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Abstract

Service area boundaries are the geographic delineation of a drinking water system’s customer base. A
lack of precise service area boundaries may introduce errors in how measures of water quality are geospa-
tially assigned in academic or regulatory work, potentially hindering our ability to locate and accurately
characterize environmental justice concerns in drinking water. Many advances have been made in the col-
lection and modelling of service areas, but there has been minimal systematic testing of the implications
of employing distinct service area boundary types in the published literature. While it is generally under-
stood that more accurate service area assignment methods will improve the precision of environmental
justice analyses of drinking water quality, it is unclear how various assignment methods would impact
the conclusions of empirical analyses or the potential magnitude of bias. This paper aims to fill this
gap by summarizing a set of relatively novel environmental justice indicators in drinking water across
all known service area assignment methods. We explore drinking water quality measures for arsenic,
bacterial detection, disinfection byproduct formation, lead, nitrates, PFAS, and health-based violations
of the Safe Drinking Water Act. We summarize each drinking water quality metric across service area
assignment methods including the use of county served, zip codes served, the EPIC/SimpleLab dataset,
boundaries created by the U.S. Geologic Survey, and a national data layer produced by EPA’s Office of
Research and Development. We find disparities in drinking water quality with respect to every drinking
water quality metric included in this analysis, and we find that conclusions regarding the presence of a
disparity depend on the service area boundary selected for at least one group of environmental justice
concern for each drinking water quality measure. This paper helps to motivate the importance of collect-
ing service areas as well as producing and maintaining a high-quality nationally consistent geodatabase
of drinking water system service areas.
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1 Introduction

Drinking water systems across the U.S. face significant stressors that challenge their ability to provide house-
holds with clean and affordable drinking water (EPA, 2023a). In each year from 1982-2015, between 3-10% of
drinking water systems, serving 9 to 45 million Americans, had a health-based violation of the Safe Drinking
Water Act (SDWA) (Allaire et al., 2018). Prior audits of available SDWA violations data suggest there is also
significant under-reporting of these violations (GAO, 2011). Communities with heightened vulnerability or
social disadvantage are more likely to lack access to safe public drinking water, raising environmental justice
concerns (Switzer and Teodoro, 2017; Pullen-Fedinick et al., 2019). These environmental justice concerns
are increasingly important to federal policy analysis, state planning, state and federal decisions on where to
allocate funding, academic research, and community advocacy efforts.

Conducting environmental justice analyses of access to safe and affordable drinking water quality requires
accurate information on demographic groups in the defined areas of interest (i.e., service area boundaries).
Though it is generally understood that more accurate service area assignment methods will improve the
precision of environmental justice analyses of drinking water quality, it is unclear how various assignment
methods would impact the conclusions of empirical analyses or the potential magnitude of bias. Prior analyses
have predominantly relied on coarse approximations of water system service areas such as county or zip code
served. While these representations are the simplest geospatial data to operationalize in an analysis, their
use could bias analytic conclusions given the importance of accurately characterizing demographics within
affected communities. In part due to data limitations, relatively few studies have compared the results of an
environmental justice analysis across coarser and the more-refined service area boundary data. However, such
comparisons are now possible with advances in the collection and modelling of service area boundaries both
at the state and national level (Buchwald et al., 2022; Hydroshare, 2022; EPA, 2024b).! To our knowledge,
no prior studies have conducted a nationwide environmental justice analysis comparing analytic conclusions
according to coarse service area boundary approximations like counties to newer and more precise boundary
representations. Moreover, no prior work has compared conclusions across all of the most recent nationwide
service area boundary datasets. Characterizing this uncertainty will help analysts better understand the
implications of decisions on how to delineate water system service area boundaries.

In this paper, we explore three research questions on the implications of water system service area
delineation while also shedding light on the environmental justice dimension of drinking water quality.
First, we summarize variation in drinking water quality at the national level across seven drinking water

quality metrics and for different economic and demographic groups. Second, we investigate the extent to

McDonald et al. (2022) and EPA (2024a) summarize and review data quality of all publicly-available state-level service
area boundary data.



which the choice of how to delineate service area boundaries may yield different results in environmental
justice analyses using a set of disparity measures, bivariate maps, and regression-based tests of statistical
significance. Finally, we provide an array of supplemental analyses that offer explanations for why different
service area representations can lead to different conclusions. We also conduct case studies highlighting
the usefulness of geospatially-refined service area boundaries for accurately characterizing local hotspots of
environmental justice concern or cumulative burden to other sources of pollution exposure (e.g., air pollution).
We do not test the accuracy of any particular underlying service boundary or modelling methods and leave
this investigation to other research, instead focusing on the extent to which conclusions on environmental
justice disparities vary when adopting different service area boundary methods.

To answer our research questions, we start by assembling all existing service area boundary representa-
tions. These include county served identifiers from the Safe Drinking Water Inventory System (SDWIS),?
zip codes served from SDWIS and multiple rounds of the Unregulated Contaminant Monitoring Rule data,?
boundaries produced by the Environmental Policy Innovation Center (EPIC) and SimpleLab (Hydroshare,
2022), boundaries produced by USGS (Buchwald et al., 2022), and service areas generated by EPA (2024b).
For each service area boundary type, we perform an areal apportionment over census block groups to deter-
mine the demographic composition of each water system.* We then combine demographic percentages for
each water system with information on the total population served to derive the population of all demographic
groups served by each water system.

Next, we construct seven national drinking water quality metrics relating to arsenic, bacterial contamina-
tion, disinfection byproducts, lead, nitrates, PFAS, and health-based violations of the Safe Drinking Water
Act. We draw on over 20 million drinking water samples across several underlying datasets to produce
these metrics (EPA, 2016a, 2022).> We then estimate demographic-specific and population-weighted average
drinking water measures according to every service area boundary type. These average drinking water quality
measures for each demographic group allow us to compute disparity measures reflecting heightened potential
risks for groups of environmental justice concern. Equipped with these disparity measures, we compare the
range of conclusions an analyst might encounter when employing distinct service area assignment methods.
To better understand raw differences in population exposures to each drinking water quality concern, we
characterize geographic variation using national maps, including bivariate maps that specifically highlight

potential hotspots of environmental justice concern. We supplement these analyses with regression-based

2https://echo.epa.gov/tools/data-downloads

Shttps://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant-monitoring-rule

4For areal apportionment, we adopt the methods of EJSCREENbatch R package version 2.0, which makes use of popula-
tion raster data to more accurately account for where populations live within census block groups.

5We source all Six Year Review data from a pre-collated collection of these records published online by Environmental
Impact Data Collaborative (2023).



tests of whether disparities are statistically significant when controlling for water system characteristics
such as population served and source water. We conclude with supplemental analyses, local case studies,
sensitivity tests, and a discussion of limitations.

We find evidence of disparities in drinking water quality for every metric included in this analysis. We also
find that the choice of service area boundary assignment method affects conclusions regarding the presence of
disparity for all drinking water quality metrics with respect to at least one population group of environmental
justice concern. The direction and magnitude of bias is not consistent across service area boundary types or
drinking water quality indicators, suggesting that it is not generally possible to predict when the conclusions
of an environmental justice analysis may differ depending on the type of service area boundary employed. We
observe some of the greatest water quality disparities with respect to American Indian populations, who on
average are served by drinking water systems with 2 - 3 times more health-based violations than those serving
non-Hispanic White individuals from 2015-2023. This result is consistent across all boundary types, although
the magnitude of the disparity is greatest for more geospatially precise boundaries such as the EPIC or EPA
ORD data. We also find that Black populations experience greater drinking water quality concerns than
non-Hispanic White populations across all drinking water indicators except arsenic and nitrates, and that
these results are consistent across service area boundary representations. When characterizing disparities
for low-income individuals (i.e., those with income less than twice the federal poverty limit), we find that
these populations have elevated health-based violations, disinfection byproduct concentrations, and arsenic
concentrations in comparison to populations with income above twice the federal poverty limit. A complete
characterization of disparities, including with bivariate maps and regression tests of significance, is described
in Section 5.

Our paper contributes to the literature on disparities in drinking water quality across many disciplines
including geography, economics, sociology, and demography. Our paper is closely related to Mohai and Saha
(2006) and Statman-Weil et al. (2020), speaking to a broader line of research on how geospatial techniques
affect the results of an environmental justice analysis. By assessing the implications of using different
service area boundary representations when conducting environmental justice analysis, our contributions are
threefold. First, the scope of our analysis is national whereas previous analyses generally conduct regional
or state-level analysis. Second, we expand the types of drinking water quality metrics beyond the set of
information traditionally used for this purpose. Similarly, we investigate the potential for environmental
justice concerns across more indicators of socioeconomic and environmental vulnerability than have been
incorporated into prior work. Third, we explore why geospatial methods lead to different conclusions,
providing evidence that may be relevant to other analytic contexts where coarse geographic approximations

are used. Our focus on the extent to which the choice of geographic boundaries affects conclusions of an



environmental justice analysis points to the importance of collecting and disseminating more accurate service
area boundaries as well as to the value in using the highest-quality boundaries where possible in academic

or regulatory analysis.

2 Background

In this section, we describe the role of water system service areas in federal regulatory environmental justice
analyses, and we overview the academic literature relating to environmental justice concerns in drinking
water. We detail how service areas have been used in these prior studies. The purpose of this section is to
provide a rationale for our research questions and to situate this work within the broader multi-disciplinary
literature on environmental justice and drinking water quality.

Since 1994, all significant U.S. federal rule-making efforts have been required to identify and address
“disproportionately high and adverse human health or environmental effects” that may result from the
action according to Executive Order 12898 (Clinton, 1994). More recent executive orders, such as EO 14096,
have re-affirmed the commitment to identify environmental justice concerns using high-quality data and
scientific research (Biden, 2023) As such, regulatory impact assessments for major new rules often include a
qualitative discussion or quantitative analysis of environmental justice (Cecot and Hahn, 2022; Wolverton,
2023). Among other goals, these analyses aim to characterize baseline exposures to an environmental harm
across demographic groups with varying levels of socioeconomic vulnerability. Where data and methods
allow, these analyses may also assess how regulation would change baseline exposures to the environmental
harms that are relevant to the regulation.’

In the context of drinking water, it is necessary to know the demographics of populations served by
drinking water systems to determine whether any particular group may be experiencing disparate health or
environmental impacts. Determining the socioeconomic characteristics of a drinking water system requires
computing demographics based on the census geographical units overlapping a service area or, alternatively,
imputing demographics based on simplifying assumptions with respect to the location of the service area.
EPA’s nationwide environmental justice analyses have traditionally assigned the demographic information
of a county served to the drinking water system. County demographic imputation has been by far the
most common practice; it was used in the environmental justice analysis of the 2020 Steam Electric Effluent
Limitation Guidelines and the distributional analysis of household benefits and costs in the PFAS National

7

Primary Drinking Water Regulation.” This method implicitly assumes that the demographics of a water

6See EPA (2016b) for more in depth discussion of the goals and methods of an environmental justice quantitative analysis
for regulatory impact assessment.
"See chapter 14 of EPA (2020a) and section 8.3 of EPA (2024c)



system are the same as the primary county that is served by the water system.

Recent regulatory analyses have estimated water system demographics using more accurate representa-
tions of water system service areas when characterizing baseline conditions or policy scenarios. For example,
the EJ analysis for the 2023 Steam Electric Effluent Limitation Guidelines used a combination of county
and zip codes served to determine socioeconomic characteristics of drinking water systems (EPA, 2023c).
The environmental justice exposures analysis for the PFAS drinking water rule used a combination of pre-
delineated service areas produced by states in addition to zip codes where available (EPA, 2024c), although
as mentioned county demographic shares were used for the cost and benefit distributional portion of the
analysis. These analyses have employed greater geospatial specificity in service boundary assignment based
on the assumption that such accuracy increases the ability to detect environmental justice concerns (Baden
et al., 2007). However, the selection of service area boundary type has proceeded in a vacuum of evidence
regarding the implications of different service area boundary assignment methods.

In the academic literature, many studies have evaluated how geographic assumptions affect the results
of an environmental justice analysis. For example, Mohai and Saha (2006) describe how various metrics for
estimating proximity to hazardous waste sites mis-characterize environmental justice concerns. However, due
to data limitations, there has been relatively little exploration of how the choice of community water system
boundary representation affects environmental justice analyses in the context of drinking water provision.

Most studies on environmental justice in drinking water have focused on states with available water
system geospatial data, such as California and Texas. For example, Balazs et al. (2011) analyze the re-
lationship between nitrate concentrations in community water systems (CWS) and the socio-demographic
composition of their customers in the San Joaquin Valley of California. The authors find a positive but non-
significant relationship between the percent Latino and a water system’s estimated nitrate concentration.
The authors estimate the demographic composition of the population potentially exposed to higher nitrate
levels by intersecting spatial coordinates of water system facilities (e.g., public water supply wells) with
census block groups. In contrast, Marcillo et al. (2021) use zip code served representations of service area
boundaries to study environmental justice implications of health-based SDWA violations among community
water systems in Virginia. The authors find that the proportion of Black individuals served by a water
system is positively associated with more health-based violations. Notably, many public water systems were
omitted from the final dataset due to systems not being georeferenced to zip codes. Other researchers have
used zip code tabulation areas (ZCTAs) from the US Census Bureau to explore racial disparities in drink-
ing water violations in California (Allaire and Acquah, 2022). Finally, some analyses use publicly-available
service area boundary data directly. For example, Uche et al. (2021) use contaminant occurrence data and

state-provided service area boundaries from California and Texas, finding that cumulative cancer risk from



drinking water contaminants is greater in systems with higher shares of of Hispanic and Black individuals.
The authors identify the demographic composition of each CWS by matching census tracts to water system
boundaries and weighting by the percentage overlap between the CWS and intersecting census divisions.
We found a single analysis that compares environmental justice conclusions across different methods for
approximating populations served by a community water systems. Focusing on Pennsylvania, Statman-Weil
et al. (2020) conduct a cross-method spatial analysis comparing areal weighting, dasymetric mapping, areal
interpolation, and county-level analysis. The authors find that the methods used to determine service water
boundaries affect the results of some statistical analyses, although their overall findings suggest no evidence
of health-based SDWA violation disparities across racial groups or socio-economic status in Pennsylvania.

Due to the data gaps with respect to data quality or service area boundaries at the national level, relatively
few prior studies have conducted nationwide environmental justice analyses of drinking water quality. In one
national analysis, Allaire et al. (2018) employ SDWA violation records and community water system (CWS)
characteristics from SDWIS to study historical trends in drinking water violations. The study uses county
served data from SDWIS to match water systems to sociodemographic information obtained from the US
Census. The work spans over three decades (1982-2015) and represents a national panel study on drinking
water violations, but the authors do not report average water quality metrics by demographic group or
relative disparities in these metrics across groups. Allaire et al. (2018) also uses the county level of analysis
for identifying hotspots of water quality concern, which creates some geospatial imprecision and limits the
extent of observed variation in these metrics across the US.® In another nationwide study, Scanlon et al.
(2023) research the relationship between a modified Social Vulnerability Index (SVI) from the CDC and
health-based SDWA violations, finding a positive relationship between social vulnerability and health-based
violations of SDWA.

Aside from drinking water quality, which is the primary focus of this paper, environmental justice con-
cerns and service areas also relate to water affordability. To our knowledge, two studies have evaluated the
importance of service area selection in the context of water affordability. Berahzer et al. (2022) explore the
implementation of different affordability metrics in a national analysis. As part of this exercise, the authors
visually demonstrate the incongruence between state provided system boundaries, census designated places
(CDPs), and county or tract boundaries using examples from Alabama and North Carolina. For states
without available boundaries, the study uses CDPs as the relevant representation. Following Berahzer et al.
(2022), El-Khattabi et al. (2023) explore variation in water bills across four US states (Arizona, Georgia,
New Hampshire, and Wisconsin) using CDP boundaries. The authors also explore different boundary spec-

ifications for Arizona, the only state in the study for which statewide community water system boundaries

8The median county has a population of 26,551, whereas the median CWS serves a population of only 216.



exist. The authors found the results across different boundary specifications to be qualitatively similar.
In related work, Patterson et al. (2023) conduct a national water affordability analysis that is primarily
limited to systems that serve at least 100,000 people. The authors rely on state-provided explicit service
area boundaries and modeled service areas based on municipal areas. They find that water rates in smaller
systems are significantly more expensive than those in larger systems.

Overall, the academic literature on drinking water has generally focused on a subset of community water
systems, often limited to a specific state or region. States with existing water system spatial boundaries (e.g.,
California) are over-represented in research, as are larger systems. These gaps highlight the need to conduct
more nationwide analyses and to include smaller systems in environmental justice analysis, as these systems
tend to have more affordability and drinking water quality concerns than the larger systems. Further, few
studies have explicitly assessed the sensitivity of their results to different community water system boundary
specifications. Finally, no studies have conducted national analyses of drinking water quality disparities using
all recent service area boundary assignment methods or explored the differences in conclusions produced by

each method.

3 Data

To compare drinking water quality and disparity measures across demographic groups, we assemble informa-
tion on drinking water quality, public water system locations, and population characteristics. Data sources

and cleaning procedures are described below.

3.1 Drinking Water Quality Measures

We incorporate seven measures of drinking water quality from data sources including the Safe Drinking Water
Information System (SDWIS), the Six Year Review 3 and 4, the Unregulated Contaminant Monitoring Rule
(UCMR) 3 and 5, and certain state-level data described in more detail below. Collectively, these indicators
are intended to represent a wide range of potential drinking water quality concerns that may be studied
as part of environmental justice analyses in the academic literature or for federal policy. We note that
in all cases, these measures are merely proxies for potential risk, and similarly that average water system

contaminant concentrations are only proxies for population exposures.

