionalized streamflow duration assessment methods (SDAMs, see 
https://www.epa.gov/streamflow-duration-assessment) which are rapid field-based assessment methods 
that can be used to classify streamflow duration. Nadeau et al. 2015; Fritz et al. 2020; Mazor et al. 2021. 
These SDAMS can be used to assist in determining whether tributaries at the reach scale meet the 
relatively permanent standard. These methods rely on physical and/or biological field indicators, such as 
the presence of hydrophytic vegetation and benthic macroinvertebrates, that can be collected or observed 
in a single site visit to determine the flow duration of a tributary in a reliable and rapid way. EPA, the 
Corps, and the State of Oregon developed a regionalized SDAM that has been validated for use 
throughout the Pacific Northwest. Nadeau 2015. EPA and the Corps have also developed a beta SDAM 
for the arid West (Mazor et al. 2021a) and the Western Mountains (Mazor et al. 2021b). EPA and the 
Corps are working to develop additional regionalized SDAMs in other parts of the country (U.S. 
Environmental Protection Agency 2021l). The agencies, co-regulators, and stakeholders can use the 
regionalized field indicators from SDAMs to quickly and easily identify “relatively permanent” tributaries 
as interpreted by the agencies under this rule. In addition, several states have developed their own 
methods for evaluating streamflow classifications, including Ohio (Ohio Environmental Protection 
Agency 2020), New Mexico (New Mexico 2020), North Carolina (North Carolina Division of Water 
Quality 2010), Tennessee (Tennessee DEC 2020), and Virginia (Virginia Department of Conservation 
and Recreation 2010). Some local governments have similarly developed their own methods. See, e.g., 
Fairfax County 2003; James City County 2009. Such state and local flow duration classifications may 
also be useful tools. Ultimately, multiple indicators, data points, and sources of information may be used 
to determine whether a water, including a tributary, is relatively permanent.  

 

iii. Identifying Wetlands  

Before determining if a wetland is jurisdictional, the agencies first determine if the wetland in 
question meets the definition of “wetlands.” Wetlands have long been defined by the agencies as “those 
areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to 
support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for 
life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.” 

https://www.wcc.nrcs.usda.gov/snow/
https://www.wcc.nrcs.usda.gov/snow/
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33 CFR 328.3(b) (1987); 33 CFR 328.3(c)(16) (2021); 40 CFR 230.3(t) (1988); 40 CFR 120.2(3)(xvi) 
(2021). The final rule does not change the longstanding regulatory definition of “wetlands.” 

As under prior regimes, wetlands are identified in the field in accordance with Corps’ 1987 
Wetland Delineation Manual (Corps 1987) and applicable regional delineation manuals. The 1987 
Wetland Delineation Manual was regionalized following recommendations from the National Research 
Council (1995) to improve sensitivity to regional differences in climate, hydrologic and geologic 
conditions, and other wetland characteristics. Wakeley et al. 2002. Between 2002 and 2012, the Corps 
developed ten regional supplements covering every region of the conterminous United States, as well as 
Alaska, the Caribbean Islands, and Hawaii and the Pacific Islands. U.S. Army Corps of Engineers c. Each 
of the regional supplements possesses uniform format and field methods, while accounting for regional 
variability through application of field indicators of hydrophytic vegetation, hydric soils, and wetland 
hydrology. Berkowitz 2011. 

Field work is often necessary to confirm the presence of a wetland and to accurately delineate its 
boundaries. However, in addition to field observations on hydrology, vegetation, and soils, remote tools 
and resources can be used to support the identification of a wetland, including USGS topographic maps, 
NRCS soil maps and properties of soils including flood frequency and duration, ponding frequency and 
duration, hydric soils, and drainage class, aerial or high-resolution satellite imagery, high-resolution 
elevation data, and NWI maps. 

Wetland mosaics are landscapes where wetland and non-wetland components are too closely 
associated to be easily delineated or mapped separately. These areas often have complex 
microtopography, with repeated small changes in elevation occurring over short distances. U.S. Army 
Corps of Engineers 2010. In certain regions where wetland mosaics are common, Corps regional wetland 
delineation manuals address how to delineate such wetlands. Id.; U.S. Army Corps of Engineers 2007c; 
U.S. Army Corps of Engineers 2011; U.S. Army Corps of Engineers 2012. Longstanding practice is that 
wetlands in the mosaic are not individually delineated, but that the Corps considers the entire mosaic and 
estimates percent wetland in the mosaic.  

 Under longstanding agency practice, a wetland is also delineated as a single wetland if a human-
made levee or similar artificial structure divides it, but a hydrologic connection is maintained between the 
divided wetlands. See, e.g., U.S. EPA and U.S. Army Corps of Engineers 2008. One example of this 
concept is a wetland that is divided by a road or railway bed. In this example, evidence of a potential 
hydrologic connection via a shallow subsurface connection could be observed if the wetland continued to 
function similarly and retain similar species on either side of the human-made structure. The wetland 
should thus be delineated as a single wetland for the purposes of assessing wetland adjacency and, if 
required under the final rule, for assessing if the wetland has a significant nexus. 

 

1. Identifying Wetlands Adjacent to Traditional Navigable Waters, the 
Territorial Seas, Interstate Waters, Impoundments, or Tributaries 

Once a feature is identified as a wetland per the agencies’ longstanding definition of that term, if 
the wetland itself is not a traditional navigable water (i.e., it is not a tidal wetland) or an interstate water, 
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the agencies assess whether it is adjacent to a traditional navigable water, the territorial seas, an interstate 
water, a jurisdictional impoundment, or a tributary. Wetlands that are not a traditional navigable water or 
an interstate water or that are not adjacent to a traditional navigable water, the territorial seas, an interstate 
water, a jurisdictional impoundment, or a tributary are assessed under paragraph (a)(5) of the final rule. A 
variety of remote tools can help to assess adjacency, including maps, high-resolution elevation data, aerial 
photographs, and high-resolution satellite imagery. For example, USGS topographic maps, elevation data, 
and NHD data (including NHDPlus) may identify a physical barrier or illustrate the location of the 
traditional navigable water, the territorial seas, the interstate water, the jurisdictional impoundment, or the 
jurisdictional tributary; the wetland’s proximity to the jurisdictional water; and the nature of topographic 
relief between the two aquatic resources. Aerial photographs or high-resolution satellite imagery may 
illustrate hydrophytic vegetation from the boundary (e.g., ordinary high water mark for non-tidal waters 
or high tide line for tidal waters) of the traditional navigable water, the territorial seas, the interstate water, 
the jurisdictional impoundment, or the jurisdictional tributary to the wetland boundary, or the presence of 
water or soil saturation. NRCS soil maps may identify the presence of hydric soil types, hydrologic soil 
groups based on the soil’s runoff potential, soil saturation, and the occurrence of a high or seasonal water 
table, which can be used to help assess potential surface or shallow subsurface hydrologic connections. 
The soils information from the Natural Resources Conservation Service Soil Survey is available for 
nearly every county in the United States. See NRCS 2017. Additionally, methods that overlay depressions 
on the landscape with hydric soils and hydrophytic vegetation can be used to identify likely wetlands and 
hydrologic connections. Other indicators of a shallow subsurface connection include slope soil 
permeability, saturated hydraulic conductivity, the presence of an aquitard (confining layer), and 
permafrost. See, e.g., Science Report at 2-34. Direct visual observations on the ground, such as noting a 
change in vegetation or evidence of hillslope springs or seeps can be indicators, as can direct 
measurements of the water table. Location with a floodplain or riparian area is also an indicator of 
shallow subsurface connection, as wetlands located within a floodplain or riparian area of a water often 
have shallow subsurface flows to that water that contribute to connectivity and function. Science Report 
at ES-9. 

NWI maps may identify that the wetlands are near the traditional navigable water, the territorial 
seas, the interstate water, the jurisdictional impoundment, or the jurisdictional tributary. Field work can 
help confirm the presence and location of the OHWM or high tide line of the traditional navigable water, 
the territorial seas, the interstate water, the jurisdictional impoundment, or the jurisdictional tributary and 
can provide additional information about the wetland’s potential adjacency to that water (e.g., by 
traversing the landscape from the traditional navigable water, the territorial seas, the interstate water, the 
jurisdictional impoundment, or the jurisdictional tributary to the wetland and examining topographic and 
geomorphic features, as well as hydrologic and biologic indicators). Wetlands adjacent to the traditional 
navigable waters, the territorial seas, or the interstate waters do not need further analysis to determine if 
they are “waters of the United States.” 

For a wetland adjacent to relatively permanent, non-navigable tributaries and relatively 
permanent impoundments of jurisdictional waters, similar remote tools and resources as those described 
above may be used to identify if the wetlands has a continuous surface connection to such waters. The 
tools and resources most useful for addressing this standard are those that reveal breaks in the surface 
connection between the wetland and the relatively permanent water, such as separations by uplands, or a 
berm, dike, or similar feature. For example, USGS topographic maps may show topographic highs 
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between the two features, or simple indices can be calculated based on topography to indicate where these 
connectivity breaks occur. FEMA flood zone or other floodplain maps may indicate constricted 
floodplains along the length of the tributary channel with physical separation of flood waters that could 
indicate a break. High-resolution elevation data can illustrate topographic highs between the two features 
that extend along the tributary channel. Aerial photographs or high-resolution satellite imagery may 
illustrate upland vegetation along the tributary channel between the two features, or bright soil signatures 
indicative of higher ground. NRCS soil maps may identify mapped linear, upland soil types along the 
tributary channel. Field work may help to confirm the presence and location of the relatively permanent, 
non-navigable tributary’s OHWM. In addition, field work may confirm whether there is a continuous 
physical connection between the wetland and the relatively permanent, non-navigable tributary, or 
identify breaks that may sever the continuous surface connection (e.g., by traversing the landscape from 
the tributary to the wetland and examining topographic and geomorphic features, as well as hydrologic 
and biologic indicators).  

For wetlands adjacent to jurisdictional tributaries or jurisdictional impoundments but that do not 
meet the relatively permanent standard, the agencies will conduct a significant nexus analysis to assess if 
the wetlands are jurisdictional. Tools to assess if the adjacent wetlands significant affect traditional 
navigable waters, the territorial seas, or interstate waters are discussed in section IV.A.v below. 

All wetlands within a wetland mosaic are ordinarily considered collectively when determining 
adjacency. The agencies have long considered wetland mosaics to be delineated as one wetland, and this 
is consistent with pre-2015 practice. Wetlands present in such systems act generally as a single ecological 
unit. A “wetland mosaic” refers to a landscape where wetland and non-wetland components are too 
numerous and closely associated to be appropriately delineated or mapped separately. These areas often 
have complex microtopography, with repeated small changes in elevation occurring over short distances. 
Barrett 1979; U.S. Army Corps of Engineers 2007c; Michigan Natural Features Inventory 2010; Liljedahl 
et al. 2012; Lara et al. 2015. Tops of ridges and hummocks are often non-wetland but are interspersed 
with wetlands having hydrophytic vegetation, hydric soils, and wetland hydrology. Low-centered 
polygonal tundra and patterned ground bogs (also called strangmoor, string bogs, or patterned ground 
fens) are an example of wetland mosaics and are considered a single water for purposes of the final rule 
because their small, intermingled wetland and non-wetland components are physically and functionally 
integrated. See, e.g., U.S. Army Corps of Engineers 2007c. Science demonstrates that these wetlands 
function as a single wetland matrix and ecological unit having clearly hydrophytic vegetation, hydric 
soils, and wetland hydrology. Corps regional wetland delineation manuals address how to address 
wetland/non-wetland mosaics, that is a landscape where wetland and non-wetland components are too 
closely associated to be easily delineated or mapped separately. U.S. Army Corps of Engineers 2007c; 
U.S. Army Corps of Engineers 2012. For example, at Klatt Bog, one of the prominent patterned ground 
bogs in Anchorage, Alaska, the plant communities (and thus the wetland and non-wetland areas) 
intersperse more than can be mapped. Hogan and Tande 1983. Ridges and hummocks are often non-
wetland but are interspersed throughout a wetland matrix having clearly hydrophytic vegetation, hydric 
soils, and wetland hydrology. Id. The agencies are continuing the longstanding practice that wetlands in 
the mosaic are not individually delineated, and that the agencies will consider the entire mosaic and 
estimate percent wetland in the mosaic. See, e.g., U.S. Army Corps of Engineers 2007c; U.S. Army Corps 
of Engineers 2012. As a result, the agencies will continue to evaluate these wetlands as a single water 
under the final rule. This applies for all aquatic resources that meet the regulatory definition of wetland, 
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including tidal wetlands that are traditional navigable waters, interstate wetlands, adjacent wetlands,and 
wetlands assessed under paragraph (a)(5) of the final rule. 

 

iv. Impoundments 

Impoundments of jurisdictional waters were not addressed in the Rapanos decision and thus were 
not directly addressed by the agencies in the Rapanos Guidance. In this rule, the paragraph (a)(2) 
impoundments55 category provides that a jurisdictional water does not lose its jurisdictional status simply 
because it is impounded. However, in a change from the 1986 regulation, waters that are determined to be 
jurisdictional under paragraph (a)(5) and that are subsequently impounded do not retain their 
jurisdictional status as “waters of the United States” by rule under this provision. Such subsequently 
impounded jurisdictional paragraph (a)(5) waters may still be determined to be jurisdictional under one of 
the other categories of “waters of the United States” under this rule (i.e., as a traditional navigable water, 
the territorial seas, an interstate water, a jurisdictional tributary, a jurisdictional adjacent wetland, or a 
paragraph (a)(5) water).  

In implementing this rule, the agencies consider paragraph (a)(2) impoundments to include 
impoundments created in “waters of United States” that were jurisdictional at the time the impoundment 
was created, as well as impoundments of waters that are currently “waters of the United States” under 
paragraph (a)(1), (a)(3), or (a)(4) of this rule. The agencies also note that an impoundment of a water that 
does not initially meet the definition of “waters of the United States” can become jurisdictional under 
another provision of the regulation; for example, an impounded water could become navigable-in-fact and 
covered under paragraph (a)(1)(i) of the final rule. In addition, under the final rule impounding a water 
can create a relatively permanent water, even if the water that is being impounded is a non-relatively 
permanent water. For purposes of implementation, relatively permanent waters include waters where 
water is standing or ponded at least seasonally.  

 Consistent with the 1986 regulations, tributaries under this rule may be tributaries to traditional 
navigable waters, the territorial seas, or interstate waters or to jurisdictional impoundments. Therefore, 
tributaries to impoundments that are jurisdictional under paragraph (a)(2), wetlands adjacent to such 
tributaries, and wetlands adjacent to paragraph (a)(2) impoundments are jurisdictional if they meet either 
the relatively permanent standard or the significant nexus standard. For tributaries to paragraph (a)(2) 
impoundments to meet the relatively permanent standard, the agencies must be able to trace evidence of a 
flowpath (e.g., physical features on the landscape, such as a channel, ditch, pipe, or swale) directly or 
indirectly through another water or waters downstream from the structure that creates the paragraph (a)(2) 
impoundment to a paragraph (a)(1) water. For wetlands adjacent to paragraph (a)(2) impoundments or to 
tributaries to paragraph (a)(2) impoundments that meet the relatively permanent standard, to determine if 
the wetlands meet the relatively permanent standard field staff would assess whether the impounded water 

 
55 Impounded waters may be jurisdictional under provisions other than the (a)(2) impoundments provision. For 
example, they may be impoundments that are traditional navigable waters and would be jurisdictional under 
paragraph (a)(1), or they may be impounded adjacent wetlands and meet the requirements to be jurisdictional under 
the paragraph (a)(4) adjacent wetlands provision. To provide clarity in the preamble of the final rule, when the 
agencies are discussing the subsection of impoundments that are jurisdictional under paragraph (a)(2) because they 
are impoundments of “waters of the United States,” they will refer to “paragraph (a)(2) impoundments.” 
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is relatively permanent, standing or continuously flowing and then determine whether the wetlands have a 
continuous surface connection to the impoundment or the tributary. See section IV.A.ii.1 and section 
IV.A.iii.1 of this document for additional information on evaluations under the relatively permanent 
standard for tributaries and adjacent wetlands. For tributaries to paragraph (a)(2) impoundments and for 
wetlands adjacent to either a paragraph (a)(2) impoundment or a tributary to a paragraph (a)(2) 
impoundment that are assessed under the significant nexus standard, the significant nexus must be to a 
paragraph (a)(1) water. See section IV.A.v for additional information on significant nexus evaluations for 
tributaries and adjacent wetlands.  

Impoundments are distinguishable from natural lakes and ponds because they are created by 
discrete structures (often human-built) like dams or levees that typically have the effect of raising the 
water surface elevation, creating or expanding the area of open water, or both. Impoundments can vary in 
size, with some being very small, like many beaver ponds, and others being very large, like Lake Mead, a 
reservoir on the Colorado River that is created by the Hoover Dam. Paragraph (a)(2) impoundments under 
this rule can include both natural impoundments (like beaver ponds) and artificial impoundments (like 
reservoirs). Paragraph (a)(2) impoundments under this rule can be located off-channel or in-line with the 
channel.  

An impoundment is jurisdictional under paragraph (a)(2) of the final rule if (1) the impounded 
water met the definition of “waters of the United States” based on the final rule’s definition when the 
impoundment was created56 (other than an impoundment of a paragraph (a)(5) water) or (2) the water that 
is being impounded is currently meets the definition of “water of the United States” under paragraph 
(a)(1), (a)(3), or (a)(4) of the final rule, regardless of the water’s jurisdictional status at the time the 
impoundment was created. This approach to implementation of impoundments is generally consistent 
with pre-2015 practice.  

The agencies can utilize a variety of tools to help identify impoundments, including many of the 
tools discussed in section IV.A.ii on identifying tributaries. In addition, as discussed in section IV.A.i, the 
Corps manages geospatial data related to reservoirs owned and operated by the Corps (see 
https://geospatial-usace.opendata.arcgis.com/) and also manages the National Inventory of Dams 
(https://nid.usace.army.mil/#/), which contains information from States and federal agencies on the 
location of over 91,000 dams across the country (U.S. Army Corps of Engineers 2020a.). In the field, 
agency staff can look for evidence that a water is being impounded (e.g., evidence of a dam or similar 
structure that would create an impoundment) and then can assess if the water meets the criteria under 
paragraph (a)(2) of the rule to be considered jurisdictional as an impoundment. Additional information 
about implementation of paragraph (a)(2) impoundments is in section IV.C.3 of the final rule preamble.  

v. Applying a Significant Nexus Standard 

Categories of waters under the final rule that require an analysis of significant effects are 
tributaries that do not meet the relatively permanent standard, wetlands adjacent to tributaries and 

 
56 Note, however, if an impoundment is a waste treatment system constructed prior to the 1972 Clean Water Act 
amendments, it is eligible for the exclusion under paragraph (b) of this rule so long as the system is in compliance 
with currently applicable Clean Water Act requirements, such as treating water such that discharges, if any, from the 
system meet the Act’s requirements. See section IV.C.7.b of the preamble. 

https://geospatial-usace.opendata.arcgis.com/
https://nid.usace.army.mil/#/
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impoundments and that do not meet the relatively permanent standard (i.e., wetlands adjacent to 
tributaries that do not meet the relatively permanent standard or to non-relatively permanent 
impoundments of jurisdictional waters and wetlands adjacent to but not directly abutting tributaries that 
meet the relatively permanent standard or to non-relatively permanent impoundments of jurisdictional 
waters ), or for waters assessed under paragraph (a)(5) that do not meet the relatively permanent standard. 

For purposes of this rule for significant nexus analyses involving tributaries and their adjacent 
wetlands, the agencies will assess the tributaries and their adjacent wetlands in a catchment, as described 
in section III.E.iii. If the tributaries in the region, including the tributary under assessment, have no 
adjacent wetlands, the agencies consider only the factors and functions of the tributaries in determining 
whether there is a significant effect on the chemical, physical, or biological integrity of downstream 
traditional navigable waters, the territorial seas, or interstate waters. If any of the tributaries in the region, 
including the tributary under assessment, have adjacent wetlands, the agencies will consider the factors 
and functions of the tributaries, including the tributary under assessment, together with the functions 
performed by the wetlands adjacent to the tributaries in the catchment, in evaluating whether a significant 
nexus is present. Tools relevant to implementing “similarly situated” and “in the region” relevant to 
tributaries and their adjacent wetlands is discussed in section IV.B. As discussed in the preamble and in 
section III.E.i, the agencies generally intend to analyze such waters individually to determine if they 
significantly affect the chemical, physical, or biological integrity of traditional navigable waters, the 
territorial seas, or interstate waters. 

In conducting a significant nexus analysis under the final rule, the agencies will evaluate 
available hydrologic information (e.g., gage data, precipitation records, flood predictions, historic records 
of water flow, statistical data, personal observations/records, etc.) and physical indicators of flow 
including the presence and characteristics of a reliable OHWM. To understand the chemical, physical, 
and biological functions provided by tributaries and their adjacent wetlands or by waters evaluated under 
paragraph (a)(5), and the effects those functions have on traditional navigable waters, the territorial seas, 
or interstate waters, it is important to use relevant geographic water quality data in conjunction with site-
specific data from field sampling and hydrologic modeling.  

The agencies have used many tools and sources of information to assess significant effects on the 
chemical, physical, and biological integrity of downstream traditional navigable waters, the territorial 
seas, or interstate waters. Some tools and resources that the agencies have used to provide and evaluate 
evidence of a significant effect on the physical integrity of traditional navigable waters, the territorial 
seas, or interstate waters include USGS stream gage data, floodplain maps, statistical analyses, hydrologic 
models and modeling tools such as USGS’s StreamStats (see USGS 2019) or the Corps’ Hydrologic 
Engineering Centers River System Analysis System (HEC-RAS) (see U.S. Army Corps of Engineers a), 
physical indicators of flow such as the presence and characteristics of a reliable OHWM with a channel 
defined by bed and banks, or other physical indicators of flow including such characteristics as shelving, 
wracking, water staining, sediment sorting, and scour, information from NRCS soil surveys, precipitation 
and rainfall data, and NRCS SNOTEL data or NOAA national snow analyses maps.  