Health-based Violations of the Safe Drinking Water Act (2015-2022): SDWIS records all viola-
tions of the Safe Drinking Water Act and specifically tracks health-based violations. As the name suggests,

health-based violations are instances in which a water system’s activities or contaminant levels have the



potential to affect public health. These violations include exceedances of the maximum contaminant lev-
els (MCLs), exceedances of the maximum residual disinfectant levels (MRDLs), or failure to follow certain
treatment technique requirements.® In turn, these represent failures to limit contaminant levels to below
their legally enforceable threshold, failure to limit disinfectant quantities in finished water to safe levels,
and failure to treat water in accordance with the SDWA. To construct this indicator, we counted all unique
health-based violations in SDWIS that occurred after 2015 and prior to 2024 for a given water system. Our
final sample includes 105, 647 health-based violations across 28,066 community water systems. For systems
without any health-based violations listed in SDWIS, we assume the system had no violations over this

period.

Lead and Copper Rule Action Level Exceedances (1991-2021): Lead exposure has been associ-
ated with acute and chronic health effects including nervous system damage, cardiovascular disease, kidney
damage, immune system disregulation, liver toxicity, reproductive harm, and various cancers (EPA, 2024d).
Certain groups such as pregnant people, infants, and young children are especially vulnerable to the effects
of lead exposure (ATSDR, 2020b). Lead in drinking water is regulated according to the Lead and Copper
Rule (LCR) of the SDWA, which is relatively unique among National Primary Drinking Water Regulations
in requiring a specific number of samples to be collected directly from consumer taps instead of at treatment
plant or distribution network sampling locations. The Lead and Copper Rule also has an action level instead
of a maximum contaminant level. A water system exceeds the action level for lead if the calculated 90"
percentile concentration exceeds 15 parts per billion (ppb) in a water system compliance monitoring period,
which then requires follow-up measures to reduce lead levels across the system.'® Given the focus on the 90**
percentile of sample concentrations, SDWIS reports the 90" percentile lead concentration for most water
system monitoring periods (EPA, 2024e). These 90" percentile sample values are available for all systems
serving more than 10,000 individuals, but water systems that serve fewer than 10,000 individuals and that
do not have an action level exceedance (ALE) are not required to report their 90" percentile concentration.
Due to reporting gaps of 90" percentile concentrations for systems serving fewer than 10,000 people, we
instead employ the count of lead action level exceedances for each system as an indicator of lead concerns.
We include all lead action level over the period from 1991 to 2021. Our final sample included 20,688 lead
action level exceedances across 45,934 unique public water systems. We note a few limitations of this lead

measure. First, the action level is not a health-based threshold, and as such a lead action level exceedance is

9In the 2023 SDWIS data vintage used in this paper, lead and copper rule action level exceedances are not considered
health-based violations of SDWA unless the system fails to take appropriate steps to ameliorate the issue after a lead action
level exceedance occurs.

10For example, an ALE would occur if more than 10% of tap water samples collected are greater than 15 ppb. In some
cases, the 90" percentile is calculated instead of observed if, for instance, a small water system only takes 5 samples.



only a proxy for lead concerns for any given drinking water system. Next, because lead primarily results from
corrosion of lead service lines and premise plumbing, there may exist substantial variation in lead concen-
trations at the tap across households within a drinking water system even where an action level exceedance
does not occur. See Stratton et al. (2022) for additional discussion of the limitations of lead action level

exceedances in characterizing lead concerns for a particular system.

PFAS Concentrations in Drinking Water (2013-2023): PFAS are ubiquitous and long-lasting chem-
icals with adverse health impacts such as reproductive and developmental harm, immune system dysregu-
lation, thyroid dysfunction, and kidney and testicular cancers (ATSDR, 2020a; Fenton et al., 2021; EPA,
2024c). We incorporate a PFAS drinking water quality metric because there is significant public interest in
these chemicals, and they are also the target of a recent set of drinking water standards that are estimated
to reduce their levels in drinking water for at least 80 million Americans (Andrews and Naidenko, 2020;
EPA, 2024c). We create a water-system level PFAS indicator using Unregulated Contaminant Monitoring
Rule (UCMR) 3 samples, provisional UCMR 5 records, and state-level sampling data.!! The state-level data
are compiled in the online dashboard PFAS Analytic Tools.'?:13 Collectively, these data include 956,552
samples of 33 unique PFAS across 16,338 public drinking water systems.' We use these samples to create
an indicator for the sum of average PFAS concentrations for each unique PFAS sampled by a community
water system. For example, if a system detects only PFOA and PFOS, we take the average concentration of
each substance and add the two together to compute a total PFAS concentration. We assume non-detects
are zero, such that a system never detecting any PFAS would receive a measure of zero. We note a few
limitations of the PFAS metric in this analysis. First, a majority of water systems have no available sam-
pling information for any PFAS, and certain systems have analyzed far fewer PFAS; these systems either
do not contribute to the population-level PFAS measures or have biased low PFAS measures in comparison
to systems with more sampling. Second, different sampling detection methods are used in UCMR 3 and
UCMR 5, with certain PFAS Analytic Tools samples corresponding to the detection methods in UCMR 3
or 5. These differences mean that certain samples have much lower detection thresholds than other samples,

even within the same system’s sampling history. Next, a single detection of a particular PFAS does not

HUCMR 5 sampling efforts are not yet complete, so we use the latest available data as of July, 2024. For more informa-
tion, see: https://www.epa.gov/dwucmr /fifth-unregulated-contaminant-monitoring-rule-data-finder

12Gee: https://awsedap.epa.gov/public/extensions/PFAS_Tools/PFAS_Tools.html

13We choose to incorporate state-level records because it improves the data coverage of the indicator. In addition, state
sampling efforts often used more recent detection methods with lower detection thresholds, and so they were able to capture
detections that may have otherwise been missed in UCMRS3.

14The UCMR 3 and UCMR 5 records include 356,823 samples of 29 unique PFAS across 6, 246 public water systems,
gathered between 2013 and 2023. The state-level data include 651,224 samples across 27 unique PFAS and 9, 882 public
water systems. We drop PFAS analytes in the state records with fewer than 1,000 samples overall to limit the influence of
targeted sampling efforts. We also drop PFAS that are aggregations of sampling information across separate PFAS analytes.
For example, we do not include combined PFOA and PFOS, which is reported in the PFAS Analytic Tools data.
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necessarily represent a system’s long-term levels of these substances. Finally, different PFAS have varying
toxicity profiles, and so their combined concentration in a drinking water system does not directly reflect
the toxicity of the system’s particular PFAS mixture. In sensitivity analyses discussed in Section 5.3, we
explore four alternative measures of PFAS in drinking water, show key results when limiting to samples with
consistent minimum detection limits, and characterize differential sampling practices across demographic

groups.

Disinfection Byproducts (2006-2019): Disinfection byproducts (DBPs) are a group of chemicals formed
when disinfectants, such as chlorine, chloramine, or ozone, interact with materials in source water to create
new chemicals in finished drinking water. The health effects of DBP exposure likely include bladder cancer
and developmental harm (Regli et al., 2015; Padula et al., 2021). Certain unregulated DBPs are also highly
toxic (Li et al., 2022). Further, elevated DBP formation may indicate that disinfectants are working less
effectively, which could lead to disinfectant residual depletion and subsequent proliferation of opportunistic
pathogens in the distribution system (Isaac and Sherchan, 2019). For these reasons, 11 disinfection byprod-
ucts in drinking water are regulated under the Stage 1 and Stage 2 Disinfectants and Disinfection Byproducts
rules of the SDWA (EPA, 2005). The Stage 2 rule focuses on reducing concentrations of two classes of 9
DBPs. These classes are total trihalomethanes (TTHM) and haloacetic acids (HAAS5), which are considered
“representative of many other DBPs that may also be present in the [disinfected] water” (EPA, 2006). As
part of this rule, water systems must limit total levels of four THMs and five HAA5s to locational running
annual average concentrations of 80 ug/l and 60 ug/l, respectively.!®

We construct an indicator for DBP levels in drinking water using 3 million samples of TTHM and HAA5
to generate a single DBP metric per system.'® To do this, we take the average concentration of TTHM
and HAA5 samples within each system over all samples from 2006-2019, and then we add the TTHM and
HAAS5 concentration averages.!” We combine these two classes of DBPs into one measure to streamline and
simplify presentation of results. Our indicator of DBP levels has several limitations. First, DBPs can vary
significantly within a system’s distribution system, particularly in areas with greater “water age” (i.e., the
period of time water has spent in the network prior to use). Consequently, while our composite metric of
DBPs is useful in characterizing DBP differences across systems, it potentially obscures differences in DBP
exposure within a system that could occur if certain populations receive water with differing age profiles.

Due to data limitations regarding DBP sampling locations and how these correspond to specific areas within

15For more information on the sampling requirements for these two groups, see EPA (2010).

16We source these samples two waves of the Six Year Review samples (EPA, 2016a, 2022) and samples requested from
Georgia’s Environmental Protection Division and downloaded from Mississippi’s Drinking Water Watch website.

17Some systems report only the dis-aggregated chemicals that compose the four total trihalomethanes and the five
haloacetic acids. For these systems, we take the average level of each constituent chemical and then sum the average levels
to produce a comparable TTHM and HAAS5 concentration.
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distribution systems, we are not able to incorporate within-system geospatial variation in DBP exposures.
Similarly, our composite measure of nine DBPs abstracts from variation in the levels of constituent DBP
species, which could mask variation in risk corresponding to differential toxicity of each DBP. Related
to this point, combining TTHM and HAA5 could potentially obscure differences in population exposures
to each class in isolation because these DBP groups have different formation pathways and concentration
distributions. As such, we describe key results when separating TTHM and HAAS5 in Section 5.3 and shown
in Appendix Figure 11(a) and Figure 11(b). Finally, due to changing requirements for sampling practices,
we also produce disparity measures according to just pre- and post-2012 samples in Appendix Figure 12(a)

and Figure 12(b) and discuss these results in Section 5.3.

Total Coliform Detections (2006-2019): For an indicator of microbial growth, we again use the Six
Year Review 3 and 4 to incorporate detections of total coliform bacteria, which are monitored and regulated
according to the Revised Total Coliform Rule (RTCR). Most coliform bacteria are harmless to human health,
but because coliform bacteria are ubiquitous in the environment, their presence serves as a useful indicator
for the presence of more harmful pathogens in drinking water such as bacteria, parasites, and viruses (EPA,
2012). Whenever coliform bacteria are detected, a water system is subsequently required to test for E. Coli,
a coliform bacteria that causes illness. Because of the public health risk from any microbial growth in a
water system’s distribution network, total coliform is one of most common types of samples conducted as
part of compliance with the SDWA. Total Coliform Rule infractions are also the most common violation of
the SDWA, and so sampling for total coliform bacteria represents an important indicator of drinking water
quality (Allaire et al., 2018). We make use of 18 million total coliform samples collected over the period
2006-2019 and reported with the Six Year Review 3 and Six Year Review 4. Each sample indicates whether
total coliforms were detected or not, and we aggregate all of these binary samples to be one water system-level
indicator for the share of samples (0-1) that are positive for total coliform bacteria over our sample period.
Certain states do not report total coliform samples or tend to only store records for total coliform samples
associated with potential RTCR violations, and so we exclude these states from all analysis.'® We also
drop systems with at least a 50 percent detection rate under the presumption that these systems primarily
report sampling events associated with potential violations.!” We note that sampling requirements for total
coliforms were revised on April 1st, 2016, and so our measure of total coliform detections aggregates samples

from periods with different regulatory requirements.?°

18These states are South Carolina and Maryland, which have average system-level detection rate of 46% and 22%, respec-
tively.

19This affects 1,431 out of 157,443 public water systems, and these are mostly non-community systems for which we lack
service area boundaries.

20In Appendix Figure 13(a) and Figure 13(b), we demonstrate that results are very similar when limiting to alternative
date ranges with more consistent sampling requirements.
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Arsenic Concentrations (2006-2019): Arsenic exposure in drinking water has been associated with
myriad adverse health effects including diabetes, cardiovascular disease, developmental impacts, and skin,
bladder, and lung cancer (EPA, 2023d). Arsenic is our only primarily geogenic (i.e., naturally occurring)
drinking water contaminant, and as such it displays significant clustering in semi-arid regions such as the
Western and Southwestern US (Scanlon et al., 2023). We use the Six Year Review 3 and 4 to determine
arsenic concentrations in drinking water.?! In total, we make use of 598,662 samples of arsenic in drinking
water and compute the system-level average from 2006-2019. We drop any samples with concentrations
above 150 mg/l to limit the influence of outlier concentrations and to remove potentially mis-labeled units

of measurement.22

Nitrate Concentrations (2006-2019): We use the Six Year Review 3 and 4 to determine nitrate con-
centrations in drinking water, and we supplement this with samples from Georgia and Mississippi’s Drinking
Water Watch websites to ensure national coverage of the metric. Nitrates are primarily an agricultural
pollutant, and so they tend to be higher in areas with greater levels of fertilizer application on farms or
more animal agricultural runoff. 23 Nitrate exposure in drinking water is associated with an acute adverse
health impact on newborns known as methemoglobinemia or “blue baby syndrome,” although it has also
been associated with colorectal cancer, thyroid disease, and neural tube defects (Ward et al., 2018). Nitrate
levels are also an outsized portion of all SDWA violations (Allaire et al., 2018). Some states and certain
systems do not always report nitrate concentrations in their compliance monitoring data, instead reporting
Nitrate and Nitrite concentrations when the combined level of both is below the regulatory threshold for
either.?* This compliance reporting practice is explicitly permitted by EPA compliance reporting authorities
(EPA, 2020b). Since nitrate-nitrite combined samples are usually low concentrations that are in compliance
with regulatory thresholds and nitrite converts to nitrate with increasing water age in the distribution net-
work,2® we use nitrate-nitrite samples where available as a reasonable proxy for nitrate levels overall to help
fill in national coverage of this metric (EPA, 2002a). We drop any samples with concentrations above 500
mg/l to limit the influence of outliers and because these samples may have incorrect concentration units of

measurement. Collectively, we make use of 3,123,444 samples of Nitrate or Nitrite-Nitrate in drinking water.

21 As before, we supplement this with samples requested from Georgia’s Environmental Protection Division and down-
loaded from Mississippi’s Drinking Water Watch website to ensure national coverage of the metric.

22The legally enforceable limit of Arsenic in drinking water is 0.01 mg/I.

23Water systems that use chloramine to disinfect water may also see heightened nitrate levels due to the decay of chlo-
ramine into ammonia and in turn nitrite and nitrate through biological nitrification in the distribution system (Liu et al.,
2020; NHDES, 2021). However, such nitrification of the distribution system would affect tap-levels of nitrates without being
observable at treatment plants or entry points where our sampling data is collected.

24These states are Delaware, Louisiana, Minnesota, Missouri, Montana, Nebraska, North Dakota, Virginia.

25The maximum contaminant level for nitrite is 1 mg/l, and the maximum contaminant level is 10 mg/! for nitrate.
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3.2 Service Area Boundaries

We use five service area boundary representations to compare drinking water quality measures across demo-

graphic groups and with other indicators of environmental quality.

County Boundaries: EPA requests county served information from water systems as part of the Safe
Drinking Water Information System (SDWIS), and the consistent reporting of primary county served is a
rationale for frequent use of this geography for determining demographics at the water system level (EPA,
2019). However, county served information is not always provided in SDWIS.?6 Moreover, there are oc-
casional issues with the location specified as a service area in these fields. To limit possible incongruities
between service area representations, we assign county identifiers based on a spatial intersection of county
polygons with the Hydroshare (2022) geographic location. Service areas overlapping multiple counties are

assigned the county with the greatest overlapping surface area.

Zip code Boundaries: We source zip code served information from SDWIS and the Unregulated Contam-
inant Monitoring Rule 3, 4, and 5, where all zip codes served across each dataset are dissolved into a single
polygon shape for a given water system.2” For example, if a water system is listed as serving different zip
codes in SDWIS and in one of the UCMR, datasets, we include both zip codes as being served by the water
system and combine each zip code shape into a unified geospatial polygon. Zip codes served are available
for 16,470 public water systems, and hence this boundary layer has a more limited number of systems than

are available in other layers.

USGS Boundaries (2022): The US Geological Survey produced geospatial data of 18,806 water system
service areas (Buchwald et al., 2022). The purpose of the USGS data layer differs from the other boundary
representations employed in this paper, and as a result the water system spatial boundaries also differ from
the other geospatial data. In particular, USGS efforts were primarily aimed at developing a national public
water supply use model that could be used to estimate anticipated withdrawal needs and flow of surface
waters across the coterminous U.S. As such, water system areas often include the entire supply region that
may purchase or otherwise use water from a given system’s intake infrastructure. The USGS water system
service area layer also differs from the other data in making use of the National Wall-to-wall Anthropogenic
Land Use Trends (NWALT) information and the National Land Use Dataset (NLUD) in estimating the likely

extents of public water supply regions (Falcone, 2015; Theobald, 2014). Much like the zip code boundary

26In some cases, city or zip code information is provided instead. For more information, see: https://www.epa.gov/
ground-water-and-drinking- water /safe-drinking- water-information-system-sdwis-federal-reporting

27 Access SDWIS data at https://echo.epa.gov/tools/data-downloads/sdwa-download-summary and UCMR records at
https://www.epa.gov/dwucmr/occurrence-data-unregulated-contaminant- monitoring-rule
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layer, the USGS information has fewer system representations than the county, EPIC, or EPA service area

boundary data.