To evaluate the evidence of a significant effect on the biological integrity of traditional navigable 
waters, the territorial seas, or interstate waters, the agencies and practitioners have used tools and 
resources such as: population survey data and reports from federal, Tribal, State, Territorial, and local 



Page 264 of 564 

resource agencies, natural history museum collections databases, bioassessment program databases, fish 
passage inventories, U.S. FWS and NOAA Critical Habitat layers (U.S. FWS b; NOAA 2022a), species 
distribution models, and scientific literature and references from studies pertinent to the distribution and 
natural history of the species under consideration. 

Tools and resources that provide and evaluate evidence of a significant effect on the chemical 
integrity of traditional navigable waters, the territorial seas, or interstate waters include data from USGS 
water quality monitoring stations; state, tribal, and local water quality reports; water quality monitoring 
and assessment databases; EPA’s How’s My Waterway, which identifies Clean Water Act section 303(d) 
listed waters, water quality impairments, and TMDLs (available at https://www.epa.gov/waterdata/hows-
my-waterway); watershed studies; stormwater runoff data or models; EPA’s NEPAssist, which provides 
locations and information on wastewater discharge facilities and hazardous-waste sites (available at 
https://www.epa.gov/nepa/nepassist); the National Land Cover Database (NLCD), which provides 
nationally consistent information on land cover classifications (available at 
https://www.usgs.gov/centers/eros/science/national-land-cover-database); and scientific literature and 
references from studies pertinent to the parameters being reviewed. As discussed in section IV.A.i.2, 
EPA’s HAWQS model can be used to assess the cumulative effects of wetlands on the larger downstream 
waters into which they drain. Additional approaches to quantifying the hydrologic storage capacity of 
wetlands include statistical models, such as pairing LIDAR-based topography with precipitation totals 
(e.g., Lane and D’Amico 2010; Shook et al. 2013; Wu and Lane 2016). Both statistical and process-based 
models have been used to quantify the nutrient removal capacities of non-floodplain wetlands (e.g., 
Cheng et al. 2020), and in some cases to assess the effects of non-floodplain wetland nutrient removal, 
retention, or transformation on downstream water quality (e.g., Evenson et al. 2021). Evaluations of a 
significant effect on the chemical integrity of a traditional navigable water, the territorial seas, or an 
interstate water may include qualitative reviews of available information or incorporate quantitative 
analysis components including predictive transport modeling.  

A variety of modeling approaches can be used to quantify the connectivity and cumulative effects 
of wetlands, including non-floodplain wetlands, on downstream waters, as discussed in section IV.A.i.2. 
Some examples include SWAT (available at https://swat.tamu.edu/), the Hydrologic Simulation Program 
in Fortran (available at https://www.epa.gov/ceam/hydrological-simulation-program-fortran-hspf), and 
DRAINWAT available at (https://www.bae.ncsu.edu/agricultural-water-management/drainmod/). Other 
examples of models applicable to identifying effects of wetlands on downstream waters include 
MODFLOW (available at https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-
related-programs?qt-science_center_objects=0#qt-science_center_objects) and VS2DI (available at 
https://www.usgs.gov/software/vs2di-version-13), as well as the hydrologic models discussed in section 
IV.A.i.2. 

 When assessing whether a water significantly affects traditional navigable waters, the territorial 
seas, or interstate waters, the significant nexus analysis can consider whether surface or shallow 
subsurface connections contribute to the type and strength of functions provided by a water either alone or 
with similarly situated waters. The SAB (2014b) has noted the importance of shallow subsurface 
connections and stated, “[t]he available science…shows that groundwater connections, particularly via 
shallow flow paths in unconfined aquifers, can be critical in support the hydrology and biogeochemical 
functions of wetlands and other waters.” However, neither shallow subsurface connections nor any type 

https://www.epa.gov/waterdata/hows-my-waterway
https://www.epa.gov/waterdata/hows-my-waterway
https://www.epa.gov/nepa/nepassist
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://swat.tamu.edu/
https://www.epa.gov/ceam/hydrological-simulation-program-fortran-hspf
https://www.bae.ncsu.edu/agricultural-water-management/drainmod/
https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/mission-areas/water-resources/science/modflow-and-related-programs?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/software/vs2di-version-13
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of groundwater, shallow or deep, are themselves “waters of the United States.”  

 

B. Case Specific Significant Nexus Analysis 

i. Similarly Situated 

As discussed in the preamble for the final rule and in section III.E.ii of this document, the 
agencies are taking an approach to which waters are “similarly situated” that is comparable to the 
Rapanos Guidance for tributaries and their adjacent wetlands. Like pre-2015 practice, the agencies 
consider tributaries and their adjacent wetlands to be “similarly situated” waters. The Rapanos Guidance 
also interpreted “similarly situated” to mean a tributary and its adjacent wetlands.  

The agencies note that the best available science supports evaluating the connectivity and effects 
of streams, wetlands, and open waters to downstream waters in a cumulative manner in context with other 
streams, wetlands, and open waters. Science Report at ES-5 to ES-6, ES-13 to ES-14, 6-10 to 6-12. 

Many of the tools described in section IV.B.ii below for delineating the catchment (i.e., “the 
region”) can also be used for helping to determine which tributaries should be considered as similarly 
situated. Such tools, when coupled with aerial photography, NWI maps, NHD, and other sources or 
methods for identifying adjacent wetlands (as discussed in section IV.A.iii.1), can also be used for 
identifying which adjacent wetlands should be considered as similarly situated. 

In implementing the significant nexus standard for waters assessed under paragraph (a)(5) of the 
final rule, the agencies generally intend to analyze such waters individually to determine if they 
significantly affect the chemical, physical, or biological integrity of traditional navigable waters, the 
territorial seas, or interstate waters. This approach reflects the agencies’ consideration of public 
comments, as well as implementation considerations for waters assessed under paragraph (a)(5). While 
the agencies’ regulations have long authorized the assertion of jurisdiction on a case-specific basis over 
waters that do not fall within the jurisdictional provisions by water type, since SWANCC and the issuance 
of the SWANCC guidance with its requirement of headquarters approval over determinations under that 
provision, the agencies have not in practice asserted jurisdiction over paragraph (a)(3) “other waters” 
under the pre-2015 regulatory regime. The agencies addressed such waters individually on a case-specific 
basis under pre-2015 practice and have concluded at this time that individual assessments are practical 
and implementable for significant nexus determinations for waters assess under paragraph (a)(5). See also 
section III.E.ii.  

 

ii. In the Region 

In the final rule for tributaries and their adjacent wetlands, the agencies consider similarly 
situated waters to be “in the region” when they lie within the catchment area of the tributary of interest. 
Accordingly, in implementing the significant nexus standard under this rule, all tributaries and adjacent 
wetlands within the catchment area of the tributary of interest will be analyzed as part of the significant 
nexus analysis. For purposes of a significant nexus analysis for tributaries and adjacent wetlands, the 



Page 266 of 564 

agencies will identify the “region” as the catchment that drains to and includes the tributary of interest. 
Catchments will be delineated from the downstream-most point of the tributary reach of interest and 
include the land uphill that drains to that point. For example, if the tributary of interest is a second order 
stream, the catchment would be delineated from the point that the second order stream enters a third order 
stream (including at the point where the second order stream confluences with another second order 
stream). This is a change from implementation under the Rapanos Guidance, which relied on a concept of 
a relevant “reach” of a tributary—defined as the entire reach of the stream that is of the same order (i.e., 
from the point of confluence, where two lower order streams meet to form the tributary, downstream to 
the point such tributary enters a higher order stream). Rapanos Guidance at 10.  

Because waters assessed under paragraph (a)(5) of the final rule will generally be evaluated 
individually for their effects on traditional navigable waters, the territorial seas, or interstate waters, the 
agencies have not established what would be considered “in the region” for this such waters, as it is not 
needed to implement the final rule, as such waters will generally be considered on an individually basis. 
See also section III.E.iii. 

The agencies sought comment on a range of approaches for determining the “region” in which 
similarly situated waters lie. One such option was for a watershed to be delineated from the downstream-
most point of the “relevant reach”—that is, the region would be the watershed that drains to and includes 
the relevant reach in question. This is the option that the agencies have chosen to implement in this final 
rule as discussed above, informed by their experience, the best available science, Supreme Court 
decisions, and public comments. Note that “catchment” as used in the final rule is the watershed that 
drains to the downstream-most point of the tributary of interest.  

Many existing spatial analysis tools based on watershed frameworks and elevation models can be 
used to delineate catchments quickly and reliably in most parts of the country. USGS topographic maps 
can be manually interpreted to delineate catchments based on the location of the outlet point (the 
downstream-most point of the tributary of interest where the tributary enters a higher order stream), using 
calculations informed by topographic contours, the alignment of topographic high spots, and grouping of 
lower, valley bottoms. Various GIS tools, web applications, and automated modeling systems can also 
delineate catchments based on one of the more of the many factors that can influence drainage, including 
surface topography, climate, land use, the presence of hydrologic sinks, topology of sewer systems, and 
design of wastewater treatment plant (WWTP) service areas. For example, NHDPlus provides delineated 
catchments for individual stream segments, by linking the mapped stream network to the landscape. U.S. 
EPA 2022a. The WATERS GeoViewer, available at https://www.epa.gov/waterdata/waters-geoviewer, 
utilizes NHDPlus to provide interactive watershed delineation. U.S. EPA 2022n. This is also available 
through WATERS as an API service (available at 
https://watersgeo.epa.gov/openapi/waters/#/Delineation). StreamStats by the USGS (available at 
https://streamstats.usgs.gov/ss/) is a map-based web tool that can delineate drainage areas for streams and 
estimate flow characteristics for selected sites, based on stream gage data, basin characteristics, climate, 
and other factors. USGS has also developed the NHD Watershed Tool (available at 
https://www.usgs.gov/national-hydrography/nhd-watershed-tool) that allows users to delineate a 
watershed from any point on any NHD reach in a fast, accurate, and reliable manner. EPA’s EnviroAtlas 
Interactive Map (available at https://www.epa.gov/enviroatlas/enviroatlas-interactive-map) has a wide 
variety of tools that can help delineate catchments, including a tool that illustrates how precipitation will 

https://www.epa.gov/waterdata/waters-geoviewer
https://watersgeo.epa.gov/openapi/waters/#/Delineation
https://streamstats.usgs.gov/ss/
https://www.usgs.gov/national-hydrography/nhd-watershed-tool
https://www.epa.gov/enviroatlas/enviroatlas-interactive-map
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flow over the land surface, mapped elevation profiles for selected tributaries, and designations of 
upstream and downstream watersheds within a stream network. 
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Appendix A: Glossary 

Most of the terms in this glossary are derived directly from EPA’s 2015 report Connectivity of Streams 
and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence (hereafter the 
Science Report). Some terms are denoted by Clean Water Act, Final Rule, 2020 NWPR, or Science 
Report to indicate if they are being defined in the context of the Clean Water Act (including under the 
agencies’ longstanding regulations and the final rule defining “waters of the United States”), the final 
rule, the 2020 Navigable Waters Protection Rule (2020 NWPR), or the Science Report, respectively.  

Allochthonous: Describing organic material that originates from outside of streams, rivers, wetlands, or 
lakes (e.g., terrestrial plant litter, soil).  

Alluvial Aquifer: An aquifer with geologic materials deposited by a stream or river (alluvium) that 
retains a hydraulic connection with the depositing stream.  

Alluvial Deposits: See Alluvium.  

Alluvium: Deposits of clay, silt, sand, gravel, or other particulate materials that have been deposited by a 
stream or other body of running water in a streambed, on a flood plain, on a delta, or at the base of a 
mountain. See Colluvium.  

Aquatic Ecosystem: Any aquatic environment, including all of the environment’s living and nonliving 
constituents and the interactions among them.  

Aquifer: A geologic formation (e.g., soil, rock, alluvium) with permeable materials partially or fully 
saturated with ground water that yields ground water to a well, spring, or stream. 

Autochthonous: Describing organic matter that originates from production within streams, rivers, 
wetlands, or lakes (e.g., periphyton, macrophytes, phytoplankton). 

Bank Storage: Storage of water that flows from a stream to an alluvial aquifer during a flood or period of 
high streamflow. The volume of water is stored and released after the high-water event over days to 
months. The volume of water stored and the timing of release depends on the hydraulic properties of the 
alluvial aquifer.  

Baseflow: Sustained flow of a stream (or river) in the absence of stormflow (direct runoff). Natural 
baseflow is sustained by ground-water discharge in the stream network. Baseflow also can be sustained 
by human sources (e.g., irrigation recharges to ground water). 

Carolina Bays: Elliptical, ponded, depressional wetlands that range along the Atlantic Coastal Plain from 
northern Florida to New Jersey. See Delmarva Bays.  

Catadromous: Species that breed in the ocean and spend most of their lives in freshwater. 

Catchment: The area drained by a stream, river, or other water body; typically defined by the 
topographic divides between one water body and another. Synonymous with Watershed and Drainage 
Basin.  
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Channel: A natural or constructed passageway or depression of perceptible linear extent that conveys 
water and associated material downgradient.  

Channelization: A type of artificial drainage in which complex channels are straightened to increase the 
rate of water flow from an area.  

Channelized Flow: Flow that occurs in a natural or artificial channel.  

Colluvium: A layer of unconsolidated soils, sediment and rock fragments deposited by surface runoff and 
gravitational processes; colluvium generally occurs as a blanket of poorly sorted sediment and rock 
fragments on the lower parts of hillslopes underlain by bedrock. See Alluvium.  

Condition: General health or quality of an ecosystem, typically assessed using one or more indicators.  

Confined Aquifer: An aquifer bounded above and below by confining units of distinctly lower 
permeability than that of the aquifer itself.  

Confluence: The point at which two stream channels intersect to form a single channel.  

Connectivity: The degree to which components of a river system are joined, or connected, by various 
transport mechanisms; connectivity is determined by the characteristics of both the physical landscape 
and the biota of the specific system. 

Connectivity Descriptors (for streams and wetlands): The frequency, duration, magnitude, timing, and 
rate of change of fluxes to and biological exchanges with downstream waters.  

Contributing Area: Location within a watershed/river network that serves as a source of stream flow or 
material flux.  

Contaminants: Any material that might be harmful to humans or other organisms when released to the 
environment.  

Deep Ground Water: Ground-water flow systems having the deepest and longest flowpaths; also 
referred to as regional ground-water flow systems, they can occur beneath local and intermediate ground-
water flow systems. See Local Ground Water, Regional Ground Water.  

Delmarva Bays: Carolina bays that are geographically specific to the Delmarva Peninsula. These 
wetlands frequently have the same elliptical shape and orientation as Carolina bays. See Carolina Bays.  

Dendritic Stream Network: A stream network pattern of branching tributaries (see Figure 2-19B).  

Depressional Wetland: A wetland occupying a topographic low point that allows the accumulation of 
surface water. Depressional wetlands can have any combination of inlets and outlets or lack them 
completely. Examples include kettles, prairie potholes, and Carolina bays. This category also includes 
slope wetlands (wetlands associated with surface discharge of ground water or saturated overflow with no 
channel formation).  

Diadromous: Migratory between fresh and salt waters.  



Page 272 of 564 

Direct Runoff: Runoff that occurs in direct response to precipitation. See Stormflow.  

Discharge (Science Report): The volume of water (surface water or ground water) that passes a given 
location over a given period of time; the rate of runoff. Often expressed as cubic feet per second (ft3 s−1) 
or cubic meters per second (m3 s−1).  

Discharge (Clean Water Act): The term “discharge” when used without qualification includes a 
discharge of a pollutant, and a discharge of pollutants. Clean Water Act section 502(16). 

Discharge of a pollutant (Clean Water Act): The term “discharge of a pollutant” and the term 
“discharge of pollutants” each means (A) any addition of any pollutant to navigable waters from any point 
source, (B) any addition of any pollutant to the waters of the contiguous zone or the ocean from any point 
source other than a vessel or other floating craft. Clean Water Act section 502(12). 

Discontinuous Flow: Refers to stream and river reaches that have flow in one part of the reach but not 
another part of the reach. See Reach.  

Dispersal: Movement from natal breeding sites to new breeding sites.  

Drainage Area: The spatial extent of a drainage basin. Typically expressed in square miles (mi2) or 
square kilometers (km2).  

Drainage Basin: The area drained by a stream, river, or other water body; typically defined by the 
topographic divides between one water body and another. Synonymous with Catchment and Watershed.  

Drainage Density: The total length of stream channels per unit drainage area (e.g., per mi2 or km2).  

Drainage Network: See River Network.  

Egg Bank: Viable dormant eggs that accumulate in soil or in sediments under water. See Seed bank.  

Endorheic Basins: A closed drainage basin with no outflows to other water bodies. 

Endorheic Stream: A stream or river reach that experiences a net loss of water to a ground-water system. 
See Losing Stream or Wetland.  

Ephemeral (NWPR): The term ephemeral means surface water flowing or pooling only in direct 
response to precipitation (e.g., rain or snow fall). 85 FR 22338; 33 CFR 328.3(c)(3) (2021). 

Ephemeral Stream (Science Report): A stream or river that flows briefly in direct response to 
precipitation; these channels are always above the water table.  

Eutrophication: Natural or artificial enrichment of a water body by nutrients, typically phosphates and 
nitrates. If enrichment leads to impairment (e.g., toxic algal blooms), eutrophication is a form of 
pollution.  

Evapotranspiration: The combined loss of water to the atmosphere due to evaporation and transpiration 
losses. Transpiration is the loss of water vapor to air by plants.  
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Fen: A peat-accumulating wetland characterized by mineral-rich water inputs.  

Flood: The occurrence of stream or river flow of such magnitude that it overtops the natural or artificial 
banks in a reach of the stream or river; where a floodplain exists, a flood is any flow that spreads over or 
inundates the floodplain. Floods also can result from rising stages in lakes and other water bodies.  

Flood (100-year): Flood level (stage or discharge) with a 1% probability of being equaled or exceeded in 
a given year.  

Flood Flows: Discharge or flow of sufficient (or greater) magnitude to cause a flood.  

Flood Recurrence Interval: The average number of years between floods of a certain size is the 
recurrence interval or return period. The actual number of years between floods of any given size varies a 
lot because of the naturally changing climate. USGS. 

Flood Stage: The stage at which streams or rivers overtop their natural or artificial banks.  

Floodwater: Water associated with a flood event.  

Floodplain: A level area bordering a stream or river channel that was built by sediment deposition from 
the stream or river under present climatic conditions and is inundated during moderate to high flow 
events. Floodplains formed under historic or prehistoric climatic conditions can be abandoned by rivers 
and form terraces.  

Floodplain Wetland: Portions of floodplains that meet the Cowardin et al. (1979) three-attribute 
definition of a wetland (i.e., having wetland hydrology, hydrophytic vegetation, or hydric soils). See 
Wetland.  

Flow: Water movement above ground or below ground.  

Flow Duration Class: A classification that assigns streamflow duration to ephemeral, intermittent, or 
perennial classes.  

Flow Regime: Descriptor of flow types in a temporal or magnitude sense (i.e., slow-flow regime, low-
flow regime)  

Flowpath: See Hydrologic Flowpath. 

Fluvial: Refers to or pertains to streams; e.g., stream processes (fluvial processes), fluvial landforms, 
such as fluvial islands and bars, and biota living in and near stream channels.  

Flux: Flow of materials between system components per unit time.  

Gaining Stream or Wetland: A wetland or a stream or river reach that experiences a net gain of water 
from ground water (see Figure 2-5). In this situation, the water table elevation near the stream or wetland 
is higher than the stream or wetland water surface. Conditions conducive to losing or gaining streams and 
wetlands can change over short distances within river networks and river basins. See Losing Stream or 
Wetland.  
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Geographically Isolated Wetland: A wetland that is completely surrounded by uplands; for example, 
hydrophytic plant communities surrounded by terrestrial plant communities or undrained hydric soils 
surrounded by nonhydric soils. This term often is mistakenly understood to mean hydrologically isolated. 
Geographically isolated wetlands vary in their degree of hydrologic and biotic connectivity.  

Ground Water: Any water that occurs and flows in the saturated zone. See Saturated Zone.  

Ground-water Discharge: The flow of ground water to surface waters; discharge areas occur where the 
water tables intersect land surfaces. See Seep, Spring.  

Ground-water Discharge Wetland: A wetland that receives ground-water discharge.  

Ground-water Flow: Flow of water in the subsurface saturated zone.  

Ground-water Recharge: The process by which ground water is replenished; a recharge area occurs 
where precipitation or surface water infiltrates and is transmitted downward to the saturated zone 
(aquifer). See Infiltration, Percolation, Transmission.  

Ground-water Recharge Wetland: A wetland that recharges ground water.  

Ground-water System: Reference to the ground water and geologic materials comprising the saturated 
zone; the ground-water system, as a whole, is a three-dimensional flow field.  

Ground water–Surface water Interactions: Movement of water between surface-water bodies and 
ground-water systems. Flows can occur in either direction.  

Ground-water Withdrawal: Pumping of water from aquifers for human uses.  

Habitat: Environment (place and conditions) in which organisms reside.  

Headwater: Areas from which water originates within a river or stream network. This term typically 
refers to stream channels but can also describe wetlands or open waters, such as ponds. 

Headwater Stream: Headwater streams are first- to third-order streams. Headwater streams can be 
ephemeral, intermittent, or perennial. See Stream Order, Flow Duration Class.  

Hillslope: A sloping segment of land surface.  

Hydraulic Conductivity: A measure of the permeability of a porous medium. For a given hydraulic 
gradient, water moves more rapidly through media with high hydraulic conductivity than low hydraulic 
conductivity.  

Hydraulic Gradient: Slope of the water table. See Water Table.  

Hydraulic Head: The height above a standard datum of the surface of a column of water that can be 
supported by the static pressure at a given point; for a well, the hydraulic head is the height of the water 
level in the well compared to a datum elevation.  

Hydraulics: The physics of water in its liquid state.  
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Hydric: An area, environment, or habitat that is generally very wet with plenty of moisture.  

Hydrograph: A graph of stream or river discharge over time. Stage or water table elevation also can be 
plotted.  

Hydrologic Event: An increase in streamflow resulting from precipitation or snowmelt.  

Hydrologic Flowpath: The pathway that water follows as it moves over the watershed surface or through 
the subsurface environment.  

Hydrology: The study of the properties, distribution, and effects of water as a liquid, solid, and gas on 
Earth’s surface, in the soils and underlying rocks, and in the atmosphere.  

Hydrologic Landscape: A landscape with a combination of geology, soils, topography, and climate that 
has characteristic influences on surface water and ground water.  

Hydrologic Permanence: The frequency and duration of streamflow in channels or the frequency and 
duration of standing water in wetlands.  

Hyporheic Flow: Water from a stream or river channel that enters subsurface materials of the streambed 
and bank and then returns to the stream or river.  

Hyporheic Exchange: Water and solutes exchanged between a surface channel and the shallow 
subsurface. See Hyporheic Flow.  

Hyporheic Zone: The area adjacent to and beneath a stream or river in which hyporheic flow occurs. The 
dimensions of the hyporheic zone are controlled by the distribution and characteristics of alluvium and 
hydraulic gradients between streams and local ground water. 

Hypoxia: The condition in which dissolved oxygen is below the level necessary to sustain most animal 
life. See Anoxic Conditions.  

Infiltration: The downward entry of water from the land surface into the subsurface.  

Intermittent (2020 NWPR): The term intermittent means surface water flowing continuously during 
certain times of the year and more than in direct response to precipitation (e.g., seasonally when the 
groundwater table is elevated or when snowpack melts). 

Intermittent (Science Report): This term also can be applied to other surface-water bodies and ground-
water flow or level. See Intermittent Stream.  

Intermittent Stream: A stream or portion of a stream that flows continuously only at certain times of 
year; for example, when it receives water from a spring, ground-water source, or a surface source such as 
melting snow. At low flow, dry segments alternating with flowing segments can be present.  

Inundation: To cover dry land with floodwaters.  

Isolation: Condition defined by reduced or nonexistent transport mechanisms between system 
components.  
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Lag Function: Any function within a stream or wetland that provides temporary storage and subsequent 
release of materials without affecting cumulative flux (exports = imports); delivery is delayed and can be 
prolonged.  

Lateral Source Stream: A first-order stream that flows into a higher order stream.  

Lentic: Of, relating to, or living in still water. See Lotic.  

Levee (Artificial): An engineered structure built next to a stream or river from various materials to 
prevent flooding of surrounding areas. The levee raises the elevation of the channel height to convey 
greater discharge of water without flooding.  

Levee (Natural): A broad, low ridge or embankment of coarse silt and sand that is deposited by a stream 
on its floodplain and along either bank of its channel. Natural levees are formed by reduced velocity of 
flood flows as they spill onto floodplain surfaces and can no longer transport the coarse fraction of the 
suspended sediment load.  

Local Ground Water: Ground water with a local flow system. Water that recharges at a high point in the 
water table that discharges to a nearby lowland. Local ground-water flow is the most dynamic and 
shallowest of ground-water flow systems. Therefore, it has the greatest interchange with surface water. 
Local flow systems can be underlain by intermediate and regional flow systems. Water in these deeper   
flow systems have longer flowpaths and longer contact time with subsurface materials. Deeper flow 
systems also eventually discharge to surface waters and influence their condition.  

Losing Stream or Wetland: A stream, wetland, or river reach that experiences a net loss of water to a 
ground-water system (see Figure 2-5 of the Science Report). In this situation, the water table elevation 
near the stream or wetland is lower than the stream or wetland water surface. Conditions conducive to 
losing or gaining streams and wetlands can change over short distances within river networks and river 
basins. See Gaining Stream or Wetland.  

Lotic: Of, relating to, or living in moving water. See Lentic.  

Mainstem: Term used to distinguish the larger (in terms of discharge) of two intersecting channels in a 
river network.  

Materials: Any physical, chemical, or biological entity, including but not limited to water, heat energy, 
sediment, wood, organic matter, nutrients, chemical contaminants, and organisms.  

Meltwater: Liquid water that results from the melting of snow, snowpacks, ice, or glaciers.  

Migration: Long-distance movements undertaken by organisms on a seasonal basis.  

Non-floodplain Wetland: An area outside of the floodplain that meets the Cowardin et al. (1979) three-
attribute definition of a wetland (i.e., having wetland hydrology, hydrophytic vegetation, or hydric soils). 
For the purposes of this report, riparian wetlands that occur outside of the floodplain are not included as 
non-floodplain wetlands, since these wetlands are subject to bidirectional, lateral hydrologic flows. See 
Floodplain, Wetland.  
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Nutrients (In Aquatic Systems): Elemental forms of nitrogen, phosphorus, and trace elements, including 
sulfur, potassium, calcium, and magnesium, that are essential for the growth of organisms but can be 
contaminants when present in high concentrations.  

Nutrient Spiraling: Longitudinal cycles (“spirals”) of nutrient uptake and release along the stream or 
river continuum. The spirals are created as aquatic organisms consume, transform, and regenerate 
nutrients, altering the rates of nutrient transport to downstream waters.  

Open-channel Flow: Water flowing within natural or artificial channels.  

Open Waters: Nontidal lentic water bodies such as lakes and oxbow lakes that are frequently small or 
shallow.  

Overbank Flow: Streamflow that overtops a stream or river channel.  

Overland Flow: The portion of streamflow derived from net precipitation that fails to infiltrate the land 
surface at any point and runs over the surface to the nearest stream channel. 

Oxbow Lakes: Water bodies that originate from the cutoff meanders of rivers; such lakes are common in 
floodplains of large rivers.  

Peatland: A wetland that accumulates partially decayed organic matter. Fens and bogs are common 
examples.  

Perched Ground Water: Unconfined ground water separated from an underlying body of ground water 
by an unsaturated zone; perched ground water is supported by a perching layer (bed) for which the 
permeability is so low that water percolating downward to the underlying unsaturated zone is restricted.  

Percolation: The downward movement of water through soil or rock formations.  

Perennial (2020 NWPR): The term perennial means surface water flowing continuously year-round. 

Perennial (Science Report): See Perennial Stream. This term can be applied to other surface-water 
bodies and to ground-water flow or level.  

Perennial Stream: A stream or portion of a stream that flows year-round and is maintained by local, 
intermediate, or regional ground-water discharge or flow from higher in the river network.  

Permanent Waters: Water bodies that contain water year-round; perennial waters.  

Permeability: Property of a porous medium that enables it to transmit fluids under a hydraulic gradient. 
For a given hydraulic gradient, water will move more rapidly through high permeability materials than 
low permeability materials.  

Potential Evapotranspiration: The amount of water that would be lost to the atmosphere over a given 
area through evaporation and transpiration, assuming no limits on the water supply. See 
Evapotranspiration.  
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Prairie Potholes: Complex of glacially formed wetlands, usually lacking natural outlets, found in the 
central United States and Canada.  

Precipitation: Water that condenses in the atmosphere and falls to a land surface. Common types include 
rain, snow, hail, and sleet.  

Precipitation Intensity: The rate at which precipitation occurs; generally refers to rainfall intensity.  

Primary Production: The fixation of inorganic carbon into organic carbon (e.g., plant and algae 
biomass) through the process of photosynthesis. Primary production is the first level of the food web, and 
provides most of the autochthonous carbon produced in ecosystems. The rate of fixation is referred to as 
gross primary productivity (GPP) or net primary productivity (NPP), where NPP is equal to GPP minus 
respiration. See Respiration, Secondary Production.  

Propagule: Any part of an organism that can give rise to a new individual organism. Seeds, eggs, and 
spores are propagules.  

Reach (Science Report): A length of stream channel with relatively uniform discharge, depth, area, and 
slope.  

Recession [of Flow]: Decrease in flow following a hydrologic event.  

Recharge Area: An area in which water infiltrates the surface and reaches the zone of saturation.  

Refuge Function: The protective function of a stream or wetland that allows an organism (or material) to 
avoid mortality (or loss) in a nearby sink area, thereby preventing the net decrease in material flux that 
otherwise would have occurred (exports = imports). This term typically refers to organisms but can be 
used for nonliving materials. See Sink Function.  

Regional Ground Water: Ground water with a deep, regional-scale flow system; also referred to as deep 
ground water. These flow systems can occur beneath local and intermediate ground-water flow systems. 
See Local Ground Water, Deep Ground Water.  

Respiration: The chemical process by which organisms break down organic matter and produce energy 
for growth, movement, and other biological processes. Aerobic respiration uses oxygen and produces 
carbon dioxide.  

Return Flow: Water that infiltrates into a land surface and moves to the saturated zone and then returns 
to the land surface (or displaces water that returns to the soil surface).  

Riparian Areas: Transition areas or zones between terrestrial and aquatic ecosystems that are 
distinguished by gradients in biophysical conditions, ecological processes, and organisms. They are areas 
through which surface hydrology and subsurface hydrology connect water bodies with their uplands. 
They include those portions of terrestrial ecosystems that significantly influence exchanges of energy and 
matter with aquatic ecosystems. Riparian areas are adjacent to perennial, intermittent, and ephemeral 
streams, lakes, and estuarine-marine shorelines. See Upland.  
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Riparian Wetland: Portions of riparian areas that meet the Cowardin et al. (1979) three-attribute 
definition of a wetland (i.e., having wetland hydrology, hydrophytic vegetation, hydric soils). See 
Wetland.  

River: A relatively large volume of flowing water within a visible channel, including subsurface water 
moving in the same direction as the surface water, and lateral flows exchanged with associated floodplain 
and riparian areas. See Stream.  

River Network: A hierarchical, interconnected population of channels or swales that drain water to a 
river. Flow through these channels can be perennial, intermittent, or ephemeral. 

River Network Expansion/Contraction: The extent of flowing water in a river network increases during 
wet seasons and large precipitation events and decreases during dry periods. See Variable Source Area.  

River System: A river and its entire drainage basin, including its river network, associated riparian areas, 
floodplains, alluvial aquifers, regional aquifers, connected water bodies, geographically isolated water, 
and terrestrial ecosystems.  

Runoff: The part of precipitation, snowmelt, or other flow contributions (e.g., irrigation water) that 
appears in surface streams at the outlet of a drainage basin; it can originate from both above land surface 
(e.g., overland flow) and below land surface sources (e.g., ground water). Units of runoff are depth of 
water (similar to precipitation units, e.g., mm). This measurement is the depth of water if it were spread 
across the entire drainage basin. Can also be expressed as a volume of water (i.e., m3, feet3, acre-ft).  

Saturated Zone: The zone below the land surface where the voids in soil and geologic material are 
completely filled with water. Water in the saturated zone is referred to as ground water. The upper surface 
of the saturated zone is referred to as the water table. See Ground Water, Unsaturated Zone, Water Table.  

Saturation Overland Flow: Water that falls onto a saturated land surface and moves overland to the 
nearest stream or river.  

Seasonality: Refers to the seasonal distribution of water surplus of a river system. See Water Surplus.  

Secondary Production: The generation of biomass of consumer organisms that feed on organic material 
from primary producers (algae, microbes, aquatic and terrestrial plants), and biomass of predators that 
feed on consumer organisms. See Primary Production.  

Seed Bank: Viable dormant seeds that accumulate in soil or in sediments under water. See Egg bank.  

Seep: A small area where water slowly flows from the subsurface to the surface. A seep can also refer to 
a wetland formed by a seep; such a wetland is referred to as a ground-water slope wetland.  

Seepage: Water that flows from a seep.  

Shallow Ground Water: Ground water with shallow hydrologic flowpaths. See Local Ground Water.  

Significantly Affect (Final Rule Paragraph (c)(6)): Significantly affect means a material influence on 
the chemical, physical, or biological integrity of waters identified in paragraph (a)(1) of this section. To 
determine whether waters, either alone or in combination with similarly situated waters in the region, 
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have a material influence on the chemical, physical, or biological integrity of waters identified in 
paragraph (a)(1) of this section, the functions identified in paragraph (c)(6)(i) below will be assessed and 
the factors identified in paragraph (c)(6)(ii) below will be considered: 

(i) Functions to be assessed: 
(A) Contribution of flow; 
(B) Trapping, transformation, filtering, and transport of materials (including nutrients, 
sediment, and other pollutants); 
(C) Retention and attenuation of floodwaters and runoff; 
(D) Modulation of temperature in waters identified in paragraph (a)(1) of this section; or 
(E) Provision of habitat and food resources for aquatic species located in waters 
identified in paragraph (a)(1) of this section; 

(ii) Factors to be considered:  
(A) The distance from a water identified in paragraph (a)(1) of this section;  
(B) Hydrologic factors, such as the frequency, duration, magnitude, timing, and rate of 
hydrologic connections, including shallow subsurface flow;  
(C) The size, density, or number of waters that have been determined to be similarly 
situated;  
(D) Landscape position and geomorphology; and  
(E) Climatological variables such as temperature, rainfall, and snowpack. 

Sink Function: Any function within a stream or wetland that causes a net decrease in material flux 
(imports exceed exports).  

Snowpack (Science Report): Accumulation of snow during the winter season; an important source of 
water for streams and rivers in the western United States.  

Snowmelt: The complete or partial melting and release of liquid water from seasonal snowpacks.  

Solute: A substance that is dissolved in water. 

Source Area: The originating location of water or other materials that move through a river system.  

Source Function: Any function within a stream or wetland that causes a net increase in material flux 
(exports exceed imports).  

Spillage: Overflow of water from a depressional wetland to a swale or channel.  

Spring: A surface-water body formed when the side of a hill, a valley bottom, or other excavation 
intersects a flowing body of ground water at or below the local water table.  

Stable Isotope Tracer: Certain elements such as oxygen, hydrogen, carbon, and nitrogen have multiple 
isotopes that occur in nature that do not undergo radioactive decay. These isotopes can be used to track 
the source and movement of water and other substances.  

Stage: The elevation of the top of a water surface.  
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Stream: A relatively small volume of flowing water within a visible channel, including subsurface water 
moving in the same direction as the surface water, and lateral flows exchanged with associated floodplain 
and riparian areas. See River.  

Stream Burial: The process of incorporating streams—particularly headwaters—into storm sewer 
systems, usually by routing through underground pipes.  

Stream Power: A measure of the erosive capacity of flowing water in stream channels or the rate of 
energy dissipation against the stream bed or banks per unit of channel length that has the mathematical 
form: ωa = ρgQS where ωa is the stream power, ρ is the density of water (1000 kg/m3), g is acceleration 
due to gravity (9.8 m/s2), Q is discharge (m3/s), and S is the channel slope.  

Stream Network—See River Network. A stream network is the same as river network, but typically 
refers to a smaller spatial scale.  

Stream Reach: See Reach.  

Storm: A precipitation event that produces an increase in streamflow.  

Stormflow: The part of flow through a channel that occurs in direct response to precipitation; it includes 
surface and subsurface sources of flow. See Direct Runoff.  

Stream Order (Strahler): A method for stream classification based on relative position within a river 
network, when streams lacking upstream tributaries (i.e., headwater streams) are first-order streams and 
the junction of two streams of the same order results in an increase in stream order (i.e., two first-order 
streams join to form a second-order stream, two second-order streams join to form a third-order stream, 
and so on). When streams of different order join, the order of the larger stream is retained. Stream-order 
classifications can differ, depending on the map scale used to determine order.  

Streamflow: Flow of water through a stream or river channel. See Discharge.  

Subsurface Water: All water that occurs below the land surface.  

Surface Runoff: See Overland Flow.  

Surface Water: Water that occurs on Earth’s surface (e.g., springs, streams, rivers, lakes, wetlands, 
estuaries, oceans).  

Surface-water Bodies: Types of water bodies that comprise surface water. See Surface Water.  

Swale (Science Report): A nonchannelized, shallow trough-like depression that carries water mainly 
during rainstorms or snowmelt. A swale might or might not be considered a wetland depending on 
whether it meets the Cowardin et al. (1979) three-attribute wetland criteria. See Wetland.  

Symmetry Ratio: The size ratio of a minor tributary (T2) to a major tributary (T1) at a confluence. 
Discharge (Q2/Q1), drainage area (A2/A1), or channel width (W2/W1) can be used to characterize the 
ratio of tributary size.  

Terminal Source Stream: A first-order stream that intersects another first-order stream.  
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Terrace: An historic or prehistoric floodplain that has been abandoned by its river and is not currently in 
the active floodplain. See Floodplain.  

Tracer: A substance that can be used to track the source and movement of water and other substances.  

Transformation Function: Any function within a stream or wetland that converts a material into a 
different form; the amount of the base material is unchanged (base exports equal base imports), but the 
mass of the different forms can vary.  

Transmission Loss: The loss of runoff water by infiltration into stream and river channel beds as water 
moves downstream; this process is common in arid and semiarid environments.  

Transport Mechanism: Any physical mechanism, such as moving water, wind, or movement of 
organisms, which can transport materials or energy. As used in this report, the term specifically refers to 
physical mechanisms that move material or energy between streams or wetlands and downstream waters.  

Tributary (Science Report): A stream or river that flows into a higher order stream or river.  

Unconfined Aquifer: An aquifer that has a water table; the aquifer is not bounded by lower permeability 
layers. See Confined Aquifer. 

Unsaturated Zone:  Also referred to as the vadose zone. The zone between land surface and the water 
table within which the moisture content is less than saturation and pressure is less than atmospheric. Soil 
pore spaces also typically contain air or other gases. See Saturated Zone.  

Uplands: (1) Higher elevation lands surrounding streams and their floodplains. (2) Within the wetland 
literature, specifically refers to any area that is not a water body and does not meet the Cowardin et al. 
(1979)-attribute wetland definition. See Wetland.  

Uptake Length (for dissolved nitrogen in streams): The distance traveled in the water column before 
algal and microbial assimilation occurs.  

Valley: A depression of the earth’s surface that drains water between two upland areas.  

Variable Source Area: Neither stormflow nor baseflow is uniformly produced from the entire surface or 
subsurface area of a basin. Instead, the flow of water in a stream at any given moment is influenced by 
dynamic, expanding or shrinking source areas, normally representing only a few percent of the total basin 
areas. The source area is highly variable during stormflow. During large rainfall or snowmelt events, the 
flowing portions of the river network, and associated source areas, expand. As the event ends, the network 
and source areas contract.  

Vernal Pool: Shallow seasonal wetlands that generally accumulate water during colder, wetter months 
and gradually dry down during warmer, dryer months.  

Water Balance: The accounting of the volume of water that enters, leaves, and is stored in a hydrologic 
unit, area, or arbitrarily defined control volume, typically a drainage basin or aquifer, during a specified 
period of time.  
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Water Body: Any sizable accumulation of water on the land surface, including streams, rivers, lakes, and 
wetlands.  

Water Surplus: Water that is available for streamflow or recharge of ground water; precipitation minus 
evapotranspiration.  

Water Table: The top of the zone of saturation of an unconfined aquifer.  

Watershed: The area drained by a stream, river, or other water body; typically defined by the 
topographic divides between one water body and another. Synonymous with Catchment and Drainage 
Basin.  

Wet Channel: Channel with flowing or standing water.  

Wetland (Science Report): An area that generally exhibits at least one of the following three attributes 
(Cowardin et al., 1979): (1) is inundated or saturated at a frequency sufficient to support, at least 
periodically, plants adapted to a wet environment; (2) contains undrained hydric soil; or (3) contains 
nonsoil saturated by shallow water for part of the growing season.  

Wetlands (Clean Water Act): The term wetlands means areas that are nundated or saturated by surface 
or ground water at a frequency and duration sufficient to support, and that under normal circumstances do 
support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands 
generally include swamps, marshes, bogs, and similar areas. 

Wetland Storage: The capacity of a wetland to detain or retain water from various sources.  
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Appendix B: References 

 

Note that the below references are only those that were cited in this technical support document. The 
references for the Science Report are available in that Report, which is available in the Docket for the 
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addition, EPA’s Office of Research and Development considered additional peer-reviewed literature for 
the completion of the Science Report and in the review of literature published since the Science Report’s 
publication. The references considered for the literature update are available in Appendix C. The agencies 
also solicited comment on whether additional citations published since the Science Report’s publication 
(i.e., since 2014) should be considered by the agencies. The agencies’ review of those references is 
available in Appendix C3. 
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Appendix C: References from the Literature Update Screening and 
Public Comments on Literature Published Since 2014 

As discussed in section I.C of the Technical Support Document, subject-matter experts from the U.S. 
Environmental Protection Agency’s Office of Research and Development conducted a screening analysis 
to identify papers that were relevant to the major conclusions of the Science Report. Appendix C1 
contains those references that the screeners believed were relevant to the conclusions of aquatic systems: 
(1) ephemeral, intermittent, and perennial streams; (2) floodplain wetlands and open waters; and (3) non-
floodplain wetlands and open waters and is broken out by aquatic system. Appendix C2 contains plain-
text summaries of the abstracts for a sample of the relevant literature (note that Appendix C2 was 
numbered Appendix C3 in the Technical Support Document for the Proposed Rule, but no other changes 
have been made to this Appendix). Appendix C3 contains 37 additional references identified by the 
screeners as being relevant to the Science Report’s major conclusions and the agencies’ review of those 
37 references (note that Appendix C3 was numbered Appendix C2 in the Technical Support Document 
for the Proposed Rule). The agencies solicited comment on the scientific literature contained in Appendix 
C of the Proposed Rule and on whether additional scientific literature and references published since 2014 
are relevant to the Science Report’s conclusions on the connectivity and effects of streams, wetlands, and 
open waters on the chemical, physical, and biological integrity of downstream water. Several commenters 
provided additional literature published since 2014, and the agencies’ review of those citations is 
contained in Appendix C3.  

Appendix C1: References Relevant to the Conclusions of the Science Report Published 
Since 2014 

The agencies believe the below references are relevant to conclusions of the Science Report and have 
been published since 2014. The agencies are seeking comment on this list of references and if additional 
references are relevant to the report’s conclusions but are not listed below. This list of references is 
derived mainly from the agencies’ screening process, which is discussed in section I.C of this document. 
That screening process yielded 2,022 unique citations that were found to be relevant to the conclusions of 
the Report. The results of that screening process have been supplemented with additional literature 
published since 2014 that the agencies believe is relevant to the findings of the Report but that was not 
captured through the screening process. For purposes of the screening, the agencies conducted screenings 
for references that were relevant to the Science Reports conclusions on (1) streams; (2) riparian and 
floodplain wetlands and open waters, and (3) riparian and non-floodplain wetlands and open waters. Note 
that some references are relevant to more than one system but may not be denoted as such in the below 
appendix. 