EPIC/Simple Lab Boundaries (2022): The Environmental Policy Innovation Center (EPIC) and Sim-
ple Lab, in consultation with the Internet of Water coalition, created a provisional nationwide dataset of
water system boundaries in 2022. This dataset classifies boundaries into three tiers based on data quality.
Tier 1 boundaries are digitized boundaries that were previously created by state efforts.2® Tier 2 boundaries
use municipal boundaries as proxies for water system boundaries. Tier 3 boundaries are estimated circular
boundaries around an approximated location for the water system.? Approximated locations for tier 3 water
systems can be based on county polygon centroids, zip code centroids, facility locations if available in SDWIS,
or water system address. Tier 1 service area polygons are available for half the population served by public
water systems (roughly 156 million individuals), and Tier 2 city-boundary polygons have been matched to

a public water system (PWS) for a further 35% of the population served (111 million individuals).3°

EPA Office of Research and Development Boundaries (2024): The most recent water system
service boundary data is described in EPA (2024b). It uses a decision tree framework to identify all U.S.
census blocks likely to be served by public water and then an array of subsequent matching methods to
assign water system identifiers to these likely service areas. The decision tree approach is validated using
3 states with high-quality and publicly-available boundaries. These states are California, Connecticut, and
New Jersey. For each state, the decision tree identifies the share of 700,000 census blocks that are served
by public water or private wells. The model uses eight information inputs including amount of impervious
surfaces, 2020 housing unit density, 1990 housing unit density, the percent housing unit change from 1990 to
2020, 1990 housing unit public water connection, 1990 public sewer connection, area, and distance to public
intake. For every geography, these information fields were classified into 20 unique geographic types; these
types are then characterized as either on public water or not on public water. Next, EPA (2024b) use water
system name and facility location matching procedures including a random forest machine learning model
to assign likely service area regions to specific water system IDs based on available information. The EPA
(2024b) boundaries also include publicly-available state boundaries where available, and these correspond
to the Tier 1 boundaries in the EPIC service area boundary dataset. As such, the EPA (2024b) boundaries

are identical to the EPIC service area boundaries for slightly less than half of community water systems

28For a recent summary of the quality of this Tier 1 data, see EPA (2024a).

29Tier 3 systems represent lower-quality boundary approximations, which is why some research excludes them entirely
from analysis (e.g., Scanlon et al. (2023)).

30See Hydroshare (2022) to download consolidated service area polygons and for more information on the modelling ap-
proach.
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representing just over 150 million individuals served by public water.

3.3 Population Characteristics

We use the American Community Survey (ACS) 5-year data for 2017-2021 to determine demographics of
public water systems (U.S. Census Bureau, 2023). We use the 2021 ACS 5-year estimates because they pro-
vide data for all areas and are more reliable than 1-year or 3-year estimates, especially for rural areas with
lower populations (U.S. Census Bureau, 2024). We also incorporate indicators of community environmental
pollution burden from EJSCREEN, the US EPA Environmental Justice Mapping and Screening Tool (EPA,
2023b).3t EJSCREEN also uses the ACS to construct its sociodemographic variables (USEPA, 2022), and so
the choice to use ACS 5-year records associated with 2021 ensures correspondence between Census division
polygons, population information, and EJSCREEN variables. We generate variables for socioeconomic char-
acteristics and EJSCREEN environmental indicators for each water system across all service area boundary
representations using the areal apportionment methods of EJSCREENBatch, a R-based package developed
by researchers in EPA’s Office of Water to simplify national environmental justice analyses (El-Khattabi
et al., 2023). In this areal apportionment procedure, we compute the population characteristics of a spec-
ified boundary of interest (i.e., water system boundary) by weighting the population characteristics of all
intersecting census block groups according to the fraction of the population contained within the portion of
the block groups that overlap with the specified boundary. To refine population estimates at the sub-block
group level, we use a 30x30 grid raster file of decennial Census information created by NASA’s Socioeconomic

Data and Applications Center (SEDAC, 2017).

4 Empirical Methods

The following sections detail how we construct measures of drinking water quality and disparity measures.
We then describe our approach to mapping drinking water quality and areas of potential environmental
justice concern. Finally, we describe a set of correlational regression models that characterize associations

between measures of drinking water quality and socioeconomic vulnerability.

Drinking Water Quality by Demographic Group: We construct average demographic-specific drink-
ing water indicators by population-weighting the following equation. Let i index one of the seven measures of

drinking water quality, j represent a population demographic group, and k represent a public water system.

31For the full documentation of EJSCREEN, its data, and the environmental and sociodemographic factors it employs, see
USEPA (2022).
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ZkKGPWS PopulationShare;ji, * PopServed;, * Indicator;jy,

Indicator;; = (1)

Total PopulationServed,;

The construction of Equation 1 is analogous to constructing a population-weighted average for any given
drinking water indicator ¢ and demographic group j, however the average is informed by the share of a
demographic group served by a particular water system according to the specific service boundary type that
is employed. We use boundary-invariant total population served information, PopServed;x, to ensure that
differences in population-weighted drinking water quality are driven by different estimates of demographic
composition for each system rather than varying population size. The drinking water indicators are listed and
described in Section 3. We select eight demographic groups that allow for two types of general comparison.
The first pair of demographic categories compare average drinking water quality measures for non-Hispanic
White populations to those of American Indian, Asian, Black, Hispanic, or Pacific Islander populations. The
second pair of disparity measures compare individuals with incomes below twice the federal poverty limit to

individuals with incomes above twice the poverty limit.

Disparity Measures: To simplify comparison of disparities in drinking water quality across service area
boundary types, we construct disparity measures that convey the relative prevalence of a drinking water
quality concern for a group u with potentially heightened socioeconomic vulnerability in comparison to a

mutually exclusive group v. Specifically, let these demographic groups be:

u € {American Indian, Asian, Black, Hispanic, Pacific Islander, Below 2X Federal Poverty Limit},

v € {Non — Hispanic W hite, Above 2X Federal PovertyLimit}

In words, we generate disparity metrics for people of color and for individuals with incomes below twice the
federal poverty limit.?2 People of color are compared to the percent non-Hispanic White population, whereas
low-income populations are compared to the population with incomes above 2x the federal poverty limit.
For each group with potentially heightened socioeconomic vulnerability, u, we express disparity measures for
each drinking water quality indicator ¢ as:

Indicator;,

Disparity Measure; = ———— 2
P ¢ " Indicator;, (2)

Depending on the drinking water quality indicator, these disparity measures are concentration ratios

32Throughout this paper, we use the terms people of color and minority populations interchangeably.
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(e.g., ug/L of arsenic) or prevalence ratios (e.g., frequency of health-based violations). A prevalence or
concentration ratio of 1 indicates equal prevalence of the drinking water concern across the population
groups, a value of less than one indicates less prevalence of the drinking water concern for the demographic
group of potential environmental justice concern, and a value greater than one indicates higher potential risk
for the demographic group of interest. For certain analyses such as sensitivity tests and bivariate maps, we

combine each minority population group into an aggregate category to simplify the presentation of results.

Mapping Drinking Water Indicators: We map drinking water metrics at the national level using the
EPA ORD service area boundaries, and we also present national and sub-national bivariate maps that plot
drinking water quality in combination with measures of socioeconomic vulnerability.

To create maps at the census division level, we start by spatially intersecting all service areas with census
block groups.?® This produces a census block group dataframe, where each public water system is associated
with all intersecting census block groups (i.e., PWS-by-CBG). We next join drinking water indicators to the
public water system such that all PWS-by-CBG rows in the dataframe are associated with a drinking water
quality indicator. For census block groups intersecting multiple drinking water system service area polygons,
we average indicators across all water systems to retain a single average value for each CBG per indicator. As
such, our maps portray spatially-aggregated water quality measures, rather than water system-level drinking

34 We then construct national maps for each water quality indicator. To ease visualization

water quality.
of the indicator distribution in the presence of significant right skew, the maps use the 3rd quartile value
as a maximum cutoff point for the map color scale.?® Census areas with indicator values that are greater
than this cutoff are marked as greater than that value, and each area with a lower indicator value keeps its
original value. This ensures a more even distribution of areas across the color gradient.

We also produce bivariate maps that demonstrate the relationships between drinking water quality and
factors that are associated with greater social vulnerability. While bivariate maps do not convey causal
relationships, they are useful for locating hotspots of environmental justice concern and for demonstrating

variation in such concerns within and across states.?® We also generate sub-national maps to highlight the

heterogeneity in both drinking water concerns and population demographics at the census block group to

33We choose to convert service area boundaries to census divisions because service areas alone are often hard to see at a
national scale due to overlapping and irregular boundaries of relatively small shapes.

34We generate the simple mean drinking water indicator across intersecting public water systems without weighting by
population across public water systems. We choose not to weight by population because we do not observe the share of a
CBG’s population that is served by each intersecting water system.

35For health-based violations, we select a maximum cutoff point that is higher than the third quartile since many systems
have no violations.

36For the drinking water indicators in the bivariate maps, we do not use traditional quartile breaks due to the presence
of many zero or null observations across census block groups. Rather, we define indicator-specific break points in the drink-
ing water measures to partition the distribution into three intuitive dimensions (“low”, “medium”, and “high”). The demo-
graphic variables representing race and income are broken up into terciles for the bivariate maps.
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motivate a higher level of geospatial precision when conducting environmental justice analyses.

Regression Analysis: We test for associations between community characteristics and drinking water
quality. We consider dimensions of community heterogeneity related to socioeconomic vulnerability as well
as cumulative pollution burden, drawing from the environmental indicators provided by EJSCREEN. We
note that this analysis is associational and descriptive in nature. Let ¢ represent a water system and d
represent one of the drinking water indicators described in Section 3. Consider the following regression

equations:

Yia = B'X; + via (3)

Yia = V' Ei + Via (4)

In Equation 3 and Equation 4, y;4 represents the drinking water indicator d for a specific water system
i. These values are regressed on the vectors X; and FE;, which include demographic characteristics and
environmental hazard variables respectively. Our first set of regressions calculates the relationship between
drinking water quality measures and characteristics of a water system’s population served including the
percent American Indian, Asian, Black, Hispanic, Pacific Islander, and percent twice below the federal
poverty level. We also include variables for water system size classifications, water source, and whether the
system is a Tribal utility.?” The environmental variables included in F; relate to lead paint, Ozone, PM 2.5,
proximity to a toxic release facility, wastewater discharge, and proximity to an EPA designated Superfund
site.3® In these ordinary least squares regressions, the coefficients of interest are 3 and +, which represent
the change in the outcome variable according to a one unit increase in the independent variable. In all cases,

we refer to associations with p-value of less than 0.1 as statistically significant.

5 Results

In the following sections, we first provide a detailed description of average levels each drinking water quality
measure across all drinking water systems. We then summarize these measures across demographic groups

and geographic regions, and we characterize disparities using intuitive disparity measures, bivariate maps,

37We include both Tribal system status and the percent American Indian to account for the drinking water quality experi-
enced by American Indian individuals, irrespective of Tribal system status.

38We drop indicators for air toxics cancer risk and air toxics respiratory hazard index, as these are constructed from the
other air pollution information provided and would therefore be highly correlated with these variables.

19



and regression-based statistical tests. We provide supplemental analysis explaining why different geospatial

methods can lead to different conclusions. We conclude with sensitivity tests and a discussion of limitations.

5.1 Drinking Water Quality and Disparity Measures

We provide novel evidence on the extent of disparities in drinking water quality in this section. As detailed
below, we find potential environmental justice disparities with respect to all drinking water quality metrics

investigated in this analysis.

Health-based Violations of the Safe Drinking Water Act (2015-2023): We summarize the average
number of health-based violations across public water systems and according to each boundary representation
in Table 1. The average total number of health-based violations per system is 1.3 to 1.4 from 2015-2023
according to the most complete boundary data, with 77% of systems having zero health-based violations in
this period.?? According to the subset of systems with USGS boundaries, the average number of violations
is 1.6; the subset of systems with zip code information have a lower average number of violations at 0.8.
These differences in violation averages for USGS or zip code boundaries relate to a smaller set of observed
systems. There is right skew in the count of health-based violations; Appendix Table A4 shows that the
average number of health-based violations among systems with at least one violation is roughly 5.8.

Next, we summarize the average population-weighted count of health-based violations in systems serv-
ing each demographic group in Table 2. We illustrate disparities in the count of health-based violations
across groups in Figure 1(b), which characterizes the magnitude of disparities using the convention of preva-
lence ratios described in Section 4. We find that American Indian, Black, and Hispanic populations all
experience more health-based violations than non-Hispanic White individuals according to most boundary
representations, with American Indian populations notably experiencing 2 - 3 total health-based violations
in comparison to 0.8 for non-Hispanic White populations.?’® Low-income individuals also experience more
health-based violations than non-low-income populations across all boundary types. When observing the
prevalence ratios for each demographic group in Figure 1(b), two findings emerge. First, potential risk
often increases when moving from the least geospatially precise boundaries to more accurate boundaries,
although this conclusion may also relate to data completeness for USGS and zip code boundaries. For
example, between county and EPA boundaries, American Indian populations experience between 2.56 to
3.29 times more health-based violations than those serving primarily non-Hispanic White populations, a

29% gap between the lowest and highest estimate of disparity. This finding suggests that the magnitude of

39The county, EPIC, and EPA ORD datasets are the most complete in terms of system coverage, each with at least
44,000 systems represented.
40For numeric characterization of the prevalence ratios, see Table 3.
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an environmental justice concern may be under-estimated when using incomplete or imprecise boundaries.
Moreover, conclusions regarding the presence of a disparity for Hispanic populations depend on the service
area boundary representation selected, where county boundaries suggest fewer health-based violations while
all other boundaries suggest more frequent violations among systems serving Hispanic populations.

We also characterize geospatial heterogeneity in the number of health-based violations and potential for
environmental justice concerns. Figure 1(a) maps violation counts nationwide, demonstrating that health-
based violations occur throughout the US, although certain states have more non-compliance concerns than
others. In particular, systems in Texas, Oklahoma, Louisiana, Kentucky, and Alaska all have numerous CBGs
with an average of at least 10 health-based violations from 2015-2023. To determine how these clusters of
violations correspond to potential environmental justice concerns, we also present bivariate maps that show
the number of health-based violations alongside the percent people of color in Figure 8(a) and the percent

of individuals living below twice the federal poverty line in Figure 8(b).*!

We note some areas along the
southwest border states that have a high percentage of people of color and a high count of health-based
violations. Additionally, we see higher violation counts and higher percent people below twice the federal
poverty level in the South, specifically in the northeastern part of Texas and in Oklahoma. In addition,
Alaska has high rates of health based violations, people of color, and people living below twice the federal
poverty level, reflecting a potential environmental justice hotspot with respect to health-based violations.
We conclude with regression-based statistical characterization of disparities in the number of health-based
violations across demographic groups while controlling for water system characteristics in Table 4.42 The
first column of Table 4 displays coefficients related to demographic groups when controlling for water system
size, water source type, and whether the system is operated by a recognized Tribe. Systems serving a greater
share of American Indian, Hispanic, and low-income individuals tend to have statistically significantly more
health-based SDWA violations, confirming that some of the disparities observed in Figure 1(b) persist even
when controlling for system characteristics and share of the system that is low-income. For example, the
coefficient with respect to American Indian of 5.4 in column (1) suggests that a ten percentage point increase
in the share of a service population that is American Indian is associated with roughly 0.5 more health-based
violations. This increase is over a third of the system-wide mean count of health-based violations at 1.3. The
share of a service population that is Black is associated with a small but statistically significant decrease in
the health-based violation count. This finding contrasts with the raw difference in mean violation counts

for this group, suggesting that part of the disparity in violation counts may be statistically explained by

41In Appendix Figure 1(a) and Figure 1(b), we also include simple demographic maps to help provide a baseline for com-
parison in the bivariate maps, highlighting racial and economic demographics across the United States.

42These regressions are based on EPA ORD service area boundaries, but we also show regressions with respect to the
EPIC boundaries in Table A5.
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differences in typical water system size or source water. Meanwhile, a ten percentage point increase in the
share of a service population that is Hispanic is associated with a 0.26 additional health-based violations
conditional on other water system characteristics. A similar 10 percentage point increase in the share of
a service population with incomes below twice the federal poverty limit is associated with 0.2 additional
health-based violations. Asian and Pacific Islander populations tend to be served by water systems with
fewer health-based violations, which can also be observed in the prevalence ratio bar plots. As for system
size categories, very small and small systems are more likely to experience health-based violations than
medium-sized systems, which are the omitted category of system size. Conversely, large and very large water
systems tend to have fewer health-based violations than smaller systems. Groundwater-sourcing systems

also tend to have fewer violations.

Lead Action Level Exceedances (1991-2021): We summarize our measure of lead in drinking water,
the count of lead action level exceedances (ALEs), according to each boundary in Table 1. The average
count is similar at roughly 0.45 per system irrespective of the boundary representation employed, with 78%
of all systems never experiencing a lead ALE from 1991 to 2021. As with the health-based violations, we
observe that there is right skew to the distribution of lead ALEs across systems, where the average number of
ALEs for systems with at least one violation is over 2 according to all boundary types as shown in Appendix
Table A4.