Ephemeral, Intermittent, or Perennial Streams 
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Appendix C2: Plain-Text Language from the Abstracts of Illustrative Scientific Papers  

The screening process identified illustrative peer-reviewed papers for each of the three aquatic systems 
(as discussed in section I.C of the Technical Support Document). Screeners further provided a “Plain 
Text” summary of the content based on the abstract. The papers are not ordered or prioritized and 
represent a sample of the references screened. This Appendix has been renumbered and was Appendix C3 
in the Technical Support Document for the Proposed Rule. No other changes have been made to this 
Appendix.  
 
Ephemeral, Intermittent, and Perennial Streams 

 
Reference Plain Text Summary 

Ebersole, J. L., P. J. Wigington, S. G. 
Leibowitz, R. L. Comeleo and J. Van Sickle 
(2015). “Predicting the occurrence of cold-
water patches at intermittent and ephemeral 
tributary confluences with warm rivers.” 
Freshwater Science 34(1): 111-124 

Small tributary streams, including ephemeral channels when they do 
not contain surface flow, serve as sources of cold water to warmer 
downstream waters. Tributary basins with higher water surpluses at 
the end of the preceding wet season were more likely to serve as 
summer cold water sources; basin area and the presence of surface 
flow at the time of sampling were not strong predictors. Continued 
release of groundwater from tributary basins creates refuges for cold-
water taxa.    

Chara-Serna, A. N. and J. S. Richardson 
(2021). “Multiple-Stressor Interactions in 
Tributaries Alter Downstream Ecosystems in 
Stream Mesocosm Networks.” Water 13(9) 
 

Using a mesocosm study, researchers examined how stressor 
interactions in tributaries affected downstream second-order channels. 
Results showed that (1) Ephemeroptera, Plecoptera, and Trichoptera 
(EPT) density and richness were higher in downstream channels 
when stressors were applied separately in tributaries, rather than in 
combination, and (2) combined stressors within a tributary reduced 
macroinvertebrate drift into downstream channel. These results 
support the hypothesis that cumulative upstream disturbance can 
influence downstream systems.    

Shogren, A. J., J. P. Zarnetske, B. W. Abbott, 
F. Iannucci, R. J. Frei, N. A. Griffin and W. 
B. Bowden (2019). “Revealing 
biogeochemical signatures of Arctic 
landscapes with river chemistry.” Scientific 
Reports 9(1): 12894. 
 

The dominant spatial scale controlling organic carbon and inorganic 
nutrient concentrations within three Alaska watersheds was 3-30 
km2, indicating that fine scale landscape patches and a continuum of 
diffuse and discrete sourcing and processing dynamics are driving 
solute generation and transport.     

Chiu, M. C., B. i. Li, K. e. Nukazawa, V. H. 
Resh, T. Carvajal and K. Watanabe (2020). 
“Branching networks can have opposing 
influences on genetic variation in riverine 
metapopulations.” Diversity and 
Distributions 26(12): 1813-1824 

This study was designed to examine how branching complexity 
within stream networks can simultaneously increase and decrease 
genetic divergence of macroinvertebrate metapopulations. Simulation 
experiments showed that more branched stream networks had both 
greater landscape connectivity (resulting from shorter watercourse 
distance) and greater isolation of headwater streams. These two 
spatial features have negative and positive influences on genetic 
divergence, with their relative importance varying among species and 
dispersal characteristics.    
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Seymour, M., E. A. Fronhofer and F. 
Altermatt (2015). “Dendritic network 
structure and dispersal affect temporal 
dynamics of diversity and species 
persistence.” Oikos 124(7): 908-916 

This study examined the effect of dendritic versus linear network 
structures on local (alpha), regional (beta) and total (gamma) 
diversity, using protist and rotifer assemblages as a test community. 
Local diversity remained higher in dendritic networks over time, 
especially at highly connected sites. Regional diversity was initially 
greater in linear networks due to dispersal limitation, but over time 
became more similar to regional diversity in dendritic networks. 
Results indicate that dispersal and network connectivity alone may, to 
a large extent, explain diversity dynamics.   

Brennan, S. R., D. E. Schindler, T. J. Cline, 
T. E. Walsworth, G. Buck and D. P. 
Fernandez (2019). “Shifting habitat mosaics 
and fish production across river basins.” 
Science 364(6442): 783-786 

Researchers quantified how habitat mosaics (including headwaters) 
are expressed across a range of spatial scales within a large, free-
flowing river in Alaska. The relative productivity of locations across 
the river network varies widely among years and across a broad range 
of spatial scales, and these shifts in natal and juvenile rearing habitat 
help stabilize interannual Pacific salmon production at the scale of the 
entire basin.     

Sarker, S., A. Veremyev, V. Boginski and A. 
Singh (2019). “Critical Nodes in River 
Networks.” Scientific Reports 9(1): 11178 

In this study, researchers used an algorithm to determine the set of 
critical nodes (channel intersections) along river networks whose 
removal results in maximum network fragmentation. Results based on 
both simulated and natural basins in the US indicated a power-law 
relationship between the number of connected node pairs in the 
remaining river network and the number of removed critical nodes 
(i.e., one varies as a power of the other).      

Teachey, M. E., J. M. McDonald and E. A. 
Ottesen (2019). “Rapid and Stable Microbial 
Community Assembly in the Headwaters of 
a Third-Order Stream.” Applied and 
Environmental Microbiology 85(11) 

This study examined the development and stability of microbial 
communities along a first- through third order stream in Georgia. 
Results show that the bacterioplankton community develops rapidly 
and predictably from the headwater population with increasing total 
stream length. Along the length of the stream, the microbial 
community exhibits substantial diversity loss and enriches repeatedly 
for select taxa across days and years, although the relative 
abundances of individual taxa vary over time and space. This 
repeated enrichment of a stable stream community likely contributes 
to the stability and flexibility of downstream communities. 

Samia, Y. and F. Lutscher (2017). 
“Downstream flow and upstream movement 
determine the value of a stream reach for 
potadromous fish populations.” Theoretical 
Ecology 10(1): 21-34 

Because water flow transports certain local conditions downstream 
and individuals move upstream and downstream through river 
networks, the overall effects of disturbances should be examined at 
the scale of the entire network. Results from a fish population model 
show that upper stream reaches can be highly significant for 
population persistence if downstream transport of abiotic conditions 
or upstream movement of individuals is strong. 



Page 533 of 564 

Reference Plain Text Summary 
Chezik, K. A., S. C. Anderson and J. W. 
Moore (2017). “River networks dampen 
long-term hydrological signals of climate 
change.” Geophysical Research Letters 
44(14): 7256-7264 

Trends over 37 years between climate and daily flow data from 55 
river gauging stations within the Fraser River network in British 
Columbia, Canada were examined to see if flow trends diminish with 
increasing river size or aggregation of tributary contributions. Long-
term changes in discharge variability was dampened by >91% in 
larger rivers than in smaller tributaries and was >3.1 times the 
dampening when accounting for differences in sample size (more 
small tributaries than large rivers in a river network). The authors 
suggest their findings show that integration of the contributions in a 
river network (i.e., river network portfolio) has a stabilizing influence 
on long-term hydrologic trends of downstream rivers. 

Rupp, D. E., O. S. Chegwidden, B. Nijssen 
and M. P. Clark (2021). “Changing River 
Network Synchrony Modulates Projected 
Increases in High Flows.” Water Resources 
Research 57(4): e2020WR028713 

Daily streamflow along the Columbia River and its tributaries were 
simulated (without dams and irrigation) to understand how climate 
change scenarios could influence downstream flood magnitude. One 
mechanism that affects flood magnitude is timing or synchrony of 
flooding between on a river and its branches or tributaries. Under 
moderate warming scenarios, synchrony and flooding was predicted 
to be lower for coldwater tributaries. However, under sufficient 
warming the main flow source is expected to transition from mixture 
of snowmelt and rain to rain-dominated which leads to higher 
synchrony and downstream flood magnitudes. 

Jaeger, K. L., J. D. Olden and N. A. Pelland 
(2014). “Climate change poised to threaten 
hydrologic connectivity and endemic fishes 
in dryland streams.” Proceedings of the 
National Academy of Sciences 111(38): 
13894 

The authors used a surface water model to forecast future 
streamflows within Verde River Basin and characterized the change 
in temporal and spatial dimensions of streamflow or hydrologic 
connectivity or fragmentation throughout the river network. The 
model predicted that the number of days which the river stops 
flowing to increase by 27% in 2050 and the frequency of river drying 
events to increase by 17%. The overall length of flowing stretches 
within the Verde River network was predicted to drop between 8% 
and 20% in spring and early summer with greater declines during the 
drier portions of the year. This will result in less spawning habitat and 
refuge from seasonal drying. Using dispersal models to contextualize 
the impact from climate change projections, the authors estimated the 
Verde River network will have 6-9% and 12-18% lower hydrologic 
connectivity during the year and spring spawning months, 
respectively. This finding has strong implications on the persistence 
of endemic fish fauna under climate change. 
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Marcarelli, A. M., A. A. Coble, K. M. 
Meingast, E. S. Kane, C. N. Brooks, I. 
Buffam, S. A. Green, C. J. Huckins, D. 
Toczydlowski and R. Stottlemyer (2019). 
“Of Small Streams and Great Lakes: 
Integrating Tributaries to Understand the 
Ecology and Biogeochemistry of Lake 
Superior.” Journal of the American Water 
Resources Association 55(2): 442-458 

Approximately 2,800 tributaries flow into and contribute nutrients 
and dissolved organic matter to the nearshore areas of Lake Superior. 
Tributaries contribute bulk of these materials to Lake Superior during 
snowmelt-driven flows in the spring and rain-driven flows following 
rain during other times of the year. Temporary storage and 
transformations of these material occur during transport in the 
tributaries prior to entering Lake Superior. Despite being such a large 
water body, distinct physical and chemistry signals are detected 
where tributaries enter Lake Superior during periods of high runoff 
but are quickly transported and mixed with the bulk of the lake 
volume. The use of different technologies (e.g., automated sampling, 
remote imagery, drones) will enhance the monitoring and 
understanding of tributary-lake connections. 

Kelson, S. J. and S. M. Carlson (2019). “Do 
precipitation extremes drive growth and 
migration timing of a Pacific salmonid fish 
in Mediterranean-climate streams?” 
Ecosphere 10(3) 

Climate change is expected to cause more frequent weather extremes 
leading to more severe droughts and floods. Steelhead are migratory 
trout that live in the South Fork Eel River and its tributaries in 
California. This study examined extremely wet and dry years over the 
period of 2015-2018 to see how stream flow affected the steelhead 
growth, health, and migration timing. Despite strong differences in 
the timing and magnitude of winter-spring floods and summer low-
flows between years, the growth, health, migration timing was not 
affected. The authors attributed the lack of impact on steelhead 
detected between extremes was due to the high quality of habitat 
provided by groundwater-fed tributaries that provided cool and stable 
base flows even in the driest years. 

Marteau, B., R. J. Batalla, D. Vericat and C. 
Gibbins (2017). “The importance of a small 
ephemeral tributary for fine sediment 
dynamics in a main-stem river.” River 
Research and Applications 33(10): 1564-
1574 

An ephemeral tributary in the United Kingdom had key moments of 
influence on a downstream river (River Ehen) through the temporal 
mismatch between sediment transport from an ephemeral tributary 
and flooding in a mainstem river. Despite draining only 1.2% of the 
river catchment and flowing only ephemerally, the recently 
reconnected ephemeral tributary increased annual sediment yield in 
the downstream river by 65%. 

Xu, J. (2016). “Sediment jamming of a trunk 
stream by hyperconcentrated floods from 
small tributaries: case of the Upper Yellow 
River, China.” Hydrological Sciences 
Journal 61(10): 1926-1940 

The study describes floods in ten small desert tributaries that 
transport large amounts of sediment which exacerbates downstream 
flooding in the Yellow River in China. The authors investigated in 
detail one such flooding event and developed a tool to understand the 
downstream influence of flood-driven sediment from tributaries over 
immediate (days to weeks) and longer time periods (decades). 
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Swanson, B. J. and G. Meyer (2014). 
“Tributary confluences and discontinuities in 
channel form and sediment texture: Rio 
Chama, NM.” Earth Surface Processes and 
Landforms 39(14): 1927-1943 

Tributaries (arroyos) periodically deliver sediment downstream to the 
Rio Chama in northern New Mexico. The sediment is delivered by 
floods induced by summer thunderstorms. Channel measurements 
were collected from 203 cross-sections located upstream and 
downstream from 26 tributary confluences over a 17-km reach of the 
Rio Chama. The slope, bed sediment size, and cross-sectional area of 
the river channel was affected by tributaries and influence the 
transport and storage of sediment along the river. On a larger scale, 
tributaries have a stronger influence on the Rio Charma in the upper 
two-thirds of the 17-km reach than the lower third which had fewer 
tributaries and was dominated by canyon narrows. Tributaries and 
their associated watershed characteristics (e.g., geology) contribute 
the morphology of downstream rivers. 

Marteau, B., C. Gibbins, D. Vericat and R. J. 
Batalla (2020). “Geomorphological response 
to system-scale river rehabilitation I: 
Sediment supply from a reconnected 
tributary.” River Research and Applications 
36(8): 1488-1503 

An ephemeral tributary (Ben Gill) in the United Kingdom was 
reconnected to its sediment-limited downstream river (River Ehen) 
and the subsequent 2 years sediment transport from the tributary to 
the river was measured. Sufficient coarse sediment is critical to 
maintaining economically and culturally important salmonid habitat. 
An estimated minimum of 384 m3 of coarse sediment was exported 
to the downstream river and contributed to the habitat formation. The 
small, ephemeral stream (0.55 km2 or 1.2% of the river’s drainage 
area) which flows only ~20% of the year approximately doubled the 
volume of coarse sediment estimated to occur in the confluence area 
prior to reconnection and so is providing needed critical material for 
salmonid habitat in the downstream river. 

French, D. W., D. E. Schindler, S. R. 
Brennan and D. Whited (2020). “Headwater 
Catchments Govern Biogeochemistry in 
America’s Largest Free-Flowing River 
Network.” Journal of Geophysical Research: 
Biogeosciences 125(12) 

Water chemistry samples collected from the Kuskokwim River 
(largest U.S. river without dams), Alaska was studied to understand 
the influence of the surrounding watershed and instream conditions 
from different parts of the river network. The conditions in small, 
headwater streams play a disproportionately important role in 
predicting the streamwater chemistry throughout the river network. 
Nutrients that are rapidly used by algae and microbes are spatially 
more variable in the river network when compared to chemicals that 
have lower biological demand. 

Koizumi, I., Y. Tanaka and Y. Kanazawa 
(2017). “Mass immigration of juvenile fishes 
into a small, once-dried tributary 
demonstrates the importance of remnant 
tributaries as wintering habitats.” 
Ichthyological Research 64(3): 353-356 

A small tributary of the Otofuke River in northern Japan went dry 
during the summer. Four months after resuming flow more than 
10,000 immature fish of three species, including rainbow trout used 
the tributary for wintering habitat. 
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Fovet, O., D. M. Cooper, D. L. Jones, T. G. 
Jones and C. D. Evans (2020). “Dynamics of 
dissolved organic matter in headwaters: 
comparison of headwater streams with 
contrasting DOM and nutrient composition.” 
Aquatic Sciences 82(2) 

The processes by which headwater streams functionally alter 
terrestrial dissolved organic matter 
(carbon and nutrients) are influenced by local factors, including soils, 
land-use, and human pressures. This study compared the effects of 
sunlight, presence/absence of aquatic biota, and nutrient 
supplementation on DOM processing in two contrasting stream types 
– one, a headwater with low inorganic nutrient loadings (peatland 
stream) and the other a headwater with high nutrient loadings (an 
agricultural grassland stream). Exposure to sunlight resulted in net 
abiotic organic matter loss (removal) in the peatland stream but net 
biological production (increase) of organic matter in the agricultural 
stream. Nutrient addition accelerated DOM production in both 
streams. These results show that the quantity and quality of net DOM 
exported from headwaters are influenced by the composition of 
terrestrial DOM inputs, landscape setting, and exposure to sunlight. 
The author suggest that these results indicate that headwaters may be 
more active processors of carbon and nutrients than previously 
thought. 

Gallo, E. L., T. Meixner, K. A. Lohse and H. 
Nicholas (2020). “Estimating Surface Water 
Presence and Infiltration in Ephemeral to 
Intermittent Streams in the Southwestern 
US.” Frontiers in Water 2(47) 

Streamflow in arid and semi-arid regions is predominantly temporary, 
and of significant importance for groundwater recharge and 
biogeochemical processes. However, temporary streamflow, 
especially ephemeral flows, remain poorly quantified. The authors 
used in-stream streamflow data loggers and USGS stream gauge data 
in 15 southern Arizona streams spanning a climate gradient (mean 
annual precipitation from 160 to 750 mm) to quantify temporary 
streamflow as (a) streamflow presence and (b) water presence, which 
included streamflow, ponding and soil moisture. In addition, stream 
channel sediment data were used to estimate saturated hydraulic 
conductivity and potential annual infiltration. Annual streamflow 
ranged 0.6–82.4% or 2–301 days; while water presence ranged from 
2.6 to 82.4% or 10 to over 301 days, or 4–33 times longer than 
streamflow. These data were used to develop 5 statistically distinct 
flow regimes based on the annual percent streamflow and water 
presence: (1) dry-ephemeral, (2) wet-ephemeral, (3) dry-intermittent, 
(4) wet-intermittent, and (5) seasonally-intermittent. Stream channel 
density was a better predictor of annual streamflow and water 
presence than annual rainfall alone. The dry-ephemeral and wet-
ephemeral flow regimes varied with seasonal precipitation, while the 
dry-intermittent, wet intermittent and seasonally-intermittent flow 
regimes did not. These results coupled with the potential infiltration 
estimates indicate that streamflow at the driest sites occurs in 
response to rainfall and overland flow while groundwater discharge 
and vadose zone contributions enhance streamflow at the wetter sites. 
Flow regime classifications that include both stream flow and water 
presence, rather than on stream flow alone, may be important for 
predicting thresholds in ecological functions and refugia in these 
dryland systems. 
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Hill, B. H., R. K. Kolka, F. H. McCormick 
and M. A. Starry (2014). “A synoptic survey 
of ecosystem services from headwater 
catchments in the United States.” Ecosystem 
Services 7: 106-115 

“Ecosystem production functions for water supply, climate 
regulation, and water purification were estimated for 568 headwater 
streams and their catchments. Results are reported for nine USA 
ecoregions. Headwater streams represented 74-80% of total 
catchment stream length. Water supply per unit catchment area was 
highest in the Northern Appalachian Mountains ecoregion and lowest 
in the Northern Plains. C, N, and P sequestered in trees were highest 
in Northern and Southern Appalachian and Western Mountain 
catchments, but C, N, and P sequestered in soils were highest in the 
Upper Midwest ecoregion. Catchment denitrification was highest in 
the Western Mountains. In-stream denitrification was highest in the 
Temperate Plains. Ecological production functions paired with 
published economic values for these services revealed the importance 
of mountain catchments for water supply, climate regulation, and 
water purification per unit catchment area. The larger catchment sizes 
of the plains ecoregions resulted in their higher economic value 
compared to the other ecoregions. The combined potential economic 
value across headwater catchments was INT $14,000 ha(-1) yr(-1), or 
INT $30 million yr(-1) per catchment. The economic importance of 
headwater catchments is even greater considering that our study 
catchments statistically represent more than 2 million headwater 
catchments in the continental United States.” 

Jones, C. S., J. K. Nielsen, K. E. Schilling 
and L. J. Weber (2018). “Iowa stream nitrate 
and the Gulf of Mexico.” PLoS ONE 13(4): 
e0195930 

The objective of this study was to quantify and update Iowa’s 
contribution of nitrate-nitrogen to the Mississippi River stream 
network against the backdrop of Gulf of Mexico hypoxia. Stream 
nitrate and discharge data collected from 1999 until 2016 at 23 Iowa 
stream sites near watershed outlets, along with publicly available data 
for sites downstream of Iowa on the Missouri and Mississippi Rivers 
shows that Iowa contributes between 11 and 52% of the long-term 
nitrate load to the Mississippi-Atchafalaya Basin, 20 to 63% to the 
Upper Mississippi River Basin, and 20 to 89% to the Missouri River 
Basin, with averages of 29, 45 and 55% respectively. Since 1999, 
nitrate loads in the Iowa inclusive basins have increased and these 
increases do not appear to be driven by changes in discharge and 
cropping intensity unique to Iowa. The 5-year running annual average 
of Iowa nitrate loading has been above the 2003 level for ten 
consecutive years. 
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Jones, E. F., N. Griffin, J. E. Kelso, G. T. 
Carling, M. A. Baker and Z. T. Aanderud 
(2020). “Stream Microbial Community 
Structured by Trace Elements, Headwater 
Dispersal, and Large Reservoirs in Sub-
Alpine and Urban Ecosystems.” Frontiers in 
Microbiology 11: 491425 

Functional stream bacterioplankton communities are needed to 
maintain surface water quality and other aquatic ecosystem services. 
The diversity and composition of stream bacterioplankton 
communities influence their function. This study quantified the role 
of environmental conditions, bacterioplankton dispersal, and human 
infrastructure (dams) on community composition in rivers from sub-
alpine to urban environments in three watersheds (Utah, United 
States) across three seasons. Bacterioplankton community diversity 
decreased downstream along parts of the stream continuum but was 
disrupted where large reservoirs increased water residence time by 
orders of magnitude, potentially indicating a shift in the relative 
importance of environmental selection and dispersal at these sites. 
Reservoirs also had substantial effects on community composition, 
similarity, and species interactions. Communities downstream of 
reservoirs were enriched with anaerobic Sporichthyaceae, 
methanotrophic Methylococcaceae, and iron-transforming 
Acidimicrobiales, suggesting alternative metabolic pathways became 
active in the hypolimnion of large reservoirs. The results identify that 
human activity affects river microbial communities, with potential 
impacts on water quality through modified biogeochemical cycling. 

Larson, J. H., J. M. Vallazza and B. C. 
Knights (2019). “Estimating the degree to 
which distance and temperature differences 
drive changes in fish community 
composition over time in the upper 
Mississippi River.” PLoS ONE 14(12): 
e0225630 

Similarity in aquatic communities often declines with increasing 
distance between habitat locations. In addition to spatial separation, 
distance-dissimilarity relationships are driven by the presence of 
environmental gradients that alter habitat suitability for particular 
species. The Mississippi River is aligned mostly north-to-south so 
greater distances along the river roughly correspond to differences in 
latitude, which in turn correspond to different thermal regimes, which 
are important determinants of fish community structure. The authors 
of this study used a 21-year dataset of fish communities in the upper 
Mississippi River to examine the effect of distance on variation in 
community composition and to assess whether the effect of distance 
is primarily due to its effect on thermal regime. The results showed a 
moderate distance-similarity relationship, suggesting greater distance 
leads to less similarity, which appeared to increase slightly over time. 
Using a subset of data for which air temperature was available, 
models that incorporated both difference among sites in degree days 
(a surrogate for thermal regime) and physical distance (river km) 
found that temperature alone appears to be more strongly associated 
with differences in the Mississippi River fish community than spatial 
distance alone. 
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Mooney, R. J., E. H. Stanley, W. C. 
Rosenthal, P. C. Esselman, A. D. Kendall 
and P. B. McIntyre (2020). “Outsized 
nutrient contributions from small tributaries 
to a Great Lake.” Proceedings of the 
National Academy of Sciences of the United 
States of America 117(45): 28175-28182 

For lakes across the United States, eutrophication is driven largely by 
nonpoint nutrient sources from tributaries that drain surrounding 
watersheds, which are relatively understudied in lake systems despite 
their ubiquity and potential importance to lake water quality. The 
authors of this study quantified a ‘snapshot’ of nutrient inputs from 
nearly all tributaries of Lake Michigan – the world’s fifth largest 
freshwater lake by volume – to determine how land cover and dams 
alter nutrient inputs across different watershed sizes. Loads, 
concentrations, stoichiometry, and bioavailability (percentage 
dissolved inorganic nutrients) varied by orders of magnitude among 
tributaries, creating a mosaic of coastal nutrient inputs. The six 
largest of 235 tributaries accounted for approximately 70% of the 
daily nitrogen and phosphorus delivered to Lake Michigan. However, 
small tributaries exhibited nutrient loads that were high for their size 
and biased toward dissolved inorganic forms. Higher bioavailability 
of nutrients from small watersheds suggests greater potential to fuel 
algal blooms in coastal areas, especially given the likelihood that their 
plumes become trapped and then overlap in the nearshore zone. The 
findings reveal an underappreciated role that small streams may play 
in driving coastal eutrophication in large water bodies. 

Schilling, K. E. and C. S. Jones (2019). 
“Hydrograph separation of subsurface tile 
discharge.” Environmental Monitoring and 
Assessment 191(4): 231 

Baseflow is an important component of streamflow and watershed 
hydrologic budgets. The fraction of baseflow contributed by tile 
drainage has rarely been reported. The authors of this study quantified 
baseflow discharge from three central Iowa drainage district tile 
mains using two different hydrograph separation methods and found 
that baseflow comprised approximately 60% of the annual flow for a 
5-year period (2009–2013). The results of this study provide methods 
to better quantify hydrologic pathways throughout tiled landscapes. 
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van Meerveld, H. J. I., J. W. Kirchner, M. J. 
P. Vis, R. S. Assendelft and J. Seibert 
(2019). “Expansion and contraction of the 
flowing stream network alter hillslope 
flowpath lengths and the shape of the travel 
time distribution.” Hydrology and Earth 
System Sciences 23(11): 4825-4834 

“Flowing stream networks dynamically extend and retract, both 
seasonally and in response to precipitation events. These network 
dynamics can dramatically alter the drainage density and thus the 
length of subsurface flow pathways to flowing streams. We mapped 
flowing stream networks in a small Swiss headwater catchment 
during different wetness conditions and estimated their effects on the 
distribution of travel times to the catchment outlet. For each point in 
the catchment, we determined the subsurface transport distance to the 
flowing stream based on the surface topography and determined the 
surface transport distance along the flowing stream to the outlet. We 
combined the distributions of these travel distances with assumed 
surface and subsurface flow velocities to estimate the distribution of 
travel times to the outlet. These calculations show that the extension 
and retraction of the stream network can substantially change the 
mean travel time and the shape of the travel time distribution. During 
wet conditions with a fully extended flowing stream network, the 
travel time distribution was strongly skewed to short travel times, but 
as the network retracted during dry conditions, the distribution of the 
travel times became more uniform. Stream network dynamics are 
widely ignored in catchment models, but our results show that they 
need to be taken into account when modeling solute transport and 
interpreting travel time distributions.” 

Wilkinson, M. E. and J. C. Bathurst (2018). 
“A multi-scale nested experiment for 
understanding flood wave generation across 
four orders of magnitude of catchment area.” 
Nordic Hydrology 49(3): 597-615 

Current understanding of flood response is deficient concerning the 
variation of flood generation as a function at different spatial scales as 
a result of spatial and temporal variations in storm rainfall. This study 
investigates flood response to spatially variable rainfall through a 
multi-scale nested experiment. Hydrological data from an extensive 
network in the Eden catchment, UK, were collected for a range of 
flood events over varying scales from 1.1 km2 to 2,286 km2. Peak 
specific discharge for winter events appears to remain constant for 
areas up to 20-30 km2, corresponding to upland headwater 
catchments. The flood response to the convective storms depends on 
the location of the rainfall, and the downstream rates of change of 
runoff and peak discharge can vary significantly from the winter 
storm relationships. Particularly for large synoptic storms, average 
scaling laws for peak discharge have been quantified (exponents 
ranging between 0.75 and 0.86), illustrating the non-linear nature of 
the cross-scale variations. 
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Thom, R. M., S. A. Breithaupt, H. L. 
Diefenderfer, A. B. Borde, G. C. Roegner, G. 
E. Johnson and D. L. Woodruff (2018). 
“Storm-driven particulate organic matter flux 
connects a tidal tributary floodplain wetland, 
mainstem river, and estuary.” Ecological 
Applications 28(6): 1420-1434 

The authors used a multi-model approach to simulate organic matter 
transport from a recently connected and restored tidal emergent marsh 
in the Grays River tributary to the Columbia River estuary. They 
found that “restored floodplain wetlands can contribute significant 
amounts of organic matter to the estuarine ecosystem and thereby 
contribute to the restoration of historical trophic structure.” 

Yang, W., Y. Liu, C. Ou and S. Gabor 
(2016). “Examining water quality effects of 
riparian wetland loss and restoration 
scenarios in a southern ontario watershed.” 
Journal of Environmental Management 174: 
26 

“The purpose of the study [was] to develop [watershed-scale] wetland 
modelling to examine water quality effects of riparian wetland loss 
and restoration scenarios in the 323-km Black River watershed in 
southern Ontario, Canada.” The model was applied to examine 
various riparian wetland loss scenarios on sediment and nutrient loads 
to the river network. The model outputs suggest that as riparian 
wetland loss increases, environmental functional losses increase at an 
accelerated rate. For example, sediment, total nitrogen, and total 
phosphorous loads to the river increased between by 2-, 3-, and 9-
fold, respectively, with 100% riparian wetland loss, compared to 
current conditions. “The results further demonstrate the importance of 
targeting priority areas for stopping riparian wetland loss and 
initiating riparian wetland restoration based on scientific 
understanding of watershed wetland effects.” 

Pyron, M., L. Etchison and J. Backus (2014). 
“Fish Assemblages of Floodplain Lakes in 
the Ohio River Basin.” Northeastern 
Naturalist 21(3): 419-430 

The authors sampled and examined fish assemblages in 41 floodplain 
lakes [wetlands] in the Ohio River Basin (summer 2012). Their 
results demonstrated “that floodplain lakes in the Ohio River basin 
contain high species richness and are important habitats to conserve 
because they have the potential to act as source pools for river fish 
populations.” 

Mengistu, S. G., H. E. Golden, C. R. Lane, J. 
R. Christensen, M. L. Wine, E. D’Amico, A. 
Prues, S. G. Leibowitz, J. E. Compton, M. H. 
Weber and R. A. Hill (2020). “Wetland 
Flowpaths Mediate Nitrogen and Phosphorus 
Concentrations across the Upper Mississippi 
River Basin.” Journal of the American Water 
Resources Association: 1-18 

The authors developed a large, novel set of spatial variables 
characterizing hydrological connectivity from wetlands (floodplain 
and non-floodplain) to streams across the ~0.5 million km2 Upper 
Mississippi River Basin. They found that wetland connectivity 
variables provided insights into “processes governing how wetlands 
influence watershed-scale TN and TP concentrations”. For example, 
they demonstrated that wetland connectivity variables describing how 
water transport slows along the flowpath from the wetland to the 
stream (e.g., in flowpaths with high soil porosity, which slows water 
via infiltration into the soils) were statistically related to lower total 
nitrogen and total phosphorus concentrations. This means that it is not 
just the wetlands, but the flowpaths/connectivity between wetlands 
and streams, that control their water quality effects on downstream 
surface waters. 
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Jensen, A. K. and W. I. Ford (2019). 
“Quantifying nitrate dynamics of a 
confluence floodplain wetland in a disturbed 
Appalachia watershed: High-resolution 
sensing and modeling.” Transactions of the 
ASABE 62(6): 1545-1565 

The authors coupled high-resolution water quality data and 
simulation modeling to assess what physical (hydrologic, hydraulic) 
or biogeochemical processes affect nitrate cycling in a confluence 
floodplain wetland along the Ohio River (June 2017-June 2018). 
Despite the wetland comprising only 0.42% of the overall watershed 
drainage area, 2.6% to 58.5% of the annual nitrate loads entering the 
wetland were removed by it. Longer water storage times in the 
wetlands and less frequent connectivity with the river allowed nitrate 
removal to occur at higher rates. The findings therefore “demonstrate 
the significance of [wetland] connectivity [and disconnectivity] on 
watershed nitrate loadings to floodplain wetland soils”. 

Hansen, A., C. L. Dolph, E. f. Foufoula-
Georgiou and J. C. Finlay (2018). 
“Contribution of wetlands to nitrate removal 
at the watershed scale.” Nature Geoscience 
11(2): 127 

The authors evaluate how existing wetlands (floodplain and non-
floodplain) across the landscape of the Minnesota River Basin affect 
in-stream nitrate concentrations. They found that “under moderate-
high streamflow, wetlands are five times more efficient per unit area 
at reducing riverine nitrate concentration than the most effective land-
based nitrogen mitigation strategies, which include cover crops and 
land retirement”. Their results suggest that “wetland restorations that 
account for the effects of spatial position in stream networks could 
provide a much greater benefit to water quality then previously 
assumed.” 

Fossey, M., A. N. Rousseau and S. Savary 
(2016). “Assessment of the impact of spatio-
temporal attributes of wetlands on stream 
flows using a hydrological modelling 
framework: a theoretical case study of a 
watershed under temperate climatic 
conditions.” Hydrological Processes 30: 
1768-1781 

The authors applied a hydrological model to assess how floodplain 
and non-floodplain wetlands affect streamflow in the Becancour 
River watershed of the St Lawrence Lowlands, Quebec, Canada. 
Their model simulations suggested that the more often floodplain 
wetlands are connected to the main stem channel, the greater their 
effects on moderating high flows and providing baseflow support. 
They suggest that wetland effects on streamflow depends on the 
“combined effect of wetland and landscape attributes”. 

Daneshvar, F., A. P. Nejadhashemi, U. 
Adhikari, B. Elahi, M. Abouali, M. R. 
Herman, E. Martinez-Martinez, T. J. Calappi 
and B. G. Rohn (2017). “Evaluating the 
significance of wetland restoration scenarios 
on phosphorus removal.” Journal of 
Environmental Management 192: 184-196 

The authors used a calibrated Soil and Water Assessment Tool 
(SWAT) model to assess what areas of the Saginaw River Watershed, 
Michigan, had the highest potential for successful (floodplain and 
non-floodplain) wetland restoration related to decreasing downstream 
phosphorous loads. They found that “wetlands located in headwaters 
and downstream had significantly higher phosphorus reduction than 
the ones located in the middle of the watershed. More specifically, 
wetlands implemented at distances ranging from 200 to 250 km and 
50-100 km from the outlet had the highest impact on phosphorus 
reduction at the subwatershed and watershed levels, respectively”. 

Blanchette, M., A. N. Rousseau, É. Foulon, 
S. Savary and M. Poulin (2019). “What 
would have been the impacts of wetlands on 
low flow support and high flow attenuation 
under steady state land cover conditions?” 
Journal of Environmental Management 234: 
448-457 

The authors use a physically based hydrological model to quantify 
how land cover change, particularly for wetlands both inside and 
outside floodplains, affect streamflow in the St. Charles River, 
Quebec, Canada. They found that with 15% loss of wetlands in the 
watershed area, baseflow decreased and peak (or flood) flows 
increased. Their results suggested that “the loss of wetland areas 
generally leads to a loss of hydrological services and highlighted the 
need for wetland conservation programs and restoration actions.” 
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Bellmore, R. A., J. E. Compton, J. R. 
Brooks, E. W. Fox, R. A. Hill, D. J. Sobota, 
D. J. Thornbrugh and M. H. Weber (2018). 
“Nitrogen inputs drive nitrogen 
concentrations in U.S. streams and rivers 
during summer low flow conditions.” 
Science of the Total Environment 639: 1349-
1359 

The authors examined how in-stream nitrogen (N) concentrations are 
related to N inputs to watersheds (e.g., atmospheric deposition, 
synthetic fertilizer), land cover characteristics (e.g., wetland 
presence), and stream network characteristics across the United 
States. They found that (floodplain and non-floodplain) wetlands 
mediated. i.e., lowered, N concentrations in streams with watersheds 
draining areas of high agricultural N inputs across the US. 

Carlson, A. K., M. J. Fincel, C. M. 
Longhenry and B. D. S. Graeb (2016). 
“Effects of historic flooding on fishes and 
aquatic habitats in a Missouri River delta.” 
Journal of Freshwater Ecology 31(2): 271-
288 

Fish assemblages were studied pre and post flood in the Missouri 
River, Lewis and Clark delta in SD and NE. Findings suggest that 
backwater habitats in the delta provided refuge from floodwaters 
during the disturbance. Maintaining habitat connectivity in deltas 
during and after floods is particularly important for fisheries 
conservation. 

Tetzlaff, D., C. Birkel, J. Dick, J. Geris and 
C. Soulsby (2014). “Storage dynamics in 
hydropedological units control hillslope 
connectivity, runoff generation, and the 
evolution of catchment transit time 
distributions.” Water Resources Research 
50(2): 969-985 

In a montane catchment in NE Scotland, storage dynamics and 
isotopic analysis of riparian peatlands showed that water stored in the 
peats were typically >80% of flow, including base flow and storm 
flow. The riparian areas were a key zone, acting as a regulator of 
stream water composition and transit time. 

Rudolph, J. C., C. A. Arendt, A. G. 
Hounshell, H. W. Paerl and C. L. Osburn 
(2020). “Use of Geospatial, Hydrologic, and 
Geochemical Modeling to Determine the 
Influence of Wetland-Derived Organic 
Matter in Coastal Waters in Response to 
Extreme Weather Events.” Frontiers in 
Marine Science 7 

Using a flood model, the contribution of Organic Matter (OM) from 
wetlands from a recent hurricane was quantified in Neuse River 
Estuary-Pamlico Sound (NRE-PS), in eastern North Carolina. The 
hurricane created a pulse of OM, with wetland contributing 48% and 
18% of annual DOC loads to the NRE and PS respectively. The study 
highlights the importance of rare large events on the transport of 
materials within the connected riverine-estuarine system.   

Bourgault, M. A., M. Larocque and M. Roy 
(2014). “Simulation of aquifer-peatland-river 
interactions under climate change.” Nordic 
Hydrology 45(3): 425-440 

In a peatland complex within Quebec Canada, a ground water (GW) 
model was used to investigate the role of the peatlands in supporting 
river baseflows. The model estimated that on average 77% of the 
annual river base flow originates from the peatland. Future climate 
scenarios both indicated reductions to the peat from the surrounding 
GW and then from the peat to the river. 

Vanderhoof, M. K., H. E. Distler, M. W. 
Lang and L. C. Alexander (2018). “The 
influence of data characteristics on detecting 
wetland/stream surface-water connections in 
the Delmarva Peninsula, Maryland and 
Delaware.” Wetlands Ecology and 
Management 26: 63-86 

Remote sensing techniques indicated springtime connections of 
wetlands and streams in a Delmarva Peninsula river. Using Lidar, 
Landsat and Worldview imagery, between 12-60% of wetlands 
connected to streams, indicating that 50-94% of the watershed 
contributed direct surface water runoff to stream flows. 
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Manfrin, A., M. Bunzel-Drüke, A. W. 
Lorenz, A. Maire, M. Scharf, O. Zimball and 
S. Stoll (2020). “The effect of lateral 
connectedness on the taxonomic and 
functional structure of fish communities in a 
lowland river floodplain.” Science of the 
Total Environment 719: 137169 

Using an 18-year data set of fish abundance, researchers in Germany 
compared fish communities in main channels and floodplain habitats. 
While the overall diversity and relative abundance of species 
decreased from the main channel to more isolated floodplain 
wetlands, the floodplain waterbodies showed distinct assemblages 
with different life histories and feeding strategies. This highlights the 
importance of including the complete spectrum of connected 
floodplains in conservation.    

Gordon, B. A., O. Dorothy and C. F. Lenhart 
(2020). “Nutrient Retention in Ecologically 
Functional Floodplains: A Review.” Water 
12(10) 

In a review of North American and European literature, the authors 
quantify the removal of nitrogen (N) and phosphorus (P) within 
floodplains. The review found that floodplains remove an average of 
200 kg-N/ha/yr of nitrate and 21 kg-P/ha/yr of total or particulate P 
and floodplain wetlands are most effective when located within river 
systems with higher nutrient loads. 

Atkinson, C. L., B. C. van Ee, Y. Lu and W. 
Zhong (2019). “Wetland floodplain flux: 
temporal and spatial availability of organic 
matter and dissolved nutrients in an 
unmodified river.” Biogeochemistry 142(3): 
395-411 

Within an unregulated, low gradient river in Alabama, extensive 
floodplains including the Sipsey Swamp were found to exert strong 
controls of organic materials and nutrients. Over two years at 10 sites, 
nutrients declined through the floodplains while the same floodplains 
supplied large amounts of organic material downstream. This 
research highlights the importance of floodplain complexes on the 
transport of organics and nutrients.   

Abrial, E., L. A. Espinola, A. n. Rabuffetti, 
M. F. Eurich, A. R. Paira, M. C. M. Blettler 
and M. L. Amsler (2019). “Variability of 
hydrological connectivity and fish dynamics 
in a wide subtropical-temperate floodplain.” 
River Research and Applications 35(9): 
1520-1529 

Researchers analyzed fish abundance and richness within a large 
floodplain system in the Parana River of Brazil over seven years.  
Fish dispersal, abundance and migration patterns during the different 
wet and dry seasons could largely be explained by the variation in 
connectivity of the floodplain habitats. The study demonstrates the 
importance of dynamic connection and isolation of floodplains on the 
makeup of the fish community. 

Martens, K. D. and P. J. Connolly (2014). 
“Juvenile Anadromous Salmonid Production 
in Upper Columbia River Side Channels with 
Different Levels of Hydrological 
Connection.” Transactions of the American 
Fisheries Society 143(3): 757-767 

Young salmon use side or off channel habitat that can connect and 
disconnect from the main river channel. This study looked at 
seasonally and continually connected side channels on the Upper 
Columbia river and measured salmon survival. Seasonally 
disconnected side channels resulted in improved survival for juvenile 
salmon during periods of disconnection. Upon reconnection with the 
main channel, the previous cohort would rejoin the main population 
while new young of year salmon would move into the side channels. 

De Giudici, G., D. Medas, R. Cidu, P. 
Lattanzi, F. Podda, F. Frau, J. C. l. Dick, D. 
Tetzlaff and C. Soulsby (2018). “Role of 
riparian wetlands and hydrological 
connectivity in the dynamics of stream 
thermal regimes.” Nordic Hydrology 49(3): 
634-647 

Riparian wetlands were analyzed for their important in determining 
stream temperatures. The authors found that in periods of high river 
and riparian wetland connectivity, the coupled saturation and 
connectivity decreased the relative importance of the riparian wetland 
for temperature regulation. Conversely, dry periods with less river 
and riparian floodplain hydrologic connectivity were found to be 
important periods of distinctions between river water and riparian 
wetland temperatures (e.g., lower temperature waters were coming 
from the riparian wetland to the riverine system). 
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Battauz, Y. S., S. B. Jose de Paggi and J. C. 
Paggi (2017). “Macrophytes as dispersal 
vectors of zooplankton resting stages in a 
subtropical riverine floodplain.” Aquatic 
Ecology 51(2): 191-201 

Aquatic plants located in floodplain open waters were analyzed as 
potential sources for zooplankton dispersal into the riverine food web. 
Six plant species from Brazilian floodplain lakes (at least three of 
which occur in North American open waters) were analyzed as 
sources of passive zooplankton dispersal. The roots and submerged 
parts of the plants were found to host 70 different zooplankton taxa in 
resting stage (i.e., awaiting the proper environmental cues to emerge). 
The authors concluded that aquatic plants in floodplain open waters 
are important downstream dispersers of zooplankton, which are 
important base components of riverine food webs. 

Vanderhoof, M. K., J. R. Christensen and L. 
C. Alexander (2016). “Patterns and drivers 
for wetland connections in the Prairie 
Pothole Region, United States.” Wetlands 
Ecology and Management 25(3): 1-23 

A remote sensing study in the Prairie Pothole Region of the US noted 
that precipitation-based expansion of surface waters connected 
wetlands and stream networks across a wide range, averaging from 
90-1400 m, depending on the ecoregion studied. Most of the wetland 
to stream connections occurred first through consolidation, where 
clusters of wetlands connected to each other, followed by the stream 
connection which occurred most frequently through a riparian 
wetland.   