We summarize the average population-weighted count of ALEs among systems serving each demographic
group in Table 2, and we illustrate disparities across these groups in Figure 2(b). We find that Asian and
Black populations are served by water systems with more lead ALEs irrespective of the boundary represen-
tation employed. Asian populations have the greatest frequency of lead ALEs of any group with 1.7 to 2
ALEs, at least 1.5 times as many ALEs as non-Hispanic White populations according to all boundary types.
The magnitude of this disparity measure ranges from 1.48 to 2.1 depending on the service area boundary em-
ployed, or a 42% gap between the lowest and highest estimated prevalence ratio. Black populations also tend
to be served by water systems with more lead ALEs irrespective of the boundary type, at 1.1 to 1.4 ALEs and
prevalence ratios ranging from 1.1 to 1.3 depending on the service area boundary representation. Conversely,
conclusions regarding the presence of a disparity in lead ALEs for Hispanic and low-income individuals de-
pend on the service boundary representation employed. For example, zipcode and USGS boundaries suggest
no presence of a disparity, while the other boundary types suggest that Hispanic populations are served by
water systems with more ALEs. In contrast to the findings for health-based violations, we do not always
observe a pattern of greater disparities with increasing boundary precision; county boundaries suggest the

greatest disparity for Asian populations. However, less-complete USGS and zip code boundaries suggest
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disparities of lower magnitude for Asian and Black populations.

We map the count of ALEs in Figure 2(a). The map shows that water systems with more lead ALEs
are concentrated in the northeastern US and the Midwest. These findings could be attributed to older
infrastructure in these regions, which is described in the Drinking Water Infrastructure Needs Survey (EPA,
2023a). Ohio has notably high levels of lead ALEs in comparison to other states, which we explore further in
Section 5.2.4. We also observe pockets of more frequent ALEs in Alaska, parts of California, and the coastal
Pacific Northwest. To explore the potential for environmental justice hotspots,*> we present bivariate plots
of the number of lead ALEs alongside the percent people of color in Figure 9(a) and the percent of individuals
living below twice the federal poverty line in Figure 9(b). We observe that many areas with the greatest
share of people of color and the highest number of lead ALEs are observed frequently in California, Alaska,
and in some large cities such as Chicago. Clusters of more frequent lead ALEs and low-income populations
can also be observed in Alaska, California, Missouri, and parts of the Northeast.

Finally, we conduct a statistical test of disparities in the number of lead ALEs across demographic groups
conditional on other water system characteristics. These results are displayed in column (2) of Table 4. Water
systems that serve a greater share of Asian individuals tend to have statistically significantly higher counts
of lead ALEs, whereas systems serving a greater share of Hispanic and low-income individuals tend to have
fewer lead ALEs. A ten percentage point increase in the Asian share of a service population is associated
with 0.08 more lead ALEs, a 17% increase from the mean of 0.45 ALEs per system. American Indian,
Black, and Pacific Islander populations do not have statistically significantly different counts of lead ALEs
conditional on other controls. Regarding the other system characteristics, large and very large systems have
more lead ALEs than the omitted category of medium-sized systems, while small and very small systems

have fewer lead action level exceedances.

PFAS Concentrations (2013-2023): We summarize the sum of PFAS concentrations across water sys-
tems with sampling data in Table 1. These total concentrations represent the sum of average concentrations
across 33 unique species of PFAS in parts per trillion (ppt).** The average total concentration of PFAS is
5 - 6 ppt, with 65 to 70% of systems sampling for PFAS never detecting the chemicals. We note that these
figures are not necessarily representative of all systems nationwide, as less than one fourth of community
water systems have any PFAS sampling history. For example, average concentrations are 5 ppt for the more
complete county, EPIC, and EPA boundaries but slightly higher at 6 ppt according to the subset of systems

for which we have zip code served data. Nevertheless, this measure of PFAS in drinking water represents the

43 As previously described, potential hotspots at the neighborhood and even household level will not be captured by
system-level lead ALE counts.
44We assign concentration values of zero to all non-detection samples.
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sampling history of water systems serving 270 million people. While most systems in our data never have
a PFAS detection, systems that have detected PFAS tend to have average total concentrations of 17 to 19
ppt as shown in Appendix Table A4.

We summarize the average concentration of all PFAS across demographic groups in Table 2, and we also
illustrate disparities across these groups in Figure 3(b). Asian, Black, and Hispanic communities are served
by water systems with higher average PFAS concentrations than non-Hispanic White populations irrespective
of the service area representation employed. Of all groups, Hispanic communities are served by water systems
with the highest PFAS levels at 13 to 17 ppt on average. However, conclusions regarding the presence or
absence of an environmental justice concern depend on the boundary representation employed with respect
to American Indian and low-income populations. In the case of American Indian communities, the county,
zip code, and USGS boundaries all point to a lack of disparity in PFAS levels, while the more complete and
spatially-refined EPIC and EPA boundaries suggest elevated concentrations among water systems serving
this population.

We map PFAS concentrations in Figure 3(a). This map highlights that certain areas are much more
likely to have sampled for PFAS in drinking water, whereas large stretches of the country have limited data
availability. States with more PFAS sampling include California, Massachusetts, New Jersey, North Car-
olina, Colorado, and Illinois. Among states that have sampled across most of their drinking water systems,
Alabama, New Jersey, and North Carolina appear to have the relatively frequent PFAS detections at ele-
vated concentrations. To shed further light on the disparities for particular groups observed in Figure 3(b),
we present bivariate maps of PFAS and the % people of color in Figure 10(a) and % low income in Fig-
ure 10(a). These maps show notable environmental justice hotspots with respect to PFAS in New Jersey,
North Carolina, and California. We perform supplemental analysis of PFAS levels in New Jersey in Section
5.2.4

We display regression-based tests of statistical significance in the extent of disparities in PFAS detections
across demographic groups in column (3) of Table 4. We find that Asian, Black, and Hispanic populations are
served by water systems with elevated PFAS, and this difference is statistically significant after controlling
for other water system characteristics and share of the population that is low-income. In particular, a ten
percentage point increase in the share of a service population that is Asian is associated with an additional
1.6 ppt of PFAS. A similar shift in the share of the service population that is Black or Hispanic is associated
with a 0.6 and 0.8 ppt increase in total PFAS concentrations. We do not observe statistically significantly
elevated PFAS detected for American Indian populations or tribal utilities in this model despite noting the
presence of a disparity according to EPA ORD boundaries in Figure 3(b). These findings imply that the the

elevated PFAS concentrations for systems serving American Indian individuals are either not large enough
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to be statistically distinguishable from zero or that they may be statistically explained by other factors such
as water system characteristics. Next, we note some interesting patterns across water system size categories.
The very largest systems are significantly likely to have 2 ppt higher PFAS concentrations, and small systems
have roughly 2 ppt lower PFAS concentrations. These discrepancies across small and large systems could be
due to differences in sampling data availability. We note that certain point estimates may be unexpectedly
large in magnitude because they represent inference from relatively small underlying populations or minimal
shifts in the related independent variables. For example, a ten percentage point increase in the share of a

service population that is Pacific Islander is associated with 8 ppt lower PFAS concentrations.

Disinfection Byproducts (2006-2019): Our measure of disinfection byproducts in drinking water is the
sum of the average concentrations of trihalomethanes and haloacetic acids among samples collected from
2006 to 2019. We summarize this metric in Table 1, showing that the average system has a concentration
of 29-30 ug/l according to county, USGS, EPIC, and EPA ORD boundaries. Due to lower sample size and
lack of representativeness, use of zip code boundaries suggests higher average concentrations at 41 pg/l. The
higher concentrations observed when limiting to systems with zip code served information is likely because
all large systems have available zip code served data, and smaller systems are less likely to have available zip
code served information. This different subset of systems biases estimates upwards because large systems
tend to have differences in sourcewater characteristics and distribution network size that contribute to higher
DBP levels. Across all boundary representations, the share of systems with DBP concentrations of zero is
17 to 19% except for zip code boundaries, which have a lower share (7%) of systems with concentrations of
zero due to the differential representation of larger systems.

We summarize the average DBP concentrations experienced by different demographic groups in Table 2,
and we also illustrate disparities across these groups in Figure 4(b). Black and low-income populations have
elevated DBP levels in drinking water irrespective of the boundary representation selected, while conclusions
regarding the presence of a disparity for Asian populations depend on the service area boundary selected.
We note that the disinfection byproduct disparity metrics tend to be more clustered around one, which is
partly because the distribution of DBP concentrations across systems exhibits less skew. We map combined
disinfection byproducts concentrations in Figure 4(a), which also highlights the regions that have very high
DBP levels and others that either have low DBP levels. For example, large regions of states including
Arkansas, Kentucky, Missouri, Iowa, and Nebraska have average combined levels of TTHM and HAA5 that

1.45

are over 100 ug/ We observe relatively low regulated DBP levels in some arid Western states such as

California, Nevada, and Arizona, which could relate to differential DBP precursors in source waters in these

45The occurrence concentrations reported in this map are not reflective of potential compliance assessment with MCLs,
which for DBPs is based on locational running annual average concentrations.
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states. We illustrate DBP levels in combination with % people of color in Figure 11(a) and % low income in
Figure 11(b). These maps suggest that systems with a high share of low-income individuals in the Midwest
in states such as Oklahoma and Northern Missouri also often have high concentrations of DBP levels.
Tests for statistical significance of disparities in levels of DBPs across demographic groups are displayed
in column (4) of Table 4. These regressions suggest that low-income individuals are statistically significantly
more likely to be served by water systems with elevated concentrations of DBPs. The coefficient suggests
that a ten percentage point increase in the share of a service population that is low income is associated with
2.1 pug/l more DBPs conditional on water system size and sourcewater characteristics. We do not observe
any statistically significant and elevated associations between DBP concentrations and race or ethnicity,
although we note systems serving a greater share of Asian and Hispanic populations as well as tribal utilities
tend to have statistically significantly lower DBP levels. These findings could relate to relatively lower DBP
levels in Western states as mentioned above. Finally, very small systems and groundwater sourcing systems

tend to have statistically significantly lower DBPs.

Total Coliform Detection Rate (2006-2019): At the national level, drinking water systems have an
average detection rate for total coliform bacteria of roughly 2% according to all service area boundary types.
As shown in Table 1, roughly 30% of systems never have a single detection of total coliform bacteria when
using the more-complete county, EPIC, and EPA ORD boundary data, however this figure is lower at 21%
when computing it over the set of systems with zip code served information. Among systems that ever have
at least one detection, the average detection rate is closer to 2.7% as shown in Appendix Table A4.

We summarize the average total coliform detection share experienced by each demographic group in
Table 2, and we illustrate disparities across these groups in Figure 5(b). Asian, Black, Hispanic, and Pacific
Islander populations are served by drinking water systems with elevated total coliform detection shares
in comparison to the non-Hispanic White population irrespective of the service area boundary type. For
low-income populations, conclusions regarding the presence of a disparity depend on the type of boundary
representation selected, with county boundaries suggesting no elevated total coliform detections while all
other boundaries suggesting potentially elevated detection likelihood for low-income populations. We map
combined total coliform detection shares in Figure 5(a), and we thus show which states have had a higher
share of positive samples throughout our study period. Contrary to some of the other drinking water quality
measures, there are notable data gaps for certain states in the Six Year Review 3 and 4 records including
California, Massachusetts, and Michigan, and we additionally drop South Carolina and Maryland due to
different reporting practices in these states. We observe geographic concentrations of elevated total coliform

detection shares in Arizona, Louisiana, Nebraska, Tennessee, Georgia, and parts of the Western United
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States such as Idaho. We illustrate total coliform detection shares levels in combination with % people of
color in Figure 12(a) and % low income in Figure 12(b). These maps suggest potential hotspots for total
coliform detections and people of color in Alabama, Alaska, Arizona, and parts of Texas, whereas clusters
of low-income individuals and drinking water systems with elevated total coliform detection shares can be
observed along the Mississippi River, Arizona, Nebraska, and southern Alabama.

We test for statistical significance in disparities in total coliform detection shares across demographic
groups and present these results in column (5) of Table 4. Total coliform detection shares are positively and
statistically significantly associated with the share of a service population that is American Indian, Pacific
Islander, and low-income. The results suggest that a 10 percentage point increase in the share of a service
population that is Pacific Islander is associated with a 0.12 percentage point increase in the total coliform
detection rate.*® Detection shares are negatively and statistically significantly associated with the Hispanic
share of a service population. The remaining demographic groups are not statistically associated with total
coliform detection shares. Of all the drinking water indicators, total coliform regression results differ the
most from the raw population differences presented in Figure 5(b) and Table 2, where we show that Asian
and Black populations are served by systems with higher unconditional detection shares. This discrepancy
could be due to the fact that disparities for these groups are statistically explained by differences in typical
water system size or source water characteristics. In particular, the very largest water systems tend to have
much higher total coliform detection shares in comparison to all other water system size categories, with
these systems seeing a 4.4 percentage point greater detection rate than the omitted system size category.
In addition, systems that source from groundwater have marginally greater total coliform detection shares,
which could reflect that groundwater systems typically use less disinfectant for their sourcewater. Lower

disinfectant use increases the likelihood of microbial growth in the distribution system.

Arsenic Concentrations (2006-2019): The average concentration of arsenic in community water sys-
tems from 2006-2019 is 0.6 - 0.7 ug/l or ppb, with slightly over 70% of systems never detecting arsenic as
shown in Table 1. Among the roughly 28% of systems that ever have at least one detection of arsenic, the
average concentration is 2.3 ug/l for all boundary types except for zip codes (see Appendix Table A4). For
context on these average levels of arsenic, the legally enforceable maximum contaminant level for arsenic of
10 png/l. The estimated average concentration is fairly consistent across service area types and only differs
when limiting the sample to systems with available zip codes, where the average level is 0.5 ug/l due to
lower system count for those records. We summarize the population-weighted average arsenic concentra-

tions among systems serving each demographic group in Table 2, and we illustrate disparities across these

46For example, this point estimate could represent a shift from the mean of 2 percent to 2.12 percent.
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groups in Figure 6(b). American Indian, Hispanic, Pacific Islander, and low-income populations are served
by systems with elevated arsenic concentrations in comparison to either the non-Hispanic White population
or the non-low income population. We observe the highest concentrations among American Indian and
Hispanic populations, who on average are served by systems with concentrations of 0.7-1.0 and 0.7-0.8 ug/I,
respectively. For American Indian populations, potential arsenic disparity measures range from 1.67 to 2.43
between the county and EPA boundaries, suggesting that the magnitude of this disparity could be under-
estimated by as much as 45% depending on the service area boundary employed. For Asian populations,
conclusions regarding the presence of a disparity depend on the service area boundary type employed, with
all boundary types except the USGS data suggesting higher arsenic levels for this group.

We map arsenic concentrations in Figure 6(a), illustrating that arsenic tends to be detected at higher
concentrations in the Western United States. Clusters of elevated arsenic levels can be observed in California,
Texas, Nebraska, Nevada, and pockets of the Northwestern US. Arsenic is seldom detected in the Eastern and
Southeastern US. We illustrate arsenic concentrations in combination with % people of color in Figure 13(a)
and % low income in Figure 13(b). These maps suggest potential hotspots for arsenic exposures to people
of color in parts of California and Southern Texas, whereas clusters of low-income individuals and elevated
arsenic levels can be observed in the same regions as well as Alaska and Nebraska.

We show statistical tests of association between population characteristics and arsenic levels in column
(6) of Table 4. Arsenic levels are positively and statistically significantly associated with the share of a service
population that is American Indian, Asian, and Hispanic. The coefficient for % Hispanic suggests that a 10
percentage point increase in the Hispanic share of a water system’s service population is associated with 0.17
ug/l higher concentration of arsenic, a 25% shift from the mean concentration across all systems. Meanwhile,
a 10 percentage point increase in the share of a service population that is American Indian is associated with
0.09 ug/l more arsenic, and this is in addition to statistically elevated arsenic levels among tribal-operated
utilities. We observe negative and statistically significant associations between the low-income and Black
share of the service population. We attribute the negative association between arsenic levels and Black share
of the service population to lower levels of arsenic in Eastern and Southeastern states, which can be seen
in Figure 6(a). In contrast to some of the other measures of drinking water quality, for arsenic we observe
that the smallest systems and especially groundwater systems are the most likely to have elevated levels. On
average, a ground-water sourcing system has 0.3 ug/l more arsenic than a surface-water sourcing system,

and a very small system has 0.14 ug/l higher levels of arsenic.

Nitrate Concentrations (2006-2019): As shown in Table 1, the average concentration of nitrate in all

community water systems from 2006-2019 is generally stable across service area boundary representations,
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ranging from 0.8 to 0.95 mg/l.*7 The averages are nearly identical for county, EPIC, and EPA boundary
types at 0.87 mg/l, but are lower for zip code boundaries at 0.82 and higher for USGS boundaries at 0.95.
We also observe that around one fifth of drinking water systems never detect nitrates and thus have a
concentration value of zero, whereas systems that have non-zero concentrations have concentrations around
1.1 mg/l (see Appendix Table A4). For context, the legally enforceable limit for nitrates in drinking water
is 10 mg/I.

We summarize average nitrate concentrations experienced by each demographic group in Table 2, and we
illustrate disparities across these groups in Figure 7(b). Asian, Hispanic, and Pacific Islander populations
are served by drinking water systems with elevated nitrate concentrations in comparison to the non-Hispanic
White population. These disparities can be observed across all service area boundary types, although the
magnitude of the disparaty for each group tends to be lower when using imprecise (e.g., county) or incomplete
(e.g., USGS) boundary data. For American Indian communities, the prevalence of nitrates is roughly equal
to the comparison group, with disparity measures both just above and just below one depending on the
service area boundary type. We map nitrate concentrations in Figure 7(a), illustrating that nitrate tends to
be detected at higher concentrations in the Midwestern states of Nebraska, Kansas, Oklahoma, and Texas.
We also see areas with higher levels of nitrates in eastern Pennsylvania, parts of California, Idaho, Iowa,
and Wisconsin. We illustrate nitrate concentrations in combination with % people of color in Figure 14(a)
and % low income in Figure 14(b). These maps suggest potential hotspots for nitrate exposures to people of
color in California and Texas. Clusters of low-income individuals and elevated nitrate levels can be observed
in the same regions as well as a large stretch of Midwestern states such as Nebraska.