Rees, G. N., R. A. Cook, N. S. P. Ning, P. J. 
McInerney, R. T. Petrie and D. L. Nielsen 
(2020). “Managed floodplain inundation 
maintains ecological function in lowland 
rivers.” Science of the Total Environment 
727: 138469 

An inundated floodplain riparian zone was shown to be highly 
connected to the river food web, with substantively higher dissolved 
organic carbon, seston carbon, nutrients (nitrogen), and chlorophyll 
levels downstream of where the flood waters reentered the river. 
Isotopic analyses demonstrated that floodplain-derived carbon was 
incorporated into the riverine food webs and was measurably found 
for up to four months following the flood peak. 

Macdonald, D. M. J., A. J. Dixon and D. C. 
Gooddy (2018). “Water and nitrate exchange 
between a managed river and peri-urban 
floodplain aquifer: Quantification and 
management implications.” Ecological 
Engineering 123: 226-237 

A study in the United Kingdom measured river water with high 
nitrate levels, which was noted to move into the riparian floodplain 
and recharge the local aquifer during overbank floods. The authors 
reported substantial microbially mediated denitrification occurred in 
the shallow riparian groundwater table due to carbon availability, 
oxygen-free conditions, and high nitrate concentrations. The lowland 
floodplain studied was able to annual remove substantial amounts of 
nitrate, though this was estimated to be three orders of magnitude less 
than the annual flux within the river. The floodplain nitrate reduction 
was noted to be locally important (e.g., for local drinking water 
supplies sourced from the river’s alluvial aquifer). 

Gillespie, J. L., G. B. Noe, C. R. Hupp, A. C. 
Gellis and E. R. Schenk (2018). “Floodplain 
Trapping and Cycling Compared to 
Streambank Erosion of Sediment and 
Nutrients in an Agricultural Watershed.” 
Water Resources Bulletin 54(2 (Apr 2018)): 
565 

The authors analyzed sedimentation, nutrient loads, and 
mineralization of a floodplain in an agricultural watershed in the 
Valley and Ridge physiographic province of the US. All study 
reaches were areas of net sediment deposition (e.g., river-borne 
sediments were deposited), had high nitrogen (N) and phosphorus (P) 
deposited by the river, high mineralization of N and P, and high 
concentrations of N and P in the floodplain soils. They conclude that 
the net sediment and nutrient trapping functions of their study 
watershed floodplains (Smith Creek) benefit downgradient water 
quality. 
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Webb, J. R., I. R. Santos, B. Robson, B. e. 
Macdonald, L. Jeffrey and D. T. Maher 
(2017). “Constraining the annual 
groundwater contribution to the water 
balance of an agricultural floodplain using 
radon: The importance of floods.” Water 
Resources Research 53(1): 544-562 

Groundwater dynamics of an extensively drained agricultural 
floodplain was analyzed using radon to create a water budget. 
Flooding in the riparian zone occurred only 12% of the study period 
but contributed 72-76% of the groundwater discharge (to the river 
network). Annually, groundwater discharge contributed 30-80% of 
the total surface water discharged to the river system, which the 
authors propose is related to the high density of constructed drainage 
features (12.4 km per km2) altering the hydrology of the floodplain. 

Scott, D. T., R. F. Keim, B. L. Edwards, C. 
N. Jones and D. E. Kroes (2014). 
“Floodplain biogeochemical processing of 
floodwaters in the Atchafalaya River Basin 
during the Mississippi River flood of 2011.” 
Journal of Geophysical Research: 
Biogeosciences 119(4): 537-546 

The Atchafalaya River and floodplain was extensively flooded during 
the 2011 Lower Mississippi River flood event, with up to half of the 
water in the channel moving into the floodplain. The authors analyzed 
river water over the flood event and found that significant nitrate 
reduction (around 75%) occurred within the floodplain. The 
floodplain system was found to reduce total nitrate by 16.6% over the 
course of the flood event. 

Quin, A. and G. Destouni (2018). “Large-
scale comparison of flow-variability 
dampening by lakes and wetlands in the 
landscape.” Land Degradation & 
Development 29(10): 3617-3627 

A modeling study in Sweden used data from 82 catchments from 
1984-2013 to investigate the floodwater attenuation capacity of 
floodplain wetlands and lakes. The storage function of lakes and 
floodplain wetlands lakes was responsible for decreasing the 
variability (e.g., “flashiness”) of streamflow. Watersheds comprised 
of approximately 15% lakes and 0.5% floodplain wetlands decreased 
the streamflow variability to around 10-15%, compared to areas 
without lakes or floodplain wetlands, which had approximately 20-
25% higher streamflow variabilities due to low landscape water 
storages. 

Dwivedi, D., B. Arora, C. I. Steefel, B. 
Dafflon and R. Versteeg (2018). “Hot Spots 
and Hot Moments of Nitrogen in a Riparian 
Corridor.” Water Resources Research 54(1): 
205-222 

Groundwater within the Colorado River riparian zone was modeled to 
typically flow towards the river, except during flood stages when 
oxygenated and nitrate-laden river water overtops the banks and then 
infiltrates downwards in the riparian area. Riparian area sediments 
differ in their nitrate removal capacity, and reduced zones along the 
river (or areas of low oxygen, as found in most wetland soils) were 
found to have approximately 70% greater nitrate removal capacity 
than non-reduced zones. However, the nitrate removal capacity of the 
reduced zones varied based on the oxygen content of the infiltrating 
water from 70% greater than non-reduced zones to ~5% greater than 
non-reduced zones.   
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Vanderhoof, M. K., H. E. Distler, M. W. 
Lang and L. C. Alexander (2017). “The 
influence of data characteristics on detecting 
wetland/stream surface-water connections in 
the Delmarva Peninsula, Maryland and 
Delaware.” Wetlands Ecology and 
Management 26: 63-86 

A remote-sensing study in Maryland and Delaware found that streams 
and depressional wetlands were surface-water connected in spring 
2015. The range reported in the large studied watershed, 12-60% of 
wetlands by count and 21-93% of wetlands by area, varied due to the 
spatial and temporal wetland and stream characteristics and the 
accuracy and resolution of the input remote-sensing datasets. 
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Park, J., D. Wang and M. Kumar (2020). 
“Spatial and temporal variations in the 
groundwater contributing areas of inland 
wetlands.” Hydrological Processes 34(5) 

Hydrologic connections between groundwater and wetlands were 
measured in a study in the southern US. The study noted that a) 
groundwater contributing areas to wetlands often have a different 
extent and shape than topographic contributing areas, and b) 
groundwater-fed wetlands in the study area were found to expand 
their groundwater contributing area (and received greater 
groundwater) during dry periods which could influence baseflow in 
downstream waters (depending on hydraulic gradients).  

Wang, N., X. Zhang and X. Chu (2019). 
“New Model for Simulating Hydrologic 
Processes under Influence of Surface 
Depressions.” Journal of Hydrologic 
Engineering 24(5): 
https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001772 

In a North Dakota study, a model was developed to assess the effects 
of depressions on rainfall-runoff processes and mechanisms of 
dynamic water release from depressions affecting down-gradient 
systems. The hydrologic model demonstrated that depressions 
captured and held back precipitation from down-gradient systems 
such that the majority of the study area did not contribute water 
directly to the stream system. This finding supports the hydrologic lag 
and sink functions of depressions (wetlands) in attenuating storm 
flows and maintaining baseflows.   

Bugna, G. C., J. M. Grace and Y. P. Hsieh 
(2020). “Sensitivity of using stable water 
isotopic tracers to study the hydrology of 
isolated wetlands in North Florida.” Journal 
of Hydrology 580: 124321 

In a North Florida water isotopic study of “isolated wetlands,” the 
authors found that so-called isolated wetlands stored and evaporated 
rainwater (thereby retaining water and performing hydrological lag 
and sink functions). A sinkhole (pond) was found to connect to both 
groundwater and precipitation. Wetlands and sinkholes were 
measurably important to quantifying and determining hydrological 
budgets for forested watersheds.  

Lewis, D. B. and S. J. Feit (2015). 
“Connecting carbon and nitrogen storage in 
rural wetland soil to groundwater abstraction 
for urban water supply.” Global Change 
Biology 21(4): 1704-1714 

Depressional wetlands were hydrologically affected by groundwater 
withdrawals for urban use (e.g., drinking water). Groundwater 
withdrawals diminished wetland hydroperiods, which in turn 
negatively affected carbon, nitrogen, and soil organic matter stocks in 
the wetlands (e.g., carbon sink functions of wetlands were 
diminished).  

Shook, K., S. Papalexiou and J. W. Pomeroy 
(2021). “Quantifying the effects of Prairie 
depressional storage complexes on drainage 
basin connectivity.” Journal of Hydrology 
593: 125846 

In a Canadian hydrologic modeling study, Prairie Pothole depression 
water storage was found to control the fraction of the watershed that 
contributes flow to down-gradient stream systems. The effects of 
depressions varied: when there were few extant depressions, their size 
and location on the landscape was most important. In systems with 
greater depression abundance, depressions still controlled the 
relationship between water storage and the fraction of the watershed 
contributing surface flow down-gradient but the spatial location 
within the watershed decreased in importance.  

Vasic, F., C. Paul, V. Strauss and K. 
Helming (2020). “Ecosystem Services of 
Kettle Holes in Agricultural Landscapes.”  
10(9) 

Kettle holes are glacially formed wetlands in Europe similar to the 
North American prairie potholes. A European literature review 
determined kettle hole wetlands provided important ecosystem 
services, including flood control and hydrological cycling, 
biogeochemical functions, and habitat. Agricultural activities around 
kettle hole wetlands were noted to potentially affect the provisioning 
of wetland ecosystem services.  

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001772
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001772
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Nasab, M. T. and X. Chu (2020). “Macro-
HyProS: A new macro-scale hydrologic 
processes simulator for depression-
dominated cold climate regions.” Journal of 
Hydrology 580: 124366 

A hydrological modeling study of the Red River of the North 
(northern Great Plains) found that (wetland) depression-dominated 
areas controlled (or regulated) the connectivity of large areas of the 
basin via storage affecting surface-driven runoff. This was 
particularly important in the early spring months (i.e., during periods 
of rain-on-snow events, snowmelt, etc.).   

Michelson, C., R. G. Clark and C. A. 
Morrissey (2018). “Agricultural land cover 
does not affect the diet of Tree Swallows in 
wetland-dominated habitats.” The Condor 
120(4): 751-764 

Feeding habits of tree swallows, an insectivorous bird, were analyzed 
in a Canadian prairie landscape. Tree swallows were found to 
specialize in feeding on aquatic insects in wetland-dominated habitats 
(i.e., those insects emerging from wetlands). Agricultural land cover 
(e.g., grasslands, crops) within the study area did not affect tree 
swallow foraging success, though tree swallows were larger and in 
better condition in grasslands than cropped landscapes.  

Martin, A. R., M. L. Soupir and A. L. Kaleita 
(2019). “Seasonal and intra-event nutrient 
levels in farmed Prairie Potholes of the Des 
Moines Lobe.” Transactions of the ASABE 
62(6): 1607-1617 

Farmed wetlands (drained and under corn-soybean rotation) in the 
Des Moines Lobe of Iowa were found to reduce nitrate that entered 
into the wetland in 85% of the multi-day inundation events. 
Phosphorous was found to increase in the wetland water column over 
the inundation period (e.g., possibly through release from phosphorus 
sorbed onto soil particles), meaning that in addition to serving as 
nitrate removal areas, farmed wetlands were sources of total and 
soluble reactive phosphorus.   

Shook, K., J. Pomeroy and G. van Der Kamp 
(2015). “The transformation of frequency 
distributions of winter precipitation to spring 
streamflow probabilities in cold regions; case 
studies from the Canadian Prairies.” Journal 
of Hydrology 521: 395-409 

Large-scale analyses of climate and basin processes contributing to 
streamflow in the Canadian Prairies were investigated. The authors 
found three major controls on streamflow, including a) the creation 
and distribution of the spring snowpack, b) the spring melt of the 
snowpack over frozen ground, and c) the subsequent filling and 
spilling of depressional (wetland) storage that connected fields, 
ponds, wetlands, and down-gradient lake systems.   

Al Sayah, M. J., R. Nedjai, K. Kaffas, C. 
Abdallah and M. Khouri (2019). “Assessing 
the Impact of Man-Made Ponds on Soil 
Erosion and Sediment Transport in 
Limnological Basins.” Water 11(12): 2526 

Ponds, open-water systems in a French study, were analyzed in a 
modeling study to determine their effects on erosion and sediment 
transport at the watershed scale. The presence of ponds controlled 
sediment transport and erosion risk, with ~78% of the basin 
corresponding to no- or low-erosion risk zones and 22% noted as 
moderate to high-erosion risk. Without ponds, <2% of the basin was 
determined to be no- or low-erosion risk, while 98% was modeled as 
moderate to high erosion risk. Without ponded systems, the sediment 
pattern completely shifted to zones of higher sediment yields.  

Kappas, I., G. Mura, D. Synefiaridou, F. 
Marrone, G. Alfonso, M. Alonso and T. J. 
Abatzopoulos (2017). “Molecular and 
morphological data suggest weak 
phylogeographic structure in the fairy shrimp 
Streptocephalus torvicornis (Branchiopoda, 
Anostraca).” Hydrobiologia 801(1): 21-32 

A pan-European study analyzed the genetic structure of a fairy 
shrimp found in temporary ponds. Their results demonstrated there 
was unhindered gene flow and widespread connectivity between 
populations across the study area. One of five hypothesized reasons 
includes frequent dispersal by avian species throughout the range.  
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Wendt, A., C. A. Haas, T. Gorman and J. H. 
Roberts (2021). “Metapopulation genetics of 
endangered reticulated flatwoods 
salamanders (Ambystoma bishopi) in a 
dynamic and fragmented landscape.” 
Conservation Genetics 

Population dynamics of the reticulated flatwoods salamander, found 
in forested ponds and riparian zones in the southeastern U.S., were 
analyzed. Distance between ponds was found to be an important 
factor controlling metapopulation dynamics, with very low migration 
among ponds further than 400 m.  

Yeo, I. Y., M. W. Lang, S. Lee, G. W. 
McCarty, A. M. Sadeghi, O. Yetemen and C. 
Huang (2019). “Mapping landscape-level 
hydrological connectivity of headwater 
wetlands to downstream waters: A geospatial 
modeling approach - Part 1.” Science of the 
Total Environment 653: 1546-1556 

A modeling study analyzed the hydrologic connectivity of so-called 
geographically isolated wetlands of the Mid-Atlantic region of the 
US. Wetland inundation and stream flows were well correlated, 
demonstrating a similar relationship. Wetlands with longer flooding 
duration were more strongly correlated with stream discharge than 
shorter-duration inundated wetlands. The authors conclude that the 
wetlands function in aggregate and that both the streams and the 
wetlands of their 300 km2 study area were connected via 
groundwater pathways.  

Vanderhoof, M. K., J. R. Christensen and L. 
C. Alexander (2016). “Patterns and drivers 
for wetland connections in the Prairie 
Pothole Region, United States.” Wetlands 
Ecology and Management 25(3): 1-23 

A remote-sensing study (1990-2011) quantified surface-water 
connections between streams and wetlands across the US Prairie 
Pothole Region. They reported surface-water connections varied 
across ecoregions of the Prairie Pothole Region, averaging 90-1400 
m. Connections were controlled by the arrangement and abundance of 
wetlands and surface-water expansion.  

Neff, B. P. and D. O. Rosenberry (2017). 
“Groundwater Connectivity of Upland-
Embedded Wetlands in the Prairie Pothole 
Region.” Wetlands 38(1): 51-63 

Local to regional groundwater connectivity between wetlands and 
other waters in the Prairie Pothole Region of North Dakota was 
modeled. Sand layers were found to facilitate wetland connectivity 
through groundwater, whereas water-table mounds were found to 
retard connectivity if completely surrounding the wetland or wetland 
complex. In the absence of restricting water-table mounds, 
connectivity was modeled to occur.  

Golden, H. E., H. A. Sander, C. R. Lane, C. 
Zhao, K. Price, E. D’Amico and J. R. 
Christensen (2015). “Relative effects of 
geographically isolated wetlands on 
streamflow: a watershed-scale analysis.” 
Ecohydrology 9(1): 21-38 

A modeling study in North Carolina found that geographically 
isolated wetlands influenced streamflow. Increased water storage 
associated with increased geographically isolated wetland extent 
decreased streamflow. The distance of geographically isolated 
wetlands was positively associated with streamflow, affecting (or 
reflecting) the movement of water across the landscape.  

Brooks, R. J., D. M. Mushet, M. Vanderhoof, 
S. G. Leibowitz, J. R. Christensen, B. P. 
Neff, D. Rosenberry, W. D. Rugh and L. C. 
Alexander (2018). “Estimating Wetland 
Connectivity to Streams in the Prairie 
Pothole Region: An Isotopic and Remote 
Sensing Approach.” Water Resources 
Research 54(2): 955-977. 
 

A water isotope study in a North Dakota watershed found that Prairie 
Pothole wetlands had high evaporation rates, and that groundwater 
typified winter precipitation-based recharge. However, the 
evaporative isotopic signal in the steam indicated that surficial flow 
from wetlands contributed to and connected to the stream network 
throughout the summer.  
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Reference Plain Text Summary 

Ameli, A. A. and I. F. Creed (2019). “Does 
Wetland Location Matter When Managing 
Wetlands for Watershed-Scale Flood and 
Drought Resilience?” Journal of the 
American Water Resources Association 
55(3): 529-542 

A Canadian modeling study in the Prairie Pothole Region found that 
wetland loss affected streamflow, increasing peak flows from storm 
events that led to major down-gradient flooding in cities. 
Concurrently, wetland losses decreased base flow. Wetlands closer to 
the stream network were found to be disproportionately important to 
peak flow attenuation, while wetlands were found to be important 
controllers of baseflow regardless of their location vis-à-vis the 
stream network. 

McKenna, O. P., S. R. Kucia, D. M. Mushet, 
M. J. Anteau and M. T. Wiltermuth (2019). 
“Synergistic Interaction of Climate and 
Land-Use Drivers Alter the Function of 
North American, Prairie-Pothole Wetlands.” 
Sustainability 11(23): 6581 

Twenty-five wetland basins were modeled over a 70-year period to 
ascertain the influence of both climate and land-use drivers on floods. 
During an extremely wet period (1993-2000), Prairie Pothole wetland 
drainage decreased watershed-scale water storage, resulting in 10 
times the volume of water transiting towards local stream networks.  

Bam, E., A. M. Ireson, G. Kamp and J. 
Hendry (2020). “Ephemeral Ponds: Are They 
the Dominant Source of Depression‐Focused 
Groundwater Recharge?” Water Resources 
Research 56(3): e2019WR026640 

Prairie wetland ponds within a Canadian study area are sources of 
recharge to confined groundwater aquifers providing water to farm 
and rural communities. An isotopic analysis found that permanently 
inundated wetland ponds were not the dominant groundwater 
recharge source. Ephemerally inundated wetlands were found to have 
identical isotopic signatures as the groundwater in aquifers. 
Ephemeral wetlands were the dominant source of groundwater 
recharge.  

Ameli, A. and I. F. Creed (2019). 
“Groundwaters at Risk: Wetland Loss 
Changes Sources, Lengthens Pathways, and 
Decelerates Rejuvenation of Groundwater 
Resources.” Journal of the American Water 
Resources Association 55(2): 294-306 

A modeling analysis of a Canadian study area explored the 
connections and effects of wetlands, and wetland losses, on local and 
regional waters. Wetland losses decreased contributing areas 
affecting baseflows of local surface waters. Modeled wetland losses 
increased the contributions to regional surface waters through 
subsurface hydrologic connections, which increased regional 
baseflows.  

Sampath, P. V., H. Liao, Z. K. Curtis, P. J. 
Doran, M. E. Herbert, C. A. May and S. Li 
(2015). “Understanding the Groundwater 
Hydrology of a Geographically-Isolated 
Prairie Fen: Implications for Conservation.” 
PLoS ONE 10(10): e0140430 

An analysis of a geographically isolated Michigan fen wetland 
determined the wetland was groundwater-fed by four sources: local 
recharge, regional recharge, a regional groundwater mound, and a 
nearby pond. The authors conclude a 3-dimensional groundwater 
‘pipeline’ connects this fen to other fen cluster throughout southern 
Michigan, an interconnected and larger network of fens.  

Marton, J. M., I. F. Creed, D. B. Lewis, C. R. 
Lane, N. B. Basu, M. J. Cohen and C. B. 
Craft (2015). “Geographically Isolated 
Wetlands are Important Biogeochemical 
Reactors on the Landscape.” BioScience 
65(4): 408-418 

The authors conducted a literature review of biogeochemical 
functions performed by geographically isolated wetlands. They found 
these wetlands provided biogeochemically mediated ecosystem 
services such as sediment and carbon retention, nutrient 
transformations, and water quality improvement that maintain the 
integrity of US waters.  
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Reference Plain Text Summary 
Cohen, M. J., I. F. Creed, L. Alexander, N. 
B. Basu, A. J. K. Calhoun, C. Craft, E. 
D’Amico, E. Dekeyser, L. Fowler, H. E. 
Golden, J. W. Jawitz, P. Kalla, L. K. 
Kirkman, C. R. Lane, M. Lang, S. G. 
Leibowitz, D. B. Lewis, J. Marton, D. L. 
McLaughlin, D. M. Mushet, H. Raanan-
Kiperwas, M. C. Rains, L. Smith and S. C. 
Walls (2016). “Do geographically isolated 
wetlands influence landscape functions?” 
Proceedings of the National Academy of 
Sciences of the United States of America 
113(8): 1978-1986 

Geographically isolated wetlands across the conterminous US were 
described as existing along a connectivity continuum. They were 
found to provide a disproportionately large fraction of wetland edges 
where many biogeochemical functions were enhanced. They also 
found that the slow (e.g., through groundwater) or episodic (e.g., 
through surface water) nature of wetland hydrologic connectivity to 
other waters provided the conditions for biogeochemical processing, 
sediment retention, and both biological and hydrological functioning.  