In regression analysis of nitrates in drinking water, presented in column (7) of Table 4, we show that Asian
and Hispanic populations have statistically significantly elevated nitrate levels when conditioning on other
water system characteristics. A ten percentage point increase in the Hispanic share of a service population
is associated with 0.15 mg/l higher nitrate levels, and a similar shift in the share of a service population
that is Asian is associated with 0.2 mg/l higher nitrate levels. Nitrate levels are negative and statistically
significantly associated with the share of a service population that is Black. We do not observe statistically
significant differences in nitrate levels for American Indian, Pacific Islander, or low-income individuals.
Regarding system characteristics, we find that small and very small systems as well as groundwater systems

are more likely to have higher nitrate levels.

47TNote as described in Section 3 that for some systems we use combined nitrate and nitrite concentrations if the system
does not separately report nitrate.
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5.2 Supplemental Analysis

In this section, we describe national and sub-national analyses that further elucidate the differences between
boundaries and how these differences might impact our conclusions. We begin by analyzing why factors
such as boundary precision and data completeness affect the analytic conclusions we derive overall. We
then show the significance of modelling techniques with a case study comparison of the geographic extent
of health-based violations in Oklahoma according to EPIC and EPA boundaries. Finally, we conduct a
series of additional state-level analyses to zoom in on within-state heterogeneity in both water quality
and demographics, emphasizing the importance of precise boundaries for depicting environmental justice

hotspots.

5.2.1 Larger, Less-Precise Boundaries Bias Estimated Demographic Percentages

Use of large and imprecise areas such as counties may introduce bias in estimating water system demographic
information. While county representations are more complete than zip codes and usually include most if
not all of the actual service area within their boundary, they also assign geographic areas to a system that
are not actually served by that system. To the extent that non-served areas differ from served areas within
a county, county boundaries can lead to inaccurate characterization of minority or low-income populations.
Figure 15 provides scatterplot evidence on how the estimated percent minority population differs between
EPA ORD boundaries and the other four boundary representations. In the top left quadrant, we observe that
use of county boundaries displays the greatest statistical noise of all boundary representations. In particular,
water systems serving less than 50% people of color according to the EPA ORD boundaries are frequently
estimated to have much higher percentages of people of color served. Conversely, where the EPA ORD
boundaries suggest a system serves at least 50% people of color, county boundaries frequently suggest much
lower percentages of this demographic group. These findings can be seen in the large mass of observations
well above the line of 45 degrees where the EPA ORD percent minority is less than 50%. Similarly, where
the EPA ORD percent minority is greater than 50%, there are many dispersed observations below the line
of 45 degrees where use of county boundaries under-estimates the minority share of a service population. In
Figure 16, we provide similar evidence with respect to percent low-income, again demonstrating that county
boundaries tend to have the greatest degree of statistical noise. We also display these scatter plots for all
minority populations in Appendix Figure A3 to Figure A7. In these plots, we observe the greatest noise for
groups that constitute a lower share of the general population such as American Indian and Pacific Islander

populations.
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5.2.2 Data Completeness Affects Analytic Conclusions

As further demonstration of the differences between service area boundary types, we create two maps com-
paring the number of health-based violations that would be missed when using zip code or USGS boundaries,
which notably do not capture all community water systems, in Figure 17(a) and Figure 17(b). These maps
convey that a large number of violations and communities would not be captured in an analysis that only
relied on these boundaries. In addition, many of the violations that would be missing are in areas that tend to
have greater numbers of health-based violations such as Western Texas and Oklahoma. Such a finding helps
to explain why we observe lower disparities with respect to health-based violations when using USGS and
zip code boundaries, and it underscores that data completeness can impact the results of an environmental

justice analysis of drinking water quality.

5.2.3 Boundary Modelling Decisions Are Consequential

To help illustrate how different methods for approximating service area boundaries can lead to different
conclusions with respect to environmental justice concerns, we produce bivariate maps of the count of
health-based violations and percent people of color in Oklahoma using the EPIC and EPA ORD boundaries.
We choose Oklahoma for a case study of health-based violations because it has a high number of health-based
violations, and a large share of the population is American Indian, which we note to be an important disparity
in this particular metric. Furthermore, this is a state that does not have state pre-supplied boundaries, and
therefore allows us to show how boundary modelling techniques can thus lead us to different environmental
justice conclusions. This case study therefore sheds some light on the heightened prevalence of health-based
violations for American Indian populations described above. In this case study, each boundary data source
relies on distinct modeling methods for boundaries in the absence of state-provided data, where EPIC’s
methods primarily rely on municipality boundaries or centroid buffers (i.e., tier 2 and tier 3) while the EPA
ORD boundaries use a multi-step procedure described above. We note a few differences between the modeled
boundaries. First, there are a different number of systems in the EPA-ORD (745) and EPIC (899) boundary
data, which will impact the overall number of violations and their spatial extent. Second, the EPA-ORD
boundaries are generally smaller and more precise than the EPIC boundaries, which tend to be larger and
sometimes overlapping polygons. When spatially interpolating the boundaries onto census block-groups, the
EPA ORD boundaries therefore include fewer census divisions for any given water system, which tends to
lower the estimated number of violations in many census block groups. In addition, the EPIC boundaries
tend to have more overlapping systems, which can have an ambiguous impact on any particular census block

group’s perceived water quality depending on whether incorrectly overlapped service areas have more or
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less violations. This pattern quite dramatically affects where an analyst might locate environmental justice
hotspots in the state; with the EPIC boundaries, much of the Southeastern corner appears to have many
violations and a high percentage of people of color. The EPA boundaries show these hotspots with more

geographic precision.

5.2.4 Insights from State-Level Bivariate Maps

We also produce state-level bivariate maps for selected drinking water quality indicators to visually demon-
strate the value in using precise service area boundary representations in characterizing environmental jus-
tice hotspots, or locations with drinking water quality concerns and heightened socioeconomic vulnerability.
State-level analyses can help to portray local disparities in drinking water quality, especially in densely-
populated areas, and help motivate the use of precise boundary tools and census measures when considering
areas with potentially concentrated environmental justice concerns. We focus on these states mostly to show
the level of precision that is hard to view when considering national maps at this spatial scale.*® To start,
we map the historical presence of lead action level exceedances in Ohio (Figure 19(a)). Ohio had some of the
highest number of lead action level exceedances across all states, and Hamilton County, which encompasses
Cincinnati, had some of the highest number of lead action level exceedances and percent people of color in
the state. Next, since certain states have sampled for PFAS more completely and frequently, we zoom in
on New Jersey in Figure 19(b). New Jersey has samples for these chemicals across all of its systems, and
the state’s water systems had many detections of PFAS in its systems across the study period. We note
several areas where we see both more types of PFAS detected in its water systems and higher population of
color, such as in the Essex region in the northeast. Finally, we highlight DBP levels in North Carolina in
Figure 19(c), which has several regions where high overall concentrations also intersect with relatively high

proportion of people of color.

5.2.5 Drinking Water Quality Concerns Co-Occur with Other Environmental Burdens

We test whether drinking water quality measures are are associated with other measures of environmental
burden in Table A6.%° In this table, each column conveys correlations between a given drinking water measure
and the measures of environmental burden in each row. To start with the lead indicator in EJSCREEN,

which represents the share of houses built prior to 1960, we observe that health-based violations, lead

48For national versions of these maps, see Figure 8(a), where we display a series of national bivariate maps for both people
of color and low-income populations.

49We source measures of environmental burden from EJSCREEN 2.0 and include only a subset of all environmental indi-
cators because many indicators are likely highly correlated with each other (e.g., diesel particulate matter, traffic proximity,
and PM 2.5). We also exclude certain indicators that present a challenge to interpretability of regression coefficients, such as
the air toxics respiratory hazard index.
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ALEs, DBPs, and nitrate levels are statistically significantly associated with greater lead paint hazards.
This suggests that communities with older housing stocks not only have a greater likelihood of lead paint
exposure but are also more likely to be served by water systems with more lead action level exceedances,
health-based SDWA violations, DBPs, and nitrates. Both measures relating to air pollution, Ozone and
PM 2.5, are associated with more health-based SDWA violations as well as nitrates nitrates. We see mixed
results across PM 2.5 and Ozone for lead ALEs, PFAS, total coliform detection, and arsenic. Proximity to
hazardous waste treatment, storage, and disposal facilities is positively associated with more lead action level
exceedances, PFAS, DBPs, total coliform detections, and nitrates. However, these hazardous waste sites are
associated with fewer health-based SDWA violations and lower arsenic levels. Superfund site proximity is
significantly associated with more lead ALEs, nitrates, and PFAS levels. The association between Superfund
proximity and PFAS concentrations is the largest relationships in magnitude that we observe with respect
to PFAS. Finally, we note with interest that wastewater discharge, the only water-based pollutant indicator
in EJSCREEN, is negatively associated with health-based violations and lead action level exceedances and

not statistically significantly associated with any of the other drinking water quality indicators.%®

5.2.6 Geospatial Aggregation Methods Can Mute the Extent of Disparities

We conclude this section by showing how data aggregation methods can suggest different extents of variation
in water quality. While this exercise does not convey differences across types of service area boundaries, it
is relevant to the production of visualizations using service area boundaries. We generate a set of maps
of health-based violation frequency in New Jersey across census designations with different levels of spatial

5L Notably, average health-based violation counts at the tract

granularity in Figure 2(a) to Figure 2(c).
and county levels tend to show less variation across areas than maps at the CBG-level. For example, the
counties with the greatest number of health-based violations have only 10 on average, while it is clear that
certain areas have many more than ten health-based SDWA violations when employing census block groups
or tracts. However, this reduction in variation when using counties comes with trade-off that all areas have
at least one observed value. The other maps have certain white areas with no water systems and hence

no health-based violations. These gaps in spatial coverage are likely areas where most residents use private

domestic wells.

50For more discussion on the water-related environmental risk factors, see Scanlon et al. (2023).
51New Jersey has high-quality service area boundaries produced by the state, rendering the analysis more spatially reli-
able.

33



5.3 Sensitivity Analyses

We conduct a battery of sensitivity tests relating to different subsets of water systems, types of drinking
water quality measures, and regulatory periods over which the measures are constructed.

First, we test the sensitivity of our results to alternative subsets of water systems and their associated
boundaries. The results of these sensitivity tests are displayed in Appendix Table Al, Table A2, and
Table A3. The first analysis subsets to water systems with service area boundaries listed as tier 1 or tier
2 in the EPIC boundaries, while Table A2 subsets to EPIC tier 2 and tier 3 systems. In both cases, the
purpose of these sensitivity tests is to determine whether our conclusions tend to be driven by modelling
techniques for systems without publicly-available boundary data. Of course, using a different subset of states
or systems is also expected to alter the underlying disparity measures irrespective of boundary accuracy, and
so we therefore focus primarily not on the altered magnitude of disparities but on the relative differences
across boundary representations. Next, because some states with tier 1 boundaries also have questionable
accuracy, we perform this subset analysis with respect to five states that have more accurate service area
boundary data in Appendix Table A3. These states are California, Connecticut, New Jersey, New Mexico,
and Washington. In all subgroup analyses, we observe qualitatively similar results suggesting that geospatial
methods for boundary aggregation can affect the results of an environmental justice analysis. We observe
much more variation in conclusions where modelling approaches differ (e.g., EPIC tier 2 and tier 3 data).

Next, our PFAS measure could present biased disparity measures due to differential sampling behaviors
across systems and changing detection thresholds over time. We therefore present four alternative drinking
water quality measures for PFAS: the sum of the maximum concentration of each distinct PFAS sampled,
which emphasizes the tails of the PFAS concentration distribution (see Appendix Figure 8(a)); the PFAS
detection share (see Appendix Figure 8(b)); the count of unique PFAS ever detected, which is less prone to
bias from differing detection thresholds over time (see Appendix Figure 8(¢)); and the sum of just PFOA and
PFOS, which are the most frequently sampled PFAS (see Appendix Figure 8(d)). We also produce disparity
measures for the total number of PFAS samples collected by demographic group, which sheds light on whether
certain groups are less likely to have had PFAS sampled in their drinking water (see Appendix Figure A10).
In general, we find that the same population groups (i.e., Asian, Black, and Hispanic) are served by systems
with elevated PFAS irrespective of the specific measure employed. The count of unique PFAS detected and
the detection share tend not to suggest a disparity for certain groups such as low-income populations or
American Indian communities. This finding reflects that American Indian communities are not necessarily
more likely to have PFAS in drinking water, but that PFAS is present at higher concentrations when it is

detected. We also observe significantly more variation in findings across the service area boundary types
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when employing the sum of maximum PFAS concentrations measure, which we attribute to the higher degree
of right skew in this measure. Finally, we show our primary disparity measure for PFAS when excluding
samples collected prior to 2020, which ensures that all samples have similar detection thresholds. These
results are presented in Appendix Figure A9, and they show very similar results to our primary disparity
measures plotted in Figure 3(b).

We also conduct a variety of sensitivity tests related to DBPs. Different classes of DBPs tend to form
under different circumstances, and so we show our primary disparity measures according to just TTHM in
Appendix Figure 11(a) and just HAA5 in Figure 11(b). When separating these two DBP classes, we find
very similar results to the primary disparity measures shown in Figure 4(b). For all service area boundary
types, we observe disparity measures less than one for Hispanic and Pacific Islander populations and disparity
measures greater than one for Black and low-income populations across TTHM, HAA5, and the combined
sum of the two. For Asian populations, disparity measures are both above and below one across TTHM,
HAAS5, and the combined sum of each; USGS and county boundaries suggest heightened risk for all three
DBP measures, while other boundary types suggest lower risk. We observe very minor differences in disparity
measures for American Indian populations with respect to TTHM and one service area boundary type. For
American Indian populations, we see a potential disparity in TTHM levels according to only the USGS
houndaries, while we do not observe this potential disparity with respect to HAA5 or the combined sum of
both classes.

Finally, we show results how disparity measures may differ when subsetting to samples collected over
periods with different regulatory requirements. We start by showing DBP disparity measures exclusively for
the Six Year Review 3 in Appendix Figure 12(a) and for the Six Year Review 4 in Appendix Figure 12(b).
When limiting to later years, results are nearly identical to those of the pooled sample. However, when
limiting samples to pre-2013 data, we see higher disparity measures for American Indian and Hispanic
populations according to one and two boundary types, respectively. We perform the same exercise with
total coliform samples collected prior to and after a regulatory change was implemented in 2016 in Appendix
Figure 13(a) and Figure 13(b). For total coliform, we again observe nearly identical results over either
regulatory time horizon. In all alternative sample horizons, we conclude that limiting the analysis to only
the most-recent samples would not change our conclusions regarding disparities. Moreover, we draw the
same conclusions regarding the extent to which conclusions can vary across less-refined and more geospatially

precise service area boundaries.
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5.4 Limitations

Several limitations apply to this analysis. First, regarding the maps, the averaging of water quality indicators
for all systems serving a census division means that the mapped values may not precisely represent the
water quality experienced by a particular household in a given block group. Related to this point, we do
not generally observe tap-level concentrations of the contaminants informing our drinking water quality
measures, and samples taken at a treatment plant or at specific nodes within a distribution network may
under-estimate average tap-level concentrations of certain contaminants.®? Second, the unique nature of
each drinking water quality indicator results in varying extents of geospatial heterogeneity and missing
observations across communities. For example, we lack any PFAS samples for large stretches of the United
States. Third, drinking water indicators represent average impacts over a relatively long period of time and
may not necessarily reflect current conditions in certain areas or for particular systems. While we can rule
out that the time period of our sampling data changes our results for PFAS and total coliform detection
rates, we do observe some minor differences for certain groups with respect to earlier DBP samples. We

leave analysis of temporal trends of disparities in these drinking water measures to future work.

6 Conclusion

In this paper, we explore how the choice of representation of service area boundaries for community drinking
water systems can impact the results for environmental justice analyses. We do so by collecting all known
service area boundary types, and we then compare a novel set of novel drinking water quality metrics across
the various boundary types. We also conduct correlational regression analyses to understand how measures
of drinking water quality are correlated with water system and community characteristics. Our findings
demonstrate that the results of EJ analyses can be sensitive to modelling decisions with respect to water
system service areas. Moreover, whether a finding of a disparaty is sensitive to the choice of service area often
depends on the type of water quality metric under study. These results highlight the necessity of collecting
water system service areas across all public water systems and maintaining their accuracy over time. These
findings also underscore the importance of employing a consistent set of service areas across environmental
justice analyses.

Our study points to several avenues for future work on this topic. For instance, the importance of collect-
ing and updating high quality service area boundary data raises the need to evaluate the accuracy of different
types of boundaries. In this paper, we intentionally avoid comparing the accuracy of the various boundary

representations and focus on the comparison of conclusions when making different assumptions about the

52For more discussion of contaminant formation within distribution networks, see EPA (2002b).
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geospatial extent of service area boundaries. Future research can evaluate the accuracy of both estimated
boundaries as well as publicly available boundaries provided by states to help inform which boundary types
lead to the most accurate policy analysis or other research. Additional research on environmental justice in
drinking water could potentially help this process. For example, it would be valuable to assess environmental
justice concerns in states or regions that have been studied less in the prior literature, which often focuses
on states with available boundary data.

In addition, while we explore some of the disparities in drinking water quality across demographic groups
and geographic regions, certain findings require further exploration. For one, research could delve further
into the causes of disparate drinking water quality such as differential infrastructure maintenance, the legacy
redlining on public service provision, or uneven geospatial distribution of populations near anthropogenic
and geogenic sources of pollution. Such research could also more carefully document the joint distribution
of income, race, and drinking water quality. Further exploration of drinking water quality hotspots or
regional differences could also provide more context for studies at the national level, helping to refine research
questions as well as hone in on the consequences of lower drinking water quality like public health and water
affordability concerns.