Flint, S. A. and W. H. McDowell (2015). 
“Effects of headwater wetlands on dissolved 
nitrogen and dissolved organic carbon 
concentrations in a suburban New 
Hampshire watershed.” Freshwater Science 
34(2): 456-471 

Ten headwater wetlands, a possible type of non-floodplain wetland 
system, were analyzed in New Hampshire. The headwater wetlands 
were found to decrease nitrate and increase dissolved organic carbon 
and nitrogen concentrations, and to vary the seasonal values of total 
dissolved nitrogen. These functions would affect the downgradient 
system.  

Denver, J. M., S. W. Ator, M. W. Lang, T. R. 
Fisher, A. B. Gustafson, R. Fox, J. W. Clune 
and G. W. McCarty (2014). “Nitrate fate and 
transport through current and former 
depressional wetlands in an agricultural 
landscape, Choptank Watershed, Maryland, 
United States.” Journal of Soil and Water 
Conservation 69(1): 1-16 

Depressional wetlands in the Choptank River, a tributary to the 
Chesapeake Bay, were analyzed for biogeochemical processing. 
Natural wetlands had conditions conducive to nitrogen pollution 
removal for longer than farmed wetlands or restored wetlands but 
were generally groundwater-connected and were not exposed to 
nitrogen-laden waters; they were found to provide water to streams 
that diluted pollution concentrations. Farmed wetlands and restored 
wetlands that were exposed to nitrate pollution through groundwater 
removed substantial amounts of nitrate, but contributions to water 
quality improvement hinged on exposure to polluted waters.   

Rajib, A., H. E. Golden, C. R. Lane and Q. 
Wu (2020). “Surface depression and wetland 
water storage improves major river basin 
hydrologic predictions.” Water Resources 
Research 56(7): e2019WR026561 

In an Upper Mississippi River Basin study, 455,000 depressional 
wetlands and open waters were incorporated into a hydrologic model 
and significantly affected and improved streamflow measures; these 
waters further improved the remotely sensed water yield across 70% 
of the study area. These results demonstrate the significant influence 
of wetlands and open waters on stream flow, and that wetlands and 
open waters affect landscape-scale hydrological conditions (e.g., 
rootzone wetness).  

Schmadel, N. M., J. W. Harvey, G. E. 
Schwarz, R. B. Alexander, J. D. Gomez-
Velez, D. Scott and S. W. Ator (2019). 
“Small Ponds in Headwater Catchments Are 
a Dominant Influence on Regional Nutrient 
and Sediment Budgets.” Geophysical 
Research Letters 46(16): 9669-9677 

Small ponds and impoundments across the Northeastern US were 
found to be important biogeochemical and physical sinks, retaining 
34% of nitrogen, 69% of all phosphorus, and 12% of sediments in the 
study area. Their influence was dominant in headwater catchments, 
where they contained 54% of nitrogen, 85% of phosphorus, and 50% 
of sediments decreasing loads and thereby affecting downstream 
waters.  
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Nasab, M. T., V. Singh and X. Chu (2017). 
“SWAT Modeling for Depression-
Dominated Areas: How Do Depressions 
Manipulate Hydrologic Modeling?” Water 
9(1): w9010058 

Hydrologic modeling in a large watershed in North Dakota found that 
depression (e.g., Prairie Potholes) storage exerted a gate-keeper effect 
on downstream flows, decreasing surface runoff contributing to 
stream flow during low-flow scenarios. Conversely, during high 
precipitation scenarios, depressions (hydrologic gatekeepers) 
increased surface runoff peak flows.  

Green, D. I. S., S. M. McDeid and W. G. 
Crumpton (2019). “Runoff Storage Potential 
of Drained Upland Depressions on the Des 
Moines Lobe of Iowa.” JAWRA Journal of 
the American Water Resources Association 
55(3): 543-558 

Drained depressions (possibly Prairie Pothole wetlands in farmed 
landscapes) in Iowa were found to store up to 903.5 million m3 of 
runoff. Runoff from a 1-yr, 24-hr event would likely exhaust this 
storage, while rainfall runoff from a 5-yr, 24-hr event would exceed 
the capacity of the drained depressional storage.  

Thorslund, J., M. J. Cohen, J. W. Jawitz, G. 
Destouni, I. F. Creed, M. C. Rains, P. Badiou 
and J. Jarsjö (2018). “Solute evidence for 
hydrological connectivity of geographically 
isolated wetlands.” Land Degradation & 
Development 29(11): 3954-3962 

In an analysis across North America, geographically isolated 
wetlands were found to generate runoff at 1.2x the mean catchment 
rate which implies they are well-connected watershed-scale sources 
of water to down-gradient systems.  

McKenna, O. P., D. M. Mushet, D. O. 
Rosenberry and J. W. LaBaugh (2017). 
“Evidence for a climate-induced 
ecohydrological state shift in wetland 
ecosystems of the southern Prairie Pothole 
Region.” Climatic Change 145(3): 273-287 

Changing precipitation patterning in the Prairie Pothole Region has 
resulted in an increased number of ponded wetlands and open waters, 
increases in runoff to wetlands altering wetland solute concentrations, 
tile drainage connecting wetlands to down-stream systems, and 
increases in stream flows.  

Evenson, G. R., H. E. Golden, C. R. Lane, D. 
L. McLaughlin and E. D’Amico (2018). 
“Depressional Wetlands Affect Watershed 
Hydrological, Biogeochemical, and 
Ecological Functions.” Ecological 
Applications 28(4): 953-966 

In a North Dakota hydrologic modeling study, the influence of non-
floodplain wetlands on down-gradient stream characteristics was 
analyzed. Small depressional wetlands (<3.0 ha) significantly affected 
inundation characteristics (inundated area, hydrologic residence time, 
and inundation heterogeneity). Larger non-floodplain wetlands were 
gatekeepers, controlling flows to the stream network. Scenarios of 
wetland loss based on distance (30-m and 450-m from streams) 
decreased inundated areas and inundation residence time (for 
biogeochemical processing). Depression wetlands also attenuated 
peak flows, decreasing the probability of downstream flooding.  

Schofield, K. A., L. C. Alexander, C. E. 
Ridley, M. K. Vanderhoof, K. M. Fritz, B. C. 
Autrey, J. E. DeMeester, W. G. Kepner, C. 
R. Lane, S. G. Leibowitz and A. I. Pollard 
(2018). “Biota Connect Aquatic Habitats 
throughout Freshwater Ecosystem Mosaics.” 
Journal of the American Water Resources 
Association 54(2): 372-399 

A review paper wherein freshwater streams, rivers, and wetlands 
were noted to form a ‘freshwater ecosystem mosaic’ that sustained 
aquatic life through connectivity and biotic linkages of organisms 
within and among these components. The biotic connectivity of these 
aquatic systems was considered to be critical to the ecological 
integrity of freshwaters.  
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Ameli, A. A. and I. F. Creed (2017). 
“Quantifying hydrologic connectivity of 
wetlands to surface water systems.” Hydrol. 
Earth Syst. Sci. 21: 1791-1808 

In a modeled analysis in the North American Prairie Pothole Region, 
geographically isolated wetlands were found to have both “fast” 
surface-water connections and “slow” subsurface water connections 
to downgradient systems. Subsurface connections linked 
geographically isolated wetlands from throughout the watershed to 
the flowing water network, while surface water connections mainly 
emanated from large precipitation events and originated from 
wetlands closer to the stream network.  

Mekonnen, B. A., K. A. Mazurek and G. 
Putz (2016). “Incorporating landscape 
depression heterogeneity into the Soil and 
Water Assessment Tool (SWAT) using a 
probability distribution.” Hydrological 
Processes 30(13): 2373-2389 

A hydrologic modeling study in the Canadian Prairie Pothole Region 
contrasted the effects of models with multiple small landscape 
(wetland) depressions versus a more typical and coarser modeling 
approach. Incorporating landscape depressions into the model 
improved streamflow estimates, suggesting that the hydrologic effects 
of depressions have an effect on down-gradient stream system 
characteristics.  

Nitzsche, K. N., T. Kalettka, K. Premke, G. 
Lischeid, A. Gessler and Z. E. Kayler (2017). 
“Land-use and hydroperiod affect kettle hole 
sediment carbon and nitrogen 
biogeochemistry.” Science of The Total 
Environment 574: 46-56 

European kettle holes, like Prairie Potholes in North America, are 
wetland systems formed by past glaciation. An isotopic analysis of 51 
kettle holes in Germany determined that in addition to processing 
organic matter from the surrounding area, kettle holes were coupled 
with shallow groundwater and were not closed hydrological systems 
but systems that connected with groundwater.  

Golden, H. E., A. Rajib, C. R. Lane, J. R. 
Christensen, Q. Wu and S. Mengistu (2019). 
“Non-floodplain Wetlands Affect Watershed 
Nutrient Dynamics: A Critical Review.” 
Environmental Science & Technology 
53(13): 7203-7214 

A review paper on the influence of non-floodplain wetlands on water 
quality at watershed scales. Includes analysis of how including non-
floodplain wetlands in a Midwestern-US watershed-scale nutrient 
model markedly changes the predicted nutrient levels in down-
gradient systems.  

Evenson, G. R., H. E. Golden, C. R. Lane 
and E. D’Amico (2015). “Geographically 
isolated wetlands and watershed hydrology: 
A modified model analysis.” Journal of 
Hydrology 529, Part 1: 240-256 

In a hydrologic modeling study in a ~202 km2 North Carolina 
watershed, the authors directly analyzed the watershed-scale 
hydrologic effects of geographically isolated wetlands on stream 
characteristics. They found that geographically isolated wetlands: 1) 
seasonally affected stream baseflow, 2) decreased or attenuated storm 
peak flows, and 3) quantifiably affected the water balance (or the 
movement of water through various parts of the water cycle) at the 
watershed scale.  
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Appendix C3: Additional References  

Appendix C3i: Reference Review Process and Findings 

As discussed in section I.C.v of this Technical Support Document, reviewers from the U.S. 
Environmental Protection Agency’s Office of Research and Development (ORD) identified an additional 
37 papers in October 2021 that were not captured during the initial screening process. Additionally, the 
agencies solicited for and received additional scientific literature and references published since 2014 
from the public during the notice and comment process. The agencies reviewed the 37 papers noted in 
section I.C.v (and cited in Appendix C3ii of the Technical Support Document for the Proposed Rule) as 
well as the literature submitted by the public, assessing first whether the literature was peer-reviewed and 
published in or after 2014, then (for the submitted literature) if it had already been included in Section 
I.C. (Updates to the Literature since Publication of the Science Report). Then, the agencies read each of 
the additional submitted papers that had been peer-reviewed and published in or after 2014 to discern if 
the paper provided updates on the “…scientific understanding about the connectivity and mechanisms by 
which streams and wetlands, singly or in aggregate, affect the physical, chemical, and biological integrity 
of downstream waters.” Science Report at ES-1. To wit, the agencies assessed each paper for the charge 
questions listed in section I.C.i. (Update Process):  

A. What are the physical, chemical, and biological connections to and effects of ephemeral, 
intermittent, and perennial streams on downstream waters (e.g., rivers, lakes, reservoirs, 
estuaries)?   

B. What are the physical, chemical, and biological connections to and effects of riparian or 
floodplain wetlands and open waters (e.g., riverine wetlands, oxbow lakes) on downstream 
waters?   

C. What are the physical, chemical, and biological connections to and effects of wetlands 
and open waters in non-floodplain settings (e.g., most prairie potholes, vernal pools) on 
downstream waters?   

Subsequently, the agencies assessed whether each paper provided findings relevant to the major 
conclusions of the Science Report (see sections I.A.i and I.A.ii), and determined this by aquatic system 
type as reported in the paper.  

Streams: The scientific literature unequivocally demonstrates that streams, individually or 
cumulatively, exert a strong influence on the integrity of downstream waters. All tributaries, 
regardless of size or flow duration, are physically, chemically, and biologically connected to 
downstream waters and strongly influence their function. 

Floodplain Wetlands and Open Waters: Wetlands and open waters in riparian areas and 
floodplains are physically, chemically, and biologically integrated with rivers via functions that 
improve downstream water quality. These systems buffer downstream waters from pollution and 
are essential components of river food webs. 

Non-Floodplain Wetlands and Open Waters: Wetlands and open waters located outside of 
riparian areas and floodplains, even when lacking surface water connections, provide numerous 
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functions that could affect the integrity of downstream waters. Some benefits of these wetlands 
are due to their relative isolation rather than their connections. 

The agencies chose from the following review responses: “supports findings,” “refutes findings,” or 
“cannot be discerned.”  

The agencies reviewed and assessed the citations they received during the public comment period. After 
assessing the publicly submitted citations as well as those 37 citations described in section I.C.v (i.e., 
those added to the Technical Support Document in October 2021), the agencies determined that 80 new 
peer-reviewed references from the scientific literature had been published in or after 2014 needed to be 
assessed for their findings relevant to the Science Report’s conclusions. The agencies did not include 
those papers which had not been peer-reviewed (or for which peer-review could not be ascertained) or 
those papers that were published prior to 2014 in this review, as they did not meet the criteria established 
for inclusion as part of the initial screening process. However, such papers were generally considered for 
relevance for other aspects of the Technical Support Document for the final rule. Some citations provided 
to the agencies were already part of the agencies’ initial screening process (as described in section I.C of 
this Technical Support Document) and thus were not included in this review of additional references. 

Specific to the 37 citations in Appendix C3ii (and noted below), the agencies were able to discern the 
relevant typology addressed in the paper in 31 cases (19 stream systems, five floodplain wetlands and 
open waters, seven non-floodplain wetlands and open waters). Seventeen of the papers with a determined 
typology from Appendix C3ii had sufficient information in the citation for the agencies to characterize a 
conclusion regarding the findings of the Science Report. In each case where a conclusion was reached 
(i.e., all 17 citations), the agencies determined that the Science Report findings were supported by the 
literature (11 stream systems, three floodplain wetlands and open waters, and three non-floodplain 
wetlands and open waters papers; see Table 1).  

Table C-8: References Relevant to the Conclusions of the Science Report (of the 37 Identified by the 
Agencies in October 2021 as Not Captured During the Screening Process). Seventeen of the 37 
citations noted by ORD scientists as potentially relevant but that were not captured during the initial 
screening process (see section I.C.iv) were found to have sufficient information to discern system 
typology (e.g., stream; non-floodplain wetlands and open waters; or floodplain wetlands and open waters) 
as well as a determination of whether the paper supports, refutes, or neither supports nor refutes the 
findings of the Science Report. In all 17 cases, the papers were found by ORD reviewers to support the 
findings of the Science Report.  

Citation 
Aquatic 
System 
Type 

Science 
Report 

Findings 

Acworth, R.I., G.C. Rau, M.O. Cuthbert, K. Leggett, and M.S. Andersen. 
2021. “Runoff and focused groundwater-recharge response to flooding 
rains in the arid zone of Australia.” Hydrogeology Journal 29 (2): 
737-764. https://doi.org/10.1007/s10040-020-02284-x. 

Streams Supports 

https://doi.org/10.1007/s10040-020-02284-x


Page 556 of 564 

Citation 
Aquatic 
System 
Type 

Science 
Report 

Findings 

Arce, M.I., M.d.M. Sánchez-Montoya, and R. Gómez. 2015. “Nitrogen 
processing following experimental sediment rewetting in isolated 
pools in an agricultural stream of a semiarid region.” Ecological 
Engineering 77: 233-241. 
https://doi.org/10.1016/j.ecoleng.2015.01.035. 

Streams Supports 

Arora, B., M. Burrus, M. Newcomer, C.I. Steefel, R.W.H. Carroll, D. 
Dwivedi, W. Dong, K.H. Williams, and S.S. Hubbard. 2020. 
“Differential C-Q Analysis: A New Approach to Inferring Lateral 
Transport and Hydrologic Transients Within Multiple Reaches of a 
Mountainous Headwater Catchment.” Frontiers in Water 2 (24). 
https://www.frontiersin.org/article/10.3389/frwa.2020.00024. 

Streams Supports 

Baulch, H., C. Whitfield, J. Wolfe, N. Basu, A. Bedard-Haughn, K. 
Belcher, R. Clark, G. Ferguson, M. Hayashi, A. Ireson, P. Lloyd-
Smith, P. Loring, J.W. Pomeroy, K. Shook, and C. Spence. 2021. 
“Synthesis of science: findings on Canadian Prairie wetland 
drainage.” Canadian Water Resources Journal / Revue canadienne 
des ressources hydriques: 1-13. 
https://doi.org/10.1080/07011784.2021.1973911. 

Streams Supports 

Carroll, R.W.H., D. Gochis, and K.H. Williams. 2020. “Efficiency of the 
Summer Monsoon in Generating Streamflow Within a Snow-
Dominated Headwater Basin of the Colorado River.” Geophysical 
Research Letters 47 (23): e2020GL090856. 
https://doi.org/10.1029/2020GL090856. 

Streams Supports 

Crabot, J., C.P. Mondy, P. Usseglio-Polatera, K.M. Fritz, P.J. Wood, M.J. 
Greenwood, M.T. Bogan, E.I. Meyer, and T. Datry. 2021. “A global 
perspective on the functional responses of stream communities to flow 
intermittence.” Ecography 44 (10): 1511-1523. 
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.05697. 

Streams Supports 

Evenson, G.R., H.E. Golden, J.R. Christensen, C.R. Lane, A. Rajib, E. 
D’Amico, D.T. Mahoney, E. White, and Q. Wu. 2021. “Wetland 
restoration yields dynamic nitrate responses across the Upper 
Mississippi river basin.” Environmental Research Communications 3 
(9): 095002. http://dx.doi.org/10.1088/2515-7620/ac2125. 

Non-
floodplain 
Wetlands 
and Open 

Waters 

Supports 

https://doi.org/10.1016/j.ecoleng.2015.01.035
https://www.frontiersin.org/article/10.3389/frwa.2020.00024
https://doi.org/10.1080/07011784.2021.1973911
https://doi.org/10.1029/2020GL090856
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.05697
http://dx.doi.org/10.1088/2515-7620/ac2125
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Citation 
Aquatic 
System 
Type 

Science 
Report 

Findings 

Gall, H.E., S.A. Sassman, B. Jenkinson, L.S. Lee, and C.T. Jafvert. 2015. 
“Comparison of export dynamics of nutrients and animal-borne 
estrogens from a tile-drained Midwestern agroecosystem.” Water 
Research 72: 162-173. 
https://www.sciencedirect.com/science/article/pii/S004313541400608
3. 

Streams Supports 

Gallo, E.L., K.A. Lohse, C.M. Ferlin, T. Meixner, and P.D. Brooks. 
2014. “Physical and biological controls on trace gas fluxes in semi-
arid urban ephemeral waterways.” Biogeochemistry 121 (1): 189-207. 
https://doi.org/10.1007/s10533-013-9927-0.  

Streams Supports 

Golden, H.E., C.R. Lane, A. Rajib, and Q. Wu. 2021. “Improving global 
flood and drought predictions: integrating non-floodplain wetlands 
into watershed hydrologic models.” Environmental Research Letters 
16 (9): 091002. http://dx.doi.org/10.1088/1748-9326/ac1fbc. 

Non-
floodplain 
Wetlands 
and Open 

Waters 

Supports 

Gómez-Gener, L., A.R. Siebers, M.I. Arce, S. Arnon, S. Bernal, R. 
Bolpagni, T. Datry, G. Gionchetta, H.-P. Grossart, C. Mendoza-Lera, 
V. Pohl, U. Risse-Buhl, O. Shumilova, O. Tzoraki, D. von Schiller, A. 
Weigand, G. Weigelhofer, D. Zak, and A. Zoppini. 2021. “Towards an 
improved understanding of biogeochemical processes across surface-
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Klammler, H., C.J. Quintero, J.W. Jawitz, D.L. McLaughlin, and M.J. 
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Wetlands 
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Waters 
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Of the 43 citations received by the agencies during the public comment period that were found to be peer-
reviewed and published during or after 2014, the agencies were able to discern the appropriate and 
relevant aquatic system typology in 22 cases (15 stream systems, one floodplain wetlands and open water, 
three non-floodplain wetlands and open waters, and three papers that addressed both headwater streams 
and non-floodplain wetlands and open waters). The agencies were able to assess a conclusion on findings 
relevant to the Science Report in 13 of the 22 papers (seven stream-system focused papers, two papers 
that focused on both streams and non-floodplain wetlands and open waters, and one paper that focused 
solely on non-floodplain wetlands and open waters; see Table 2). All 13 papers were found to support the 
conclusions of the Science Report.  
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Table C-9: Peer-Reviewed References Published Since 2014 Provided During the Public Comment 
Period Relevant to the Conclusions of the Science Report. Thirteen of the 43 peer-reviewed citations 
(published in or after 2014) provided to the agencies during the public comment period were found to 
have sufficient information to discern system typology (e.g., stream, non-floodplain wetlands and open 
waters, or floodplain wetlands and open waters) as well as a determination of whether the paper supports, 
refutes, or neither supports nor refutes the findings of the Science Report. In all 13 cases, the papers were 
found by ORD reviewers to support the findings of the Science Report. 
 

Citation 
Aquatic 
System 
Type 
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Report 
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salmonid‐bearing headwater streams in two common hydrogeologic 
settings, Kenai Peninsula, Alaska.” Journal of the American Water 
Resources Association 51(1): 84-98. 
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Epting, S. M., Hosen, J. D., Alexander, L. C., Lang, M. W., Armstrong, 
A. W., & Palmer, M. A. 2018. “Landscape metrics as predictors of 
hydrologic connectivity between Coastal Plain forested wetlands and 
streams.” Hydrological Processes 32(4): 516-532. 
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M. C. Rains, Q. Wu, E. D’Amico, L. C. Alexander, G. A. Ali, N. B. 
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Appendix C3ii: Additional References Not Captured During Screening Process (October 2021) 

The below references were identified by ORD reviewers in late October 2021 as potentially relevant to 
the effort but not captured in the original screening began in mid-June 2021 (e.g., they were scientific 
manuscripts accepted or published since the screening process began or were missed in the original 
screening). These references were included as Appendix C2 in the Technical Support Document for the 

https://geoinfo.nmt.edu/ClimatePanel/report/
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Proposed Rule. As described above, these, in addition to the literature received during the public 
comment period, were reviewed for their relevance to the Science Report conclusions.  
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29(2): 737-764. https://doi.org/10.1007/s10040-020-02284-x. 

Arce, M.I., C. Mendoza-Lera, M. Almagro, N. Catalán, A.M. Romaní, E. Martí, R. Gómez, S. Bernal, A. 
Foulquier, M. Mutz, R. Marcé, A. Zoppini, G. Gionchetta, G. Weigelhofer, R. del Campo, C.T. 
Robinson, A. Gilmer, M. Rulik, B. Obrador, O. Shumilova, S. Zlatanović, S. Arnon, P. Baldrian, G. 
Singer, T. Datry, N. Skoulikidis, B. Tietjen, and D. von Schiller. 2019. “A conceptual framework for 
understanding the biogeochemistry of dry riverbeds through the lens of soil science.” Earth-Science 
Reviews 188: 441-453. https://www.sciencedirect.com/science/article/pii/S001282521830059X.  

Arce, M.I., M.d.M. Sánchez-Montoya, and R. Gómez. 2015. “Nitrogen processing following 
experimental sediment rewetting in isolated pools in an agricultural stream of a semiarid region.” 
Ecological Engineering 77: 233-241. https://doi.org/10.1016/j.ecoleng.2015.01.035.   

Arora, B., M. Burrus, M. Newcomer, C.I. Steefel, R.W.H. Carroll, D. Dwivedi, W. Dong, K.H. Williams, 
and S.S. Hubbard. 2020. “Differential C-Q Analysis: A New Approach to Inferring Lateral Transport 
and Hydrologic Transients Within Multiple Reaches of a Mountainous Headwater Catchment.” 
Frontiers in Water 2 (24). https://www.frontiersin.org/article/10.3389/frwa.2020.00024.  

Baulch, H., C. Whitfield, J. Wolfe, N. Basu, A. Bedard-Haughn, K. Belcher, R. Clark, G. Ferguson, M. 
Hayashi, A. Ireson, P. Lloyd-Smith, P. Loring, J.W. Pomeroy, K. Shook, and C. Spence. 2021. 
“Synthesis of science: findings on Canadian Prairie wetland drainage.” Canadian Water Resources 
Journal / Revue canadienne des ressources hydriques: 1-13. 
https://doi.org/10.1080/07011784.2021.1973911.  

Beck, H.E., M. Pan, P. Lin, J. Seibert, A.I.J.M. van Dijk, and E.F. Wood. 2020. “Global Fully Distributed 
Parameter Regionalization Based on Observed Streamflow From 4,229 Headwater Catchments.” 
Journal of Geophysical Research: Atmospheres 125 (17): e2019JD031485. 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031485.  

Buttle, J.M. 2016. “Dynamic storage: a potential metric of inter‐basin differences in storage properties.” 
Hydrological Processes 30 (24): 4644-4653. https://doi.org/10.1002/hyp.10931.  

Carroll, R.W.H., D. Gochis, and K.H. Williams. 2020. “Efficiency of the Summer Monsoon in 
Generating Streamflow Within a Snow-Dominated Headwater Basin of the Colorado River.” 
Geophysical Research Letters 47 (23): e2020GL090856. https://doi.org/10.1029/2020GL090856.  

Crabot, J., C.P. Mondy, P. Usseglio-Polatera, K.M. Fritz, P.J. Wood, M.J. Greenwood, M.T. Bogan, E.I. 
Meyer, and T. Datry. 2021. “A global perspective on the functional responses of stream communities 
to flow intermittence.” Ecography 44 (10): 1511-1523. 
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.05697.  

https://doi.org/10.1007/s10040-020-02284-x
https://www.sciencedirect.com/science/article/pii/S001282521830059X
https://doi.org/10.1016/j.ecoleng.2015.01.035
https://www.frontiersin.org/article/10.3389/frwa.2020.00024
https://doi.org/10.1080/07011784.2021.1973911
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031485
https://doi.org/10.1002/hyp.10931
https://doi.org/10.1029/2020GL090856
https://onlinelibrary.wiley.com/doi/abs/10.1111/ecog.05697


Page 562 of 564 

Dages, C., A. Samouëlian, S. Negro, V. Storck, O. Huttel, and M. Voltz. 2015. “Seepage patterns of 
Diuron in a ditch bed during a sequence of flood events.” Science of The Total Environment 537: 120-
128. https://www.sciencedirect.com/science/article/pii/S0048969715304721.  

Dollinger, J., C. Dagès, S. Negro, J.-S. Bailly, and M. Voltz. 2016. “Variability of glyphosate and diuron 
sorption capacities of ditch beds determined using new indicator-based methods.” Science of The 
Total Environment 573: 716-726. 
https://www.sciencedirect.com/science/article/pii/S0048969716318708.  

Dollinger, J., A. Samouëlian, C. Dagès, M. Lanoix, Y. Blanca, M. Voltz, and G. Coulouma. 2018. 
“Contrasting soil property patterns between ditch bed and neighbouring field profiles evidence the 
need of specific approaches when assessing water and pesticide fate in farmed landscapes.” 
Geoderma 309: 50-59. 

Evenson, G.R., H.E. Golden, J.R. Christensen, C.R. Lane, A. Rajib, E. D’Amico, D.T. Mahoney, E. 
White, and Q. Wu. 2021. “Wetland restoration yields dynamic nitrate responses across the Upper 
Mississippi river basin.” Environmental Research Communications 3 (9): 095002. 
http://dx.doi.org/10.1088/2515-7620/ac2125. 

Fakir, Y., H. Bouimouass, and J. Constantz. 2021. “Seasonality in Intermittent Streamflow Losses 
Beneath a Semiarid Mediterranean Wadi.” Water Resources Research 57 (6): e2021WR029743. 
https://doi.org/10.1029/2021WR029743. 

Gala, T.S., and D. Young. 2021. “Geographically Isolated Depressional Wetlands – Hydrodynamics, 
Ecosystem Functions and Conditions.” Applied Ecology and Environmental Sciences 3 (4): 108-116. 
http://pubs.sciepub.com/. 

Gall, H.E., S.A. Sassman, B. Jenkinson, L.S. Lee, and C.T. Jafvert. 2015. “Comparison of export 
dynamics of nutrients and animal-borne estrogens from a tile-drained Midwestern agroecosystem.” 
Water Research 72: 162-173. https://www.sciencedirect.com/science/article/pii/S0043135414006083.  

Gallo, E.L., K.A. Lohse, C.M. Ferlin, T. Meixner, and P.D. Brooks. 2014. “Physical and biological 
controls on trace gas fluxes in semi-arid urban ephemeral waterways.” Biogeochemistry 121 (1): 189-
207. https://doi.org/10.1007/s10533-013-9927-0.  

Golden, H.E., C.R. Lane, A. Rajib, and Q. Wu. 2021. “Improving global flood and drought predictions: 
integrating non-floodplain wetlands into watershed hydrologic models.” Environmental Research 
Letters 16 (9): 091002. http://dx.doi.org/10.1088/1748-9326/ac1fbc.  

Gómez-Gener, L., A.R. Siebers, M.I. Arce, S. Arnon, S. Bernal, R. Bolpagni, T. Datry, G. Gionchetta, H.-
P. Grossart, C. Mendoza-Lera, V. Pohl, U. Risse-Buhl, O. Shumilova, O. Tzoraki, D. von Schiller, A. 
Weigand, G. Weigelhofer, D. Zak, and A. Zoppini. 2021. “Towards an improved understanding of 
biogeochemical processes across surface-groundwater interactions in intermittent rivers and 
ephemeral streams.” Earth-Science Reviews 220: 103724. 
https://www.sciencedirect.com/science/article/pii/S0012825221002257.  

https://www.sciencedirect.com/science/article/pii/S0048969715304721
https://www.sciencedirect.com/science/article/pii/S0048969716318708
https://www.sciencedirect.com/science/article/pii/S0043135414006083
https://doi.org/10.1007/s10533-013-9927-0
http://dx.doi.org/10.1088/1748-9326/ac1fbc
https://www.sciencedirect.com/science/article/pii/S0012825221002257


Page 563 of 564 

Gutierrez-Jurado, K.Y., D. Partington, and M. Shanafield. 2021. “Taking theory to the field: streamflow 
generation mechanisms in an intermittent Mediterranean catchment.” Hydrol. Earth Syst. Sci. 25 (8): 
4299-4317. https://hess.copernicus.org/articles/25/4299/2021/.  

Hansen, A.T., T. Campbell, S.J. Cho, J.A. Czuba, B.J. Dalzell, C.L. Dolph, P.L. Hawthorne, S. 
Rabotyagov, Z. Lang, K. Kumarasamy, P. Belmont, J.C. Finlay, E. Foufoula-Georgiou, K.B. Gran, C.L. 
Kling, and P. Wilcock. 2021. “Integrated assessment modeling reveals near-channel management as cost-
effective to improve water quality in agricultural watersheds.” Proceedings of the National Academy of 
Sciences 118 (28): e2024912118. http://www.pnas.org/content/118/28/e2024912118.abstract.  

Jakubínský, J., M. Prokopová, P. Raška, L. Salvati, N. Bezak, O. Cudlín, P. Cudlín, J. Purkyt, P. Vezza, 
C. Camporeale, J. Daněk, M. Pástor, and T. Lepeška. 2021. “Managing floodplains using nature-
based solutions to support multiple ecosystem functions and services.” WIREs Water 8 (5): e1545. 
https://doi.org/10.1002/wat2.1545.  

Kampf, S.K., K.A. Dwire, M.P. Fairchild, J. Dunham, C.D. Snyder, K.L. Jaeger, C.H. Luce, J.C. 
Hammond, C. Wilson, M.A. Zimmer, and M. Sidell. 2021. “Managing nonperennial headwater 
streams in temperate forests of the United States.” Forest Ecology and Management 497: 119523. 
https://www.sciencedirect.com/science/article/pii/S0378112721006137.  

Kavehei, A., D.B. Gore, A.A. Chariton, and G.C. Hose. 2021. “Impact assessment of ephemeral discharge 
of contamination downstream of two legacy base metal mines using environmental DNA.” Journal of 
Hazardous Materials 419: 126483. 
https://www.sciencedirect.com/science/article/pii/S0304389421014485.  

Klammler, H., C.J. Quintero, J.W. Jawitz, D.L. McLaughlin, and M.J. Cohen. 2020. “Local Storage 
Dynamics of Individual Wetlands Predict Wetlandscape Discharge.” Water Resources Research 56 
(11): e2020WR027581. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027581.  

Köhn, D., C. Welpelo, A. Günther, and G. Jurasinski. 2021. “Drainage Ditches Contribute Considerably 
to the CH4 Budget of a Drained and a Rewetted Temperate Fen.” Wetlands 41 (6): 71. 
https://doi.org/10.1007/s13157-021-01465-y.  

Land, M., W. Granéli, A. Grimvall, C.C. Hoffmann, W.J. Mitsch, K.S. Tonderski, and J.T.A. Verhoeven. 
2016. “How effective are created or restored freshwater wetlands for nitrogen and phosphorus 
removal? A systematic review.” Environmental Evidence 5 (1): 9. https://doi.org/10.1186/s13750-
016-0060-0.  

Min, L., P.Y. Vasilevskiy, P. Wang, S.P. Pozdniakov, and J. Yu. 2020. “Numerical Approaches for 
Estimating Daily River Leakage from Arid Ephemeral Streams.” Water 12 (2). 

Nahkala, B.A., A.L. Kaleita, and M.L. Soupir. 2021. “Characterization of prairie pothole inundation using 
AnnAGNPS under varying management and drainage scenarios.” Agricultural Water Management 
255: 107002. https://www.sciencedirect.com/science/article/pii/S0378377421002675.  

Natho, S. 2021. “How Flood Hazard Maps Improve the Understanding of Ecologically Active 
Floodplains.” Water 13 (7). 

https://hess.copernicus.org/articles/25/4299/2021/
http://www.pnas.org/content/118/28/e2024912118.abstract
https://doi.org/10.1002/wat2.1545
https://www.sciencedirect.com/science/article/pii/S0378112721006137
https://www.sciencedirect.com/science/article/pii/S0304389421014485
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR027581
https://doi.org/10.1007/s13157-021-01465-y
https://doi.org/10.1186/s13750-016-0060-0
https://doi.org/10.1186/s13750-016-0060-0
https://www.sciencedirect.com/science/article/pii/S0378377421002675


Page 564 of 564 

Price, A.N., C.N. Jones, J.C. Hammond, M.A. Zimmer, and S.C. Zipper. 2021. “The Drying Regimes of 
Non-Perennial Rivers and Streams.” Geophysical Research Letters 48 (14): e2021GL093298. 
https://doi.org/10.1029/2021GL093298.  

Price, J.J., and J.F. Berkowitz. 2020. “Wetland Functional Responses to Prolonged Inundation in the 
Active Mississippi River Floodplain.” Wetlands 40 (6): 1949-1956. https://doi.org/10.1007/s13157-
020-01309-1.  

Rau, G.C., L.J.S. Halloran, M.O. Cuthbert, M.S. Andersen, R.I. Acworth, and J.H. Tellam. 2017. 
“Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral 
streams using streambed thermal signatures.” Advances in Water Resources 107: 354-369. 
https://www.sciencedirect.com/science/article/pii/S0309170817300891.  

Rodríguez-Rodríguez, M., H. Aguilera, C. Guardiola-Albert, and A. Fernández-Ayuso. 2021. “Climate 
Influence Vs. Local Drivers in Surface Water-Groundwater Interactions in Eight Ponds of Doñana 
National Park (Southern Spain).” Wetlands 41 (2): 25. https://doi.org/10.1007/s13157-021-01425-6.  

Schulz-Zunkel, C., M. Baborowski, T. Ehlert, H.D. Kasperidus, F. Krüger, P. Horchler, B. Neukirchen, 
H. Rupp, M. Scholz, L. Symmank, and S. Natho. 2021. “Simple modelling for a large-scale 
assessment of total phosphorus retention in the floodplains of large rivers.” Wetlands 41 (6): 68. 
https://doi.org/10.1007/s13157-021-01458-x.  

Tripathi, M., P.K. Yadav, B.R. Chahar, and P. Dietrich. 2021. “A review on groundwater–surface water 
interaction highlighting the significance of streambed and aquifer properties on the exchanging flux.” 
Environmental Earth Sciences 80 (17): 604. https://doi.org/10.1007/s12665-021-09897-9.  

Zhang, Z., L.E. Bortolotti, Z. Li, L.M. Armstrong, T.W. Bell, and Y. Li. 2021. “Heterogeneous Changes 
to Wetlands in the Canadian Prairies Under Future Climate.” Water Resources Research 57 (7): 
e2020WR028727. https://doi.org/10.1029/2020WR028727.  

 

 

 

 

https://doi.org/10.1029/2021GL093298
https://doi.org/10.1007/s13157-020-01309-1
https://doi.org/10.1007/s13157-020-01309-1
https://www.sciencedirect.com/science/article/pii/S0309170817300891
https://doi.org/10.1007/s13157-021-01425-6
https://doi.org/10.1007/s13157-021-01458-x
https://doi.org/10.1007/s12665-021-09897-9
https://doi.org/10.1029/2020WR028727

	Table of Contents
	Supplementary Materials
	List of Tables
	List of Figures
	Abbreviations
	I. Science Report, More Recent Literature, and Other Scientific Support
	A. Science Report: Synthesis of Peer-Reviewed Scientific Literature
	i. Summary of Major Conclusions of the Science Report
	ii. Discussion of Major Conclusions
	iii. Key Findings for the Science Report’s Major Conclusions
	iv. Science Report: Framework for Analysis

	B. Peer Review of Report
	C. Updates to the Literature Since Publication of the Science Report
	i. Update Process
	ii. Results
	1. Process
	2. Analysis and Synthesis
	a. Ephemeral, Intermittent, and/or Perennial Streams
	b. Floodplain Wetlands and Open Waters
	c. Non-Floodplain Wetlands and Open Waters


	iii. Discussion
	1. Ephemeral, Intermittent, and Perennial Streams
	2. Floodplain Wetlands and Open Waters
	3. Non-Floodplain Wetlands and Open Waters

	iv. Abstracts Noted in the Screening Process to Disagree with the Major Conclusions of the Science Report
	1. Ephemeral, Intermittent, and Perennial Stream Systems
	2. Floodplain Wetland and Open Water Systems
	3. Non-Floodplain Wetland and Open Water Systems

	v. Screening Benefits and Limitations
	vi. Review of Additional Literature
	vii. Summary and Conclusions

	D. Closing Comments on the Science Report and Updated Literature
	E. Other Scientific Support
	F. Emerging Science
	G. SAB Review of the Proposed Rule
	H. Other Scientific Information
	i. Ecosystem Services


	II. Executive Order 13990 and Review of the Navigable Waters Protection Rule
	A. Executive Order 13990
	B. Review of the 2020 NWPR
	i. Impacts of the 2020 NWPR
	1. Review of Jurisdictional Determinations and Permit Data
	a. Background
	b. Methods
	(i) Data Quality Assurance and Control
	(ii) Statistics

	c. Results and Discussion
	(i) AJDs and PJDs over time
	(ii) Individual Aquatic Resources Associated with 2020 NWPR AJDs
	(iii) Arid West AJDs
	(iv) No Permit Required based on AJDs only

	d. Data Limitations


	ii. Stakeholder Concerns
	iii. Scientific and Technical Review
	1. 2020 NWPR
	a. Use of streamflow duration classification in the 2020 NWPR’s regulatory definition of “tributary”
	b. Definition of “adjacent wetlands”
	c. The 2020 NWPR’s standard for assessing normal climate conditions (“typical year”)
	(i) Applicable Period of Record
	(ii) Accuracy of Prediction Based on Historical Precipitation Quantiles

	d. Jurisdiction of lakes, ponds, impoundments, wetlands by one-way inundation

	2. White Paper
	a. Background
	b. The White Paper Presented Flawed Arguments
	c. The White Paper Contained Technical Errors
	d. The White Paper Contained Broad Generalizations and Selectively Used Citations
	e. Conclusions


	iv. Implementation Challenges
	1. Typical Year Metric
	2. Determining Adjacency
	3. Ditches
	4. Results of Regional Survey


	C. Climate Change
	D. Environmental Justice

	III. Scientific Support for the Final Rule
	A. Tributaries
	i. Tributaries Can Provide Functions that Restore and Maintain the Physical Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	ii. Tributaries Can Provide Functions that Restore and Maintain the Chemical Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	iii. Tributaries Can Provide Functions that Restore and Maintain the Biological Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	iv. Human-made or Human-altered Tributaries Can Provide Functions that Restore and Maintain the Chemical, Physical, and Biological Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	v. Ephemeral and Intermittent Tributaries Can Provide Functions that Restore and Maintain the Chemical, Physical, or Biological Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	vi. Tributary Lakes and Ponds Can Provide Functions that Restore and Maintain the Chemical, Physical, or Biological Integrity of Downstream Traditional Navigable Waters, the Territorial Seas, or Interstate Waters

	B. Adjacent Wetlands
	i. Adjacent Wetlands under the Final Rule
	1. Wetlands Adjacent to Traditional Navigable Waters, the Territorial Seas, or Interstate Waters
	2. Adjacent Wetlands under the Relatively Permanent Standard
	3. Adjacent Wetlands under the Significant Nexus Standard

	ii. Definition of “Adjacent” Wetlands
	1. Bordering, Contiguous, or Neighboring Wetlands
	2. Determination of Adjacent Wetlands
	a. Wetlands with an Unbroken Surface or Shallow Subsurface Connection
	b. Wetlands Separated by Constructed Dikes or Barriers, Natural River Berms, Beach Dunes, and the Like
	c. Reasonably Close Wetlands


	iii. Adjacent Wetlands Can Provide Functions that Restore and Maintain the Physical Integrity of Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	iv. Adjacent Wetlands Can Provide Functions that Restore and Maintain the Chemical Integrity of Traditional Navigable Waters, the Territorial Seas, and Interstate Waters
	v. Adjacent Wetlands Can Provide Functions that Restore and Maintain the Biological Integrity of Traditional Navigable Waters, the Territorial Seas, and Interstate Waters

	C. Impoundments
	D. Intrastate Lakes and Ponds, Streams, or Wetlands Evaluated Under Paragraph (a)(5)
	i. Intrastate Waters Evaluated Under Paragraph (a)(5) Can Provide Functions that Restore and Maintain the Chemical, Physical, and Biological Integrity of Traditional Navigable Waters, the Territorial Seas, and Interstate Waters

	E. Significant Nexus Standard
	i. Waters Subject to the Significant Nexus Standard
	ii. “Similarly Situated”
	iii. “In the Region”
	iv. “Significantly Affect”
	1. The significant nexus standard allows for consideration of the effects of climate change on water resources consistent with the best available science


	F. The Relatively Permanent Standard

	IV. Implementation of the Final Rule
	A. Resources for Making Jurisdictional Determinations
	i. Available Tools
	1. Mapping and Remote Sensing
	2. Hydrologic Models
	3. Advancements in Implementation Data, Tools, and Methods

	ii. Identifying Tributaries
	1. Identifying Tributaries That Meet the Relatively Permanent Standard

	iii. Identifying Wetlands
	1. Identifying Wetlands Adjacent to Traditional Navigable Waters, the Territorial Seas, Interstate Waters, Impoundments, or Tributaries

	iv. Impoundments
	v. Applying a Significant Nexus Standard

	B. Case Specific Significant Nexus Analysis
	i. Similarly Situated
	ii. In the Region


	Appendices Table of Contents
	Appendices List of Tables
	Appendix A: Glossary
	Appendix B: References
	Appendix C: References from the Literature Update Screening and Public Comments on Literature Published Since 2014
	Appendix C1: References Relevant to the Conclusions of the Science Report Published Since 2014
	Ephemeral, Intermittent, or Perennial Streams
	Floodplain Wetlands and Open Waters
	Non-floodplain Wetlands and Open Waters

	Appendix C2: Plain-Text Language from the Abstracts of Illustrative Scientific Papers
	Ephemeral, Intermittent, and Perennial Streams
	iii.
	Floodplain Wetlands and Open Waters
	Non-Floodplain Wetlands and Open Waters

	Appendix C3: Additional References
	Appendix C3i: Reference Review Process and Findings
	Appendix C3ii: Additional References Not Captured During Screening Process (October 2021)