Finally, this analysis explores how socioeconomic indicators of underlying vulnerability relate to drinking
water quality, but researchers could expand this analysis to include differences in other metrics associated
with vulnerability such as public health outcomes and water affordability. Researchers could expand analysis
of environmental justice concerns in drinking water to additional contaminants or types of drinking water
quality indicators. Similarly, there is room for additional work exploring the sensitivity of results to different
formulations of these drinking water indicators, such as for example the creation of drinking water indexes

that combine information across several metrics.

37



References

Allaire, M. and S. Acquah (2022). Disparities in drinking water compliance: Implications for
incorporating equity into regulatory practices. AWWA Water Science 4(2), el274. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aws2.1274.

Allaire, M., H. Wu, and U. Lall (2018, February). National trends in drinking water quality violations. Pro-
ceedings of the National Academy of Sciences 115(9), 2078-2083. Publisher: Proceedings of the National

Academy of Sciences.

Andrews, D. Q. and O. Naidenko, V (2020, DEC 8). Population-Wide Exposure to Per- and Polyfluoroalkyl
Substances from Drinking Water in the United States. Environmental Science & Technology Letters 7(12),
931-936.

ATSDR (2020a). PFAS Ezxposure Assessments. Agency for Toxic Substances and Disease Registry (ATSDR)

/ Centers for Disease Control and Prevention (CDC).

ATSDR (2020b, August). Toxicological profile for lead. Technical Report C5274127-A, Agency for Toxic
Substances and Disease Registry. Accessed: 2024-08-01.

Baden, B. M., D. S. Noonan, and R. M. R. Turaga (2007, March). Scales of justice: Is there a geographic bias

in environmental equity analysis? Journal of Environmental Planning and Management 50(2), 163-185.

Balazs, C., R. Morello-Frosch, A. Hubbard, and I. Ray (2011, June). Social disparities in nitrate-
contaminated drinking water in california’s san joaquin valley. Environmental Health Perspectives 119(9),

1272 — 1278.

Berahzer, S., J. Clements, J. Betts, and S. Sheridan (2022). Demonstrating affordability metrics in relation

to rulemaking. American Water Works Association.

Biden, J. (2023, April). Revitalizing our nation’s commitment to environmental justice for all. Technical

report, Executive Office of the President. Accessed: 2023-11-15.

Buchwald, C. A., N. A. Houston, J. S. Stewart, B. C. York, and K. J. Valseth (2022). Public-supply water

service areas within the conterminous united states, 2017.

Cecot, C. and R. W. Hahn (2022, December). Incorporating equity and justice concerns in regulation.

Regulation &amp Governance.

38



Clinton, W. (1994, February). Federal actions to address environmental justice in minority populations and

low-income populations. Technical report, Executive Office of the President. Accessed: 2023-11-15.

El-Khattabi, A. R., K. Gmoser-Daskalakis, and G. Pierce (2023). Keep your head above water: Explaining
disparities in local drinking water bills. PLOS Water 2(12), e0000190.

El-Khattabi, A. R., M. Teachey, and A. Theising (2023, August). EJSCREENbatch: A batch tool for

environmental justice screening analyses. R package version version 2.0. Accessed: 2023-10-10.

Environmental Impact Data Collaborative (2023, September). Six-Year Review of Drinking Water Standards

ok

EPA (2002a, August). Nitrification. Technical report, Environmental Protection Agency, Washington, DC,
20460. Accessed: 2024-7-01.

EPA (2002b, August). Permeation and leaching. Technical report, Environmental Protection Agency, Wash-
ington, DC, 20460. Accessed: 2024-7-01.

EPA (2005, December). Economic analysis for the final stage 2 disinfectants and disinfection byproducts
rule. Technical Report EPA-HQ-OW-2002-0043, Environmental Protection Agency, Washington, DC,
20460. Accessed: 2024-08-01.

EPA (2006, January). National primary drinking water regulations: Stage 2 disinfectants and disinfection
byproducts rule. Technical Report EPA 815-R-05-010, Environmental Protection Agency, Washington,
DC, 20460. Accessed: 2024-08-10.

EPA (2010, August). Comprehensive disinfectants and disinfection byproducts rules (stage 1 and stage 2):
Quick reference guide. Technical Report EPA 816-F-10-080, Environmental Protection Agency, Washing-
ton, DC, 20460. Accessed: 2024-08-10.

EPA (2012, September). Economic analysis for the final revised total coliform rule. Technical Report EPA
815-R-12-004, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2024-01-10.

EPA (2016a, December). The data management and quality assurance quality control process for the third
six-year review information collection rule dataset. Technical Report EPA-810-R-16-015, Environmental

Protection Agency, Washington, DC, 20460. Accessed: 2022-02-10.

EPA (2016b, June). Technical guidance for assessing environmental justice in regulatory analysis. Technical

report, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2023-10-10.

39



EPA (2019). Safe drinking water information system federal (sdwis fed) data reporting requirements technical
guidance. Technical report, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2024-
01-10.

EPA (2020a, August). Benefit and cost analysis for revisions to the effluent limitations guidelines and
standards for the steam electric power generating point source category. Technical Report EPA-821-R-20-

003, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2023-10-10.

EPA (2020b, November). Use of total nitrate and nitrite analysis for compliance determinations with the
nitrate maximum contaminant level — 40 cfr §141.23. Technical Report WSG213, Environmental Protection

Agency, Washington, DC, 20460. Accessed: 2024-06-10.

EPA (2022, August). The data management and quality assurance/quality control process for epa’s fourth
six-year review’s microbial and disinfection byproduct preliminary datasets. Technical Report EPA- 810-

R-22-001, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2023-10-10.

EPA (2023a, September). Drinking water infrastructure needs survey and assessment. Technical Report

EPA 810R23001, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2024-08-01.

EPA (2023b, July). Ejscreen technical documentation for version 2.2. Technical report, Environmental

Protection Agency, Washington, DC, 20460. Accessed: 2023-10-10.

EPA (2023c, March). Environmental justice analysis for proposed supplemental effluent limitations guidelines
and standards for the steam electric power generating point source category. Technical Report EPA-821-

R-23-001, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2023-10-10.

EPA (2023d, October). Iris toxicological review of inorganic arsenic (public comment and external review
draft). Technical Report EPA/635/R-23/166a, Environmental Protection Agency, Washington, DC, 20460.

Accessed: 2024-06-25.

EPA (2024a, June). Community water system service area boundaries state dataset summaries. Technical

report, Environmental Protection Agency, Washington, DC, 20460. Accessed: 2024-7-01.

EPA (2024b, April). Community water system service areas documentation. Technical Report EPA-
600/XXX /XXX, Environmental Protection Agency Center for Environmental Solutions and Emergency
Response, Washington, DC, 20460.

EPA (2024c, April). Economic analysis for the final per- and polyfluoroalkyl substances national primary
drinking water regulation. Technical Report EPA-815-R-24-001, Environmental Protection Agency, Wash-
ington, DC, 20460. Accessed: 2024-04-15.

40



EPA (2024d, January). Integrated science assessment for lead. Technical Report EPA/600/R-23/375, Envi-
ronmental Protection Agency, Washington, DC, 20460. Accessed: 2024-04-15.

EPA (2024e, December). The safe drinking water information system. Technical report, Environmental

Protection Agency. Accessed: 2024-01-10.
Falcone, J. A. (2015). U.S. conterminous wall-to-wall anthropogenic land use trends (NWALT), 1974-2012.

Fenton, S. E., A. Ducatman, A. Boobis, J. C. DeWitt, C. Lau, C. Ng, J. S. Smith, and S. M. Roberts (2021).
Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and

strategies for informing future research. Environmental Tozicology and Chemistry 40(3, SI), 606-630.

GAO, U. (2011, July). Unreliable state data limit epa’s ability to target enforcement priorities and commu-
nicate water systems’ performance. Technical Report GAO-11-381, US Government Accountability Office,
Washington, DC, 20460. Accessed: 2024-2-02.

Hydroshare (2022, November). U.S. community water systems service boundaries, v3.0.0. Accessed: 2022-

02-28.

Isaac, T. and S. Sherchan (2019, 11). Molecular detection of opportunistic premise plumbing pathogens in

rural louisiana’s drinking water distribution system. Environmental Research 181, 108847.

Li, J., M. T. Aziz, C. O. Granger, and S. D. Richardson (2022, aug). Halocyclopentadienes: An emerging
class of toxic DBPs in chlor(am)inated drinking water. Environmental Science &amp Technology 56(16),

11387-11397.

Liu, X., H. Liu, and N. Ding (2020, January). Chloramine disinfection-induced nitrification activities and
their potential public health risk indications within deposits of a drinking water supply system. Interna-

tional Journal of Environmental Research and Public Health 17(3), 772.

Marcillo, C., L.-A. Krometis, and J. Krometis (2021, January). Approximating community water system
service areas to explore the demographics of sdwa compliance in virginia. International Journal of Envi-
ronmental Research and Public Health 18(24), 13254. Number: 24 Publisher: Multidisciplinary Digital

Publishing Institute.

McDonald, Y. J., K. M. Anderson, M. D. Caballero, K. J. Ding, D. H. Fisher, C. P. Morkel, and E. L.
Hill (2022, January). A systematic review of geospatial representation of united states community water

systems. AWWA Water Science 4(1).

41



Mohai, P. and R. Saha (2006, May). Reassessing racial and socioeconomic disparities in environmental

justice research. Demography 43(2), 383-399.

NHDES (2021, January). Controlling nitrification in chloraminated drinking water supplies. Technical Report
WD-21-02, New Hampshire Department of Environmental Services Drinking Water and Groundwater

Bureau, Concord, New Hampshire. Accessed: 2024-08-08.

Padula, A. M., C. Ma, H. Huang, R. Morello-Frosch, T. J. Woodruff, and S. L. Carmichael (2021, apr).
Drinking water contaminants in california and hypertensive disorders in pregnancy. FEnvironmental Epi-

demiology 5(2), el49.

Patterson, L. A., S. A. Bryson, and M. W. Doyle (2023, May). Affordability of household water services
across the united states. PLOS Water 2(5), e0000123.

Pullen-Fedinick, K., S. Taylor, and M. Roberts (2019, September). Watered down justice.

Regli, S., J. Chen, M. Messner, M. S. Elovitz, F. J. Letkiewicz, R. A. Pegram, T. Pepping, S. D. Richard-
son, and J. M. Wright (2015, November). Estimating potential increased bladder cancer risk due to
increased bromide concentrations in sources of disinfected drinking waters. Environmental Science &

Technology 49(22), 13094-13102.

Scanlon, B., R. Reedy, S. Fakhreddine, Q. Yang, and G. Pierce (2023, September). Drinking water quality and

social vulnerability linkages at the system level in the united states. Environmental Research Letters 18(9).

SEDAC (2017). Center for International Earth Science Information Network—CIESIN—Columbia Uni-
versity. Gridded population of the world, Version 4 (gpwv4): Population density. Palisades. NY: NASA
Socioeconomic Data and Applications Center (SEDAC). doi: 10. 7927/h4np22dq.

Statman-Weil, Z., L. Nanus, and N. Wilkinson (2020, August). Disparities in community water system

compliance with the safe drinking water act. Applied Geography 121, 102264.

Stratton, S. A., A. S. Ettinger, C. L. Doherty, and B. T. Buckley (2022, October). The lead and copper

rule: Limitations and lessons learned from newark, new jersey. WIREs Water 10(1).

Switzer, D. and M. P. Teodoro (2017, September). The color of drinking water: Class, race, ethnicity, and
safe drinking water act compliance. Journal AWWA 109(9), 40-45.

Theobald, D. M. (2014). Development and applications of a comprehensive land use classification and map

for the US. PLoS ONE 9(4), €94628.

42



Uche, U. 1., S. Evans, S. Rundquist, C. Campbell, and O. V. Naidenko (2021, January). Community-
level analysis of drinking water data highlights the importance of drinking water metrics for the state,
federal environmental health justice priorities in the united states. International Journal of Environmental

Research and Public Health 18(19), 10401.
U.S. Census Bureau (2023). American community survey 5-year data (2009-2022). online.
U.S. Census Bureau (2024). When to use 1-year or 5-year estimates. online.
USEPA (2022, October). Ejscreen technical documentation. online.

Ward, M. H., R. R. Jones, J. D. Brender, T. M. de Kok, P. J. Weyer, B. T. Nolan, C. M. Villanueva, and
S. G. van Breda (2018, July). Drinking water nitrate and human health: An updated review. Int. J.
Environ. Res. Public Health 15(7), 1557.

Wolverton, A. (2023, June). Environmental justice analysis for epa rulemakings: Opportunities and chal-

lenges. Review of Environmental Economics and Policy 17(2), 346-353.

43



Figures

Figure 1: Health-based Violations of the Safe Drinking Water Act (2015-2023)
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(a) Nationwide Map of Health-based Violations at the CBG Level
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(b) Relative Prevalence of Health-Based Violations by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. Violations are av-
eraged within CBG across all intersecting service area boundaries. Prevalence is plotted relative to the non-Hispanic White
population for American Indian, Asian, Black, Hispanic, and Pacific Islander populations. Prevalence for low-income popula-

tions are plotted relative the non-low-income population.
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Figure 2: Lead Action Level Exceedances (1991-2021)
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(b) Relative Prevalence of Lead Action Level Exceedances by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. Lead action level
exceedances are averaged within CBG across all intersecting service area boundaries. Prevalence is plotted relative to the
non-Hispanic White population for American Indian, Asian, Black, Hispanic, and Pacific Islander populations. Prevalence for
low-income populations are plotted relative the non-low-income population.
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Figure 3: Total PFAS Concentrations in ng/l (2013-2023)
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(a) Nationwide Map of Total PFAS Concentrations
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(b) PFAS Disparity Measures by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. PFAS concentrations
are averaged within each PFAS species and then summed across all PFAS for a given system. These system-level total con-
centrations are averaged within CBG across all intersecting service area boundaries. Total concentrations are plotted relative
to the non-Hispanic White population for American Indian, Asian, Black, Hispanic, and Pacific Islander populations. Con-

centrations for low-income populations are plotted relative the non-low-income population.

46



Figure 4: Combined Disinfection Byproduct Concentrations in ug/l (2006-2019)
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(a) Nationwide Map of Combined Disinfection Byproduct Concentrations
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(b) Disinfection Byproduct Concentration Ratios by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. DBP concentrations
are the sum of the average total trihalomethane and total haloacetic acid concentrations for each system, which are then av-
eraged within CBG across all intersecting service area boundaries. Concentration are plotted relative to the non-Hispanic
White population for American Indian, Asian, Black, Hispanic, and Pacific Islander populations. Concentration for low-
income populations are plotted relative the non-low-income population.
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Figure 5: Total Coliform Detection Share (2006-2019)
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(a) Nationwide Map of Total Coliform Detections

Disparity Measure - Detection Share Ratio

American Indian Asian Black Hispanic Pacific Islander Low-Income

[ County [0 Zipcode [0 USGS [0 EPIC 71 EPA ORD

(b) Total Coliform Detection Disparity Measures by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. Total coliform detec-
tion shares are the proportion of all samples that have positive detections of these bacteria, which are averaged then within

CBG across all intersecting service area boundaries. Detection shares are plotted relative to the non-Hispanic White popula-
tion for American Indian, Asian, Black, Hispanic, and Pacific Islander populations. Detection shares for low-income popula-

tions are plotted relative the non-low-income population.
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Figure 6: Arsenic Concentrations in ug/l (2006-2019)
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(a) Nationwide Map of Arsenic Concentrations
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(b) Arsenic Concentration Ratio by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. Arsenic concentra-
tions are averaged over all samples by PWS and the averaged within CBG across all intersecting service area boundaries.
Concentrations are plotted relative to the non-Hispanic White population for American Indian, Asian, Black, Hispanic, and

Pacific Islander populations. Concentrations for low-income populations are plotted relative the non-low-income population.
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Figure 7: Nitrate Concentrations in mg/l (2006-2019)
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(b) Nitrate Concentration Ratio by Demographic Group

Notes: Map generated using EPA ORD service area boundaries intersected with Census Block Groups. Nitrate concentra-
tions are averaged over all samples by PWS and the averaged within CBG across all intersecting service area boundaries.
Concentration are plotted relative to the non-Hispanic White population for American Indian, Asian, Black, Hispanic, and

Pacific Islander populations. Concentrations for low-income populations are plotted relative the non-low-income population.
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Figure 8: Bivariate Maps of Health-Based Violations of the Safe Drinking Water Act
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(b) Number of health based violations and % people living below 2X the Federal Poverty Level in each Census
Block Group

Notes: Demographic information is based on 2021 ACS 5-year data. Health-based violations are summed over 2015-2023.
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Figure 9: Bivariate Maps of Lead Action Level Exceedances of the Safe Drinking Water Act
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(b) Count of lead action level exceedances and % people living below 2X the Federal Poverty Level

Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level. Lead action level ex-

ceedances are summed over 1991-2021.
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Figure 10: Bivariate Maps of PFAS Concentrations in Drinking Water (2013-2023)
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(b) PFAS Concentration and % people living below 2X the Federal Poverty Level

Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level. PFAS concentrations

represent average concentrations across all the CWS in one block group.
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Figure 11: Bivariate Maps of DBP Concentrations (2006-2019)
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(b) DBP Concentrations and % people living below 2X the Federal Poverty Level

Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level. DBP concentrations are
the sum of the average total trihalomethane and total haloacetic acid concentrations for each system over the period from
2006-2019.
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Figure 12: Bivariate Maps of Total Coliform Detection Share (2006-2019)
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(b) Total Coliform Detection Share and % people living below 2X the Federal Poverty Level

Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level. DBP concentrations are
the sum of the average total trihalomethane and total haloacetic acid concentrations for each system over the period from
2006-2019.
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Figure 13: Bivariate Maps of Arsenic Concentrations in pg/l (2006-2019)
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(b) Arsenic Concentration and % people living below 2X the Federal Poverty Level

Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level.
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Figure 14: Bivariate Maps of Nitrate Concentrations mg/l (2006-2019)
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(b) Nitrate Concentrations and % people living below 2X the Federal Poverty Level

Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level.
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Figure 15: Comparing Estimated Percent Minority across Service Area Boundaries
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Notes: Scatter plots show the estimated percent of each drinking water system’s population that is mi-
nority (i.e., Hispanic and/or non-White). The x axis represents the percentage according to EPA ORD
boundaries, while the y axis represents the percentage according to county, zip code, USGS, or EPIC
boundaries.
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Figure 16: Comparing Estimated Percent Low-Income across Service Area Boundaries
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Notes: Scatter plots show estimated percent of each drinking water system’s population that is low-income
(i.e., income less than twice the Federal Poverty Limit). The x axis represents the percentage according to
EPA ORD boundaries, while the y axis represents the percentage according to county, zip code, USGS, or

EPIC boundaries.

99



Figure 17: Geospatial Variation in Service Area Boundary Completeness: Illustrations of Health-Based
Violations
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(b) Missing systems in Zip code boundaries (72,083 CBGs)

Notes: Maps display the count of health-based violations of the Safe Drinking Water Act among systems that do not have
a geospatial representation in the USGS boundaries or the zip code served information. The figure illustrates that systems
without USGS or zip code boundaries display clustering in the South-Central and Western US.
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Figure 18: Health-Based Violations in Oklahoma: Visual Comparison of Modelled Boundaries
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Notes: Demographic information is based on 2021 ACS 5-year data at the census block group level.
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Figure 19: State bivariate maps for selected indicators
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(c) Disinfection Byproduct (DBP) concentration sums between 2006-2019, North Carolina

Notes: Maps generated using ACS TIGER boundaries based on EPIC Hydroshare version 3.0 boundaries areally apportioned
over Census block groups. Each map demonstrates different indicator combinations and locations to show variation within
and across states for water quality and EJ indicators.
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Tables

Table 1: Summary Statistics of Drinking Water Quality Measures

Boundary Mean Median Max CWS % Zero Total pop
Health-based Violations (2015-2022)
County 1.352 0.00 366.0 45,934 0.77 310M
Zip Code 0.811 0.00 366.0 16,470 0.83 280M
USGS 1.575 0.00 366.0 18,804 0.74 270M
EPIC 1.354 0.00 366.0 45,492 0.77 310M
EPA ORD 1.349 0.00 366.0 44,331 0.77 310M
Lead Action Level Exceedences (1991-2021)
County 0.453 0.00 40.0 45,934 0.78 310M
Zip Code 0.438 0.00 40.0 16,470 0.83 280M
USGS 0.447 0.00 34.0 18,804 0.78 270M
EPIC 0.455 0.00 40.0 45,492 0.78 310M
EPA ORD 0.456 0.00 40.0 44,331 0.78 310M
PFAS Concentration (2013-2023)
County 5.042 0.00 1,020.5 10,956 0.70 270M
Zip Code 6.269 0.00 1,020.5 8,436 0.65 270M
USGS 5.666 0.00 1,020.5 6,013 0.69 230M
EPIC 5.017 0.00 1,020.5 10,932 0.71 270M
EPA ORD 5.054 0.00 1,020.5 10,970 0.70 280M
TTHM & HAAS5 Concentrations (2006-2019)
County 29.988 12.150 661.9 30,460 0.19 290M
Zip Code 41.131 37.985 314.5 9,118 0.07 270M
USGS 28.759 12.300 585.2 13,413 0.17 250M
EPIC 29.947 12.100 661.9 30,448 0.19 280M
EPA ORD 29.867 12.155 661.9 29,515 0.19 290M
Total Coliform Detection Share (2006-2019)
County 0.019 0.006 0.5 39,589 0.30 240M
Zip Code 0.020 0.003 0.5 8,987 0.21 220M
USGS 0.019 0.006 0.5 16,243 0.26 200M
EPIC 0.019 0.006 0.5 39,508 0.30 240M
EPA ORD 0.019 0.006 0.5 38,052 0.30 240M
Arsenic Concentration (2006-2019)
County 0.667 0.00 246.7 38,209 0.60 270M
Zip Code 0.562 0.00 73.8 9,011 0.59 250M
USGS 0.701 0.00 62.5 18,316 0.57 260M
EPIC 0.670 0.00 246.7 38,128 0.60 270M
EPA ORD 0.678 0.00 246.7 37,125 0.60 270M
Nitrate Concentration (2006-2019)
County 0.869 0.167 300.1 39,035 0.20 280M
Zip Code 0.816 0.224 15.5 10,684 0.16 250M
USGS 0.945 0.203 60.9 18,328 0.17 260M
EPIC 0.868 0.167 300.1 38,943 0.20 270M
EPA ORD 0.870 0.167 300.1 37,979 0.20 280M

Table displays the average, median, and maximum values for each drinking water quality indicator across all service area
boundary representations. Means are reported at the system level without population weighting. Observation counts differ
due to underlying drinking water quality data availability across and varying completeness in the service area boundaries.
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Table 2: Average Population-Weighted Drinking Water Quality Measures by Demographic Group

Boundary American  Asian Black Hispanic  Pacific Non- POC Above Below
Indian Islander  Hispanic 2X FPL 2X FPL
White
Health-based Violations (2015-2022)
County 2.23 0.59 0.93 0.85 0.44 0.87 0.86 0.83 0.96
Zip Code 2.05 0.53 0.87 0.86 0.36 0.79 0.82 0.76 0.91
USGS 2.47 0.48 0.96 0.81 0.51 0.80 0.83 0.76 0.94
EPIC 2.69 0.51 0.99 0.93 0.35 0.85 0.91 0.81 1.02
EPA ORD 2.76 0.51 0.98 0.93 0.37 0.84 0.91 0.79 1.02
Lead Action Level Exceedences (1991-2021)
County 0.60 2.01 1.14 0.99 0.82 0.96 1.20 1.09 0.99
Zip Code 0.64 1.76 1.38 1.14 0.80 1.16 1.31 1.23 1.21
USGS 0.70 1.77 1.32 1.15 1.07 1.19 1.30 1.25 1.21
EPIC 0.63 1.67 1.28 1.05 0.77 0.97 1.21 1.07 1.08
EPA ORD 0.59 1.70 1.35 1.06 0.88 1.09 1.24 1.17 1.12
PFAS Concentrations (2013-2023)
County 7.44 8.57 10.42 16.70 5.54 7.43 12.82 9.49 10.36
Zip Code 6.74 9.45 9.00 13.12 5.90 7.02 10.82 8.55 8.83
USGS 5.68 9.56 9.40 16.15 5.79 7.19 12.18 9.27 9.59
EPIC 7.37 9.56 7.51 14.16 5.54 6.92 10.78 8.72 8.47
EPA ORD 7.32 9.55 8.82 13.24 5.36 6.80 10.82 8.45 8.73
TTHM & HAAS5 Concentrations (2006-2019)
County 44.57 47.32 50.07 43.92 31.72 46.45 46.41 46.36 46.59
Zip Code 44.64 45.17 51.74 43.98 32.36 47.59 46.66 47.00 47.64
USGS 45.68 47.35 52.69 45.35 42.18 46.00 48.18 46.65 47.63
EPIC 43.38 45.55 50.17 43.46 30.47 46.51 46.04 46.10 46.74
EPA ORD 41.43 45.06 51.10 43.58 32.13 46.06 46.22 45.91 46.60
Total Coliform Detection Share (2006-2019)
County 0.03 0.08 0.06 0.04 0.10 0.04 0.05 0.04 0.04
Zip Code 0.03 0.07 0.06 0.04 0.10 0.04 0.05 0.05 0.05
USGS 0.03 0.06 0.06 0.04 0.05 0.04 0.05 0.04 0.05
EPIC 0.03 0.07 0.06 0.04 0.11 0.04 0.05 0.04 0.05
EPA ORD 0.03 0.07 0.06 0.04 0.10 0.04 0.05 0.04 0.04
Arsenic Concentration (2006-2019)
County 0.67 0.46 0.28 0.75 0.58 0.40 0.54 0.45 0.49
Zip Code 0.88 0.47 0.27 0.73 0.59 0.38 0.53 0.43 0.48
USGS 0.80 0.37 0.19 0.59 0.67 0.35 0.42 0.37 0.40
EPIC 0.84 0.49 0.26 0.74 0.54 0.41 0.53 0.45 0.48
EPA ORD 0.97 0.47 0.27 0.75 0.57 0.40 0.55 0.45 0.49
Nitrate Concentration (2006-2019)
County 0.77 1.13 0.61 1.11 1.05 0.77 0.95 0.85 0.84
Zip Code 0.76 1.25 0.60 1.15 1.08 0.76 0.97 0.85 0.84
USGS 0.69 0.91 0.56 0.87 0.91 0.69 0.76 0.73 0.71
EPIC 0.78 1.23 0.58 1.14 1.09 0.77 0.95 0.86 0.83
EPA ORD 0.74 1.22 0.59 1.15 1.06 0.76 0.96 0.85 0.84

Table displays the average value for each drinking water quality indicator across all service area boundary representations.

Note that the observation count can differ due to differential underlying drinking water quality data across indicators as

well as due to varying levels of completeness with respect to the service area boundaries.
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Table 3: Disparity Measures by Service Area Type

County Zip code USGS EPIC EPA ORD
Health-based Violations (2015-2022)
American Indian 2.56 2.60 3.08 3.16 3.29
Asian 0.68 0.67 0.60 0.60 0.61
Black 1.07 1.10 1.20 1.16 1.17
Hispanic 0.97 1.09 1.01 1.10 1.11
Pacific Islander 0.50 0.45 0.64 0.41 0.45
Low Income 1.16 1.19 1.24 1.27 1.29
Lead Action Level Exceedences (1991-2021)
American Indian 0.62 0.56 0.59 0.66 0.54
Asian 2.09 1.52 1.48 1.73 1.55
Black 1.18 1.19 1.10 1.32 1.24
Hispanic 1.03 0.98 0.96 1.09 0.97
Pacific Islander 0.86 0.69 0.90 0.80 0.81
Low Income 0.91 0.99 0.97 1.01 0.96
PFAS Concentrations (2013-2023)
American Indian 1.00 0.96 0.79 1.06 1.08
Asian 1.15 1.35 1.33 1.38 1.40
Black 1.40 1.28 1.31 1.08 1.30
Hispanic 2.25 1.87 2.25 2.05 1.95
Pacific Islander 0.74 0.84 0.80 0.80 0.79
Low Income 1.09 1.03 1.03 0.97 1.03
TTHM HAAS5 Concentrations (2006-2019)
American Indian 0.96 0.94 0.99 0.93 0.90
Asian 1.02 0.95 1.03 0.98 0.98
Black 1.08 1.09 1.15 1.08 1.11
Hispanic 0.95 0.92 0.99 0.93 0.95
Pacific Islander 0.68 0.68 0.92 0.66 0.70
Low Income 1.00 1.01 1.02 1.01 1.02
Total Coliform Detection Share (2006-2019)
American Indian 0.84 0.71 0.77 0.77 0.76
Asian 2.16 1.67 1.54 1.83 1.77
Black 1.49 1.49 1.41 1.61 1.54
Hispanic 1.05 1.05 1.07 1.08 1.08
Pacific Islander 2.64 2.41 1.15 2.88 2.50
Low Income 0.98 1.03 1.05 1.06 1.04
Arsenic Concentration (2006-2019)
American Indian 1.67 2.30 2.32 2.04 2.43
Asian 1.15 1.23 1.06 1.18 1.18
Black 0.70 0.69 0.56 0.63 0.67
Hispanic 1.86 1.90 1.72 1.80 1.87
Pacific Islander 1.45 1.55 1.94 1.30 1.43
Low Income 1.10 1.11 1.09 1.06 1.11
Nitrate Concentration (2006-2019)
American Indian 0.99 1.00 0.99 1.01 0.97
Asian 1.47 1.64 1.31 1.59 1.61
Black 0.79 0.79 0.80 0.75 0.77
Hispanic 1.44 1.52 1.26 1.47 1.51
Pacific Islander 1.36 1.42 1.31 1.40 1.40
Low Income 1.00 0.99 0.98 0.97 0.99

Table displays the disparity metrics across the two groups listed in each row. TTHM & HAAS5 Concentrations
and Total Coliform Detection Share represent system-level average calculations for each chemical over the period
2006-2019, which are summed across TTHM and HAASp derive a total DBP concentration.



Table 4: Demographic Regression Results according to EPA ORD Service Area Boundaries

(1) (2) (3) (4) (5) (6) (7)
Health Lead PFAS DBP Coliform Arsenic Nitrate
Violations ALEs Conc. Conc. Detection Conc. Conc.
% American Indian 5.368*** 0.093 2.768 —1.824 0.012*** 0.970*** —0.231
(0.401) (0.092) (6.104) (2.449) (0.003) (0.166) (0.200)
% Asian —4.786*** 0.814*** 16.055*** —42.699*** 0.007 0.836*** 1.940%**
(0.695) (0.159) (4.850) (4.281) (0.006) (0.303) (0.354)
% Black —0.431* —0.046 5.746*** 0.864 —0.002 —0.785*** —1.163***
(0.230) (0.053) (1.913) (1.303) (0.002) (0.097) (0.116)
% Hispanic 2.610*** —0.286*** 8.271*** —15.243*** —0.014*** 1.736*** 1.554***
(0.184) (0.042) (1.627) (1.162) (0.001) (0.076) (0.091)
% Pacific Islander —1.794 0.173 —87.538** —7.926 0.122%** —0.771 —0.216
(2.642) (0.606) (43.002) (14.335) (0.017) (1.088) (1.314)
% Low incomet 2.154*** —0.325*** —8.353*** 21.006*** 0.007*** —0.190** —-0.111
(0.213) (0.049) (1.905) (1.339) (0.001) (0.091) (0.108)
Tribal System —2.157*** —0.009 —2.292 —10.333*** 0.005** 0.356*** —0.122
(0.317) (0.073) (4.300) (1.957) (0.002) (0.132) (0.159)
Very Large system —1.387*** 0.481*** 2.333* —2.813* 0.044*** —0.088 0.119
(0.297) (0.068) (1.341) (1.558) (0.002) (0.123) (0.146)
Large system™ " —0.663*** 0.198*** —0.707 —1.132 0.014*** —0.090 0.067
(0.128) (0.029) (0.661) (0.690) (0.001) (0.056) (0.066)
Small system 0.319*** —0.026 —2.158*** —0.356 0.0001 0.038 0.128**
(0.101) (0.023) (0.786) (0.556) (0.001) (0.044) (0.053)
Very small system 0.367*** —0.046** —0.708 —6.309*** 0.009*** 0.137*** 0.255%**
(0.098) (0.022) (0.764) (0.563) (0.001) (0.042) (0.050)
Groundwater —1.579*** —0.197*** —0.907 —45.328*** 0.004*** 0.324*** 0.074*
(0.073) (0.017) (0.564) (0.407) (0.001) (0.037) (0.043)
Constant 1.440*** 0.734*** 7.111%** 58.78T7*** 0.008*** 0.212%** 0.539***
(0.114) (0.026) (0.824) (0.657) (0.001) (0.053) (0.062)
Observations 44,287 44,287 10,970 29,515 38,052 37,125 37,979

Notes: *p<0.1; **p<0.05; ***p<0.01. % Low income refers to the % of the population served with incomes below twice the
Federal Poverty Level. System size categories are based on the population served by the system, where medium-sized systems
are the omitted category. Very small systems serve fewer than 500 individuals, small systems serve 501-3,300, large systems

serve 10,000 to 100,000, and very large systems serve over 100,000 people.
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Table 5: Drinking Water Quality Concerns Co-Occur with Other Environmental Burdens

(1) (2) (3) (4) (5) (6) (7)
Health Lead PFAS DBP Coliform Arsenic Nitrate
Violations ALEs Conc. Conc. Detection Conc. Conc.
Lead Paint 0.400*** 1.277%** —2.755** 17.581*** —0.0001 0.085 1.033***
(0.025) (0.040) (1.284) (1.308) (0.001) (0.053) (0.097)
Ozone 0.022*** —0.002 —0.058 —0.189*** —0.0001*** 0.035*** 0.050***
(0.001) (0.001) (0.043) (0.044) (0.00004) (0.002) (0.003)
PM,; 5 0.085*** —0.103*** 0.020 1.043*** —0.002*** 0.032*** 0.039***
(0.003) (0.005) (0.157) (0.172) (0.0002) (0.006) (0.011)
Toxic Release —0.361*** 0.136*** 0.478*** 1.325%** 0.002*** —0.036*** 0.102***
Facility (0.010) (0.003) (0.159) (0.227) (0.0003) (0.010) (0.018)
Wastewater —0.0002*** —0.0002** —0.0003 —0.001 —0.00000 —0.00002 0.00004
discharge (0.0001) (0.0001) (0.001) (0.0004) (0.00000) (0.00002) (0.00003)
Superfund Site —1.276*** 0.197*** 7.316%** —7.730%** —0.004*** —0.186*** 0.274**
(0.060) (0.035) (1.196) (1.508) (0.002) (0.065) (0.118)
Constant —1.214*** —0.333*** 6.939*** 26.227*** 0.041*** —1.098*** —1.871***
(0.041) (0.075) (2.073) (2.391) (0.002) (0.088) (0.159)
State control No No No No No No No
Observations 34,189 34,189 9,269 24,086 30,027 28,177 28,946

Notes: *p<0.1; **p<0.05; ***p<0.01. Each row represents a specific EJSCREEN environmental indicator. These include

potential community-level exposure to lead paint, ozone levels, fine particulate matter, proximity to hazardous waste sites,

wastewater discharge, and superfund site proximity.
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Appendix

Figure A1l: Race and income demographic maps
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(b) Country-wide showing % people living below 2X the Federal Poverty Level in each Census Block Group

Notes: Demographic indicators based on EJScreen documentation updated with the 2020 US Census data.
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Figure A2: Average number of health-based violations in New Jersey at the CBG, tract, and county
level
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Notes: Maps generated using ORD boundaries aerally interpolated into ACS TIGER boundaries. Each map averages the
number of violations per CWS over the spatial boundary. Note that the scales are different as the number of violations rep-
resent weighted averages for each boundary type. Gray regions reflect missing drinking water quality data or that the area is

not served by public water with known boundaries.
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Figure A3: Comparing Estimated Percent American Indian across Service Area Boundaries
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Notes: Scatter plots show estimated percent of each drinking water system’s population that is American
Indian. The x axis represents the percentage according to EPA ORD boundaries, while the y axis repre-

sents the percentage according to county, zip code, USGS, or EPIC boundaries.
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Figure A4: Comparing Estimated Percent Asian across Service Area Boundaries
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Notes: Scatter plots show estimated percent of each drinking water system’s population that is Asian. The
x axis represents the percentage according to EPA ORD boundaries, while the y axis represents the per-
centage according to county, zip code, USGS, or EPIC boundaries.
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Figure A5: Comparing Estimated Percent Black across Service Area Boundaries
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Notes: Scatter plots show estimated percent of each drinking water system’s population that is Black. The
x axis represents the percentage according to EPA ORD boundaries, while the y axis represents the per-
centage according to county, zip code, USGS, or EPIC boundaries.
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Figure A6: Comparing Estimated Percent Hispanic across Service Area Boundaries
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Notes: Scatter plots show estimated percent of each drinking water system’s population that is Hispanic.
The x axis represents the percentage according to EPA ORD boundaries, while the y axis represents the
percentage according to county, zip code, USGS, or EPIC boundaries.
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Figure A7: Comparing Estimated Percent Pacific Islander across Service Area Boundaries
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Notes: Scatter plots show estimated percent of each drinking water system’s population that is Pacific Is-
lander. The x axis represents the percentage according to EPA ORD boundaries, while the y axis repre-
sents the percentage according to county, zip code, USGS, or EPIC boundaries.

75



Figure A8: Disparity Measures According to Alternative Indicators of PFAS in Drinking Water
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(b) PFAS Detection Share
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Figure A8: Disparity Measures According to Alternative Indicators of PFAS in Drinking Water (contin-
ued)

DS s o

[}
|

Disparity Measure - Prevalence Ratio
— ;
| |

American Indian Asian Black Hispanic Pacific Islander Low-Income

71 County [0 Zipcode [0 UsGs [0 EPIC 71 EPAORD

(c) Count of Unique PFAS Detected
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(d) Sum of Average PFOA and PFOS Concentrations

Notes: Figures present disparity measures according to alternative indicators for PFAS levels in drinking water including the
sum of the maximum concentrations, the detection share, the count of unique PFAS species ever detected, and the sum of
just average PFOA and PFOS concentrations. In all measur@grepresenting concentration totals, non-detects are inputted as

zeroes.



Figure A9: PFAS Disparity Measure When Excluding all pre-2020 Samples

Disparity Measure - Prevalence Ratio
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Notes: Figure presents disparity measures according to our primary indicator for PFAS levels in drinking water but excluding
all sampling years prior to 2020. In earlier periods, PFAS sampling had higher detection thresholds and was more likely to be

targeted to systems with known issues.
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Figure A10: Disparity Measure with respect to the Total Count of PFAS Samples

Disparity Measure - Prevalence Ratio
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Notes: Figure presents disparities in the total count of PFAS samples collected across demographic groups.
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Figure A11: Disparity Measures According to TTHM and HAA5

Disparity Measure - Concentration Ratio
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(b) HAAS5 Concentrations (2006-2019)

Notes: Figures present disparity measures according to the disinfectant byproduct classes TTHM and HAAS.
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Figure A12: DBP Disparity Measures According to Distinct Regulatory Time Horizons
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(b) Combined TTHM and HAA5 Concentrations (2013-2019)

Notes: Figures present disparity measures according to the combined concentrations of disinfectant byproduct classes TTHM
and HAAS5 across distinct analytic time periods. The period from 2006-2012 relates to samples collected as part of the Six
Year Review 3, and the period from 2013-2019 relates to samples collected as part of the Six Year Review 4. Samples in Six

Year Review 4 were collected under the latest set of regulat@®@gy requirements.



Figure A13: Total Coliform Disparity Measures According to Distinct Regulatory Time Horizons
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(a) Total Coliform Detection Share (2006-2015)
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(b) Total Coliform Detection Share (2016-2019)

Notes: Figures present disparity measures of total coliform detection shares across distinct time periods. The period from
2006-2015 relates to samples collected as part of the older Total Coliform Rule, and the period from 2016-2019 relates to
samples collected as part of the Revised Total Coliform Rule.
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Table A1l: Disparity Measures by Service Area Type for EPIC Tier 1 and Tier 2 Systems

County Zip code USGS EPIC EPA ORD
Health-based Violations (2015-2022)

POC & NH White 0.98 1.04 1.04 1.07 1.08

Below & Above 2X Poverty Level 1.16 1.19 1.24 1.27 1.29
Lead Action Level Exceedences (1991-2021)

POC & NH White 1.24 1.13 1.09 1.25 1.14

Below & Above 2X Poverty Level 0.91 0.99 0.97 1.01 0.96
PFAS Concentrations (2013-2023)

POC & NH White 1.72 1.54 1.69 1.56 1.59

Below & Above 2X Poverty Level 1.09 1.03 1.03 0.97 1.03
TTHM HAAS5 Concentrations (2006-2019)

POC & NH White 1.02 1.00 1.07 1.02 1.03

Below & Above 2X Poverty Level 1.01 1.02 1.02 1.02 1.02
Total Coliform Detection Share (2006-2019)

POC & NH White 1.37 1.30 1.25 1.39 1.34

Below & Above 2X Poverty Level 0.98 1.03 1.05 1.06 1.04
Arsenic Concentration (2006-2019)

POC & NH White 1.35 1.39 1.21 1.29 1.36

Below & Above 2X Poverty Level 1.10 1.11 1.09 1.06 1.11
Nitrate Concentration (2006-2019)

POC & NH White 1.22 1.28 1.10 1.23 1.27

Below & Above 2X Poverty Level 1.00 0.99 0.98 0.97 0.99
PWS Observations 45,934 10,223 18,806 45,372 44,415
Population Served 308m 283m 269m  308m 313m

Table displays the disparity metrics across the two groups listed in each row. TTHM & HAAS5 Concentrations
and Total Coliform Detection Share represent system-level average calculations for each chemical over the period
2006-2019, which are summed across TTHM and HAAS5 to derive a total DBP concentration.
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Table A2: Disparity Measures by Service Area Type for EPIC Tier 2 and Tier 3 Systems
County Zip code USGS EPIC EPA ORD

Health-based Violations (2015-2022)

POC & NH White 0.80 0.84 0.87 0.93 0.89

Below & Above 2X Poverty Level 1.08 1.11 1.12 1.20 1.17
Lead Action Level Exceedences (1991-2021)

POC & NH White 1.57 1.49 1.34 1.46 1.54

Below & Above 2X Poverty Level 0.90 1.03 1.00 0.99 1.01
PFAS Concentrations (2013-2023)

POC & NH White 2.52 1.99 2.21 2.04 2.12

Below & Above 2X Poverty Level 1.21 1.12 1.12 0.98 1.09
TTHM HAAS5 Concentrations (2006-2019)

POC & NH White 1.14 1.11 1.21 1.11 1.13

Below & Above 2X Poverty Level 1.03 1.05 1.03 1.04 1.03
Total Coliform Detection Share (2006-2019)

POC & NH White 1.65 1.61 1.51 1.67 1.65

Below & Above 2X Poverty Level 0.96 1.03 1.05 1.03 1.02
Arsenic Concentration (2006-2019)

POC & NH White 0.86 0.87 0.86 0.82 0.85

Below & Above 2X Poverty Level 1.03 1.06 1.09 0.97 1.05
Nitrate Concentration (2006-2019)

POC & NH White 0.78 0.82 0.83 0.79 0.81

Below & Above 2X Poverty Level 0.94 0.92 0.92 0.93 0.93
Observations 6,760 1,287 3,304 6,710 6,602

Table displays the disparity metrics across the two groups listed in each row. TTHM & HAAS5 Concentrations
and Total Coliform Detection Share represent system-level average calculations for each chemical over the period
2006-2019, which are summed across TTHM and HAAS5 to derive a total DBP concentration.
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Table A3: Disparity Measures by Service Area Type for Five States with High-Quality Pre-delineated
Service Areas

County Zip code USGS EPIC EPA ORD

Health-based Violations (2015-2022)

POC & NH White 1.34 1.29 1.37 1.62 1.63

Below & Above 2X Poverty Level 1.23 1.29 1.46 1.57 1.57
Lead Action Level Exceedences (1991-2021)

POC & NH White 1.06 1.01 1.06 1.11 1.11

Below & Above 2X Poverty Level 0.91 0.92 0.97 0.93 0.93
PFAS Concentrations (2013-2023)

POC & NH White 1.08 1.22 1.15 1.20 1.19

Below & Above 2X Poverty Level 0.99 1.01 0.95 1.01 1.02
TTHM HAAS5 Concentrations (2006-2019)

POC & NH White 0.98 0.95 1.00 0.98 0.98

Below & Above 2X Poverty Level 0.91 0.90 0.93 0.92 0.91
Total Coliform Detection Share (2006-2019)

POC & NH White 1.04 1.22 1.04 0.97 1.03

Below & Above 2X Poverty Level 1.13 1.06 1.05 1.05 1.10
Arsenic Concentration (2006-2019)

POC & NH White 1.32 1.29 1.14 1.29 1.30

Below & Above 2X Poverty Level 1.24 1.25 1.21 1.26 1.26
Nitrate Concentration (2006-2019)

POC & NH White 1.43 1.41 1.32 1.42 1.42

Below & Above 2X Poverty Level 1.14 1.09 1.11 1.10 1.10
Observations 28,266 5,904 8,874 27,845 25,267

Table displays the disparity measures across the two groups listed in each row. Sample includes water systems in
California, Connecticut, New Jersey, New Mexico, and Washington. TTHM & HAAS5 Concentrations and Total
Coliform Detection Share represent system-level average calculations for each chemical over the period 2006-
2019, which are summed across TTHM and HAA5 to derive a total DBP concentration.
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Table A4: Summary Statistics across all Water Systems with Non-Zero Drinking Water Quality Mea-

sures

Boundary Mean Median Max CWS Total Pop.
Health-based Violations (2015-2022)
County 5.910 2.000 366.0 10,506 SO0M
Zip Code 4.710 2.000 366.0 2,835 74M
USGS 6.141 2.000 366.0 4,823 70M
EPIC 5.863 2.000 366.0 10,509 80M
EPA ORD 5.831 2.000 366.0 10,254 81M
Lead Action Level Exceedences (1991-2021)
County 2.079 1.000 40.0 10,008 93M
Zip Code 2.511 1.500 40.0 2,870 89M
USGS 2.015 1.000 34.0 4,171 92M
EPIC 2.077 1.000 40.0 9,962 93M
EPA ORD 2.090 1.000 40.0 9,683 96M
PFAS Concentration (2013-2023)
County 17.064 7.200 1,020.5 3,237 120M
Zip Code 17.796 7.128 1,020.5 2,972 120M
USGS 18.417 6.594 1,020.5 1,850 110M
EPIC 17.028 7.203 1,020.5 3,221 120M
EPA ORD 17.089 7.200 1,020.5 3,244 120M
TTHM & HAA5 Concentrations (2006-2019)
County 37.129 23.400 661.9 24,602 280M
Zip Code 44.330 42.503 314.5 8,460 260M
USGS 34.602 21.100 585.2 11,148 250M
EPIC 37.093 23.286 661.9 24,582 280M
EPA ORD 36.923 23.356 661.9 23,874 280M
Total Coliform Detection Share (2006-2019)
County 0.027 0.012 0.5 27,595 220M
Zip Code 0.025 0.006 0.5 7,075 200M
USGS 0.026 0.010 0.5 11,961 190M
EPIC 0.027 0.012 0.5 27,559 220M
EPA ORD 0.027 0.012 0.5 26,537 220M
Arsenic Concentration (2006-2019)
County 1.672 0.837 246.7 15,240 140M
Zip Code 1.378 0.530 73.8 3,678 130M
USGS 1.632 0.815 62.5 7,869 140M
EPIC 1.674 0.850 246.7 15,253 130M
EPA ORD 1.683 0.850 246.7 14,967 140M
Nitrate Concentration (2006-2019)
County 1.085 0.340 300.1 31,251 250M
Zip Code 0.967 0.349 15.5 9,015 240M
USGS 1.137 0.356 60.9 15,226 250M
EPIC 1.084 0.340 300.1 31,172 250M
EPA ORD 1.086 0.340 300.1 30,413 260M
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Table A5: Demographic Regression Results According to the EPIC Boundaries

Health-based Lead PFAS DBP TCR ARS NITR
1 2 3) 4) (5) (6) ()
% American Indian 6.243%** 0.167* 2.313 1.646 0.007*** 0.892*** —0.178
(0.401) (0.093) (6.557) (2.585) (0.003) (0.167) (0.201)
% Asian —5.201*** 0.646*** 16.341%** —43.615%** 0.001 0.374 1.634***
(0.666) (0.154) (4.808) (4.279) (0.005) (0.289) (0.335)
% Black —0.381* —0.059 4.688** —0.046 —0.005*** —0.754*** —1.098***
(0.208) (0.048) (1.848) (1.231) (0.001) (0.088) (0.105)
% Hispanic 2.732%** —0.262*** 7.891%** —15.057*** —0.013*** 1.741%** 1.518***
(0.181) (0.042) (1.606) (1.180) (0.001) (0.076) (0.089)
% Pacific Islander —1.697 —0.061 —82.004** —17.545 0.124*** —0.449 —0.952
(2.360) (0.545) (38.222) (13.193) (0.015) (0.988) (1.188)
% Low incomet 1.844*** —0.291*** —8.064*** 19.643*** 0.009*** —0.131 —0.242**
(0.205) (0.047) (1.855) (1.326) (0.001) (0.088) (0.104)
Tribal System —2.245%** —0.049 —2.062 —9.345%** 0.005** 0.428*** —0.206
(0.338) (0.078) (4.595) (2.146) (0.002) (0.142) (0.170)
Large system®+ —0.640%** 0.188*** —0.585 —1.194* 0.014*** —0.087 0.068
(0.127) (0.029) (0.651) (0.704) (0.001) (0.056) (0.066)
Small system 0.388*** —0.043* —2.236%** —0.257 0.0001 0.040 0.128**
(0.100) (0.023) (0.779) (0.565) (0.001) (0.044) (0.052)
Very Large system —1.363*** 0.406*** 2.861** —2.897* 0.046*** —0.072 0.130
(0.296) (0.068) (1.333) (1.595) (0.002) (0.123) (0.145)
Very small system 0.390*** —0.063*** —1.020 —6.167*** 0.008*** 0.130*** 0.243***
(0.096) (0.022) (0.755) (0.566) (0.001) (0.042) (0.050)
Groundwater —1.592%** —0.202*** —0.670 —45.429*** 0.005*** 0.326*** 0.071*
(0.071) (0.016) (0.559) (0.408) (0.0005) (0.037) (0.042)
Constant 1.491*** 0.743*** 6.993*** 59.287*** 0.008*** 0.199*** 0.597***
(0.112) (0.026) (0.808) (0.662) (0.001) (0.052) (0.061)
Observations 45,492 45,492 10,932 30,448 39,508 38,128 38,943

Notes: *p<0.1; **p<0.05; ***p<0.01. % Low income refers to the % of the population served with incomes below twice the
Federal Poverty Level. System size categories are based on the population served by the system, where medium-sized systems
are the omitted category. Very small systems serve fewer than 500 individuals, small systems serve 501-3,300, large systems
serve 10,000 to 100,000, and very large systems serve over 100,000 people.
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Table A6: Environmental Burden Regression Results According to the EPIC Boundaries

1) (2) (3) (4) (5) (6) (7
Health Lead PFAS DBP Coliform Arsenic Nitrates
Violations ALEs Conc. Conc. Detections Conc. Conc.
Lead Paint 1.380%*** —0.073 —0.208*** 20.466*** 0.001 0.160*** 0.269***
(0.015) (0.163) (0.066) (1.468) (0.002) (0.052) (0.071)
Ozone —0.029*** 0.082*** 0.027*** —0.185*** 0.0002* 0.0001 0.035%**
(0.001) (0.008) (0.003) (0.067) (0.0001) (0.002) (0.003)
PMay 5 —0.074*** —0.078** 0.120*** —0.360 —0.0002 —0.012 0.046***
(0.003) (0.031) (0.013) (0.264) (0.0004) (0.008) (0.011)
Toxic Release Facility —0.222%** —0.002 0.016*** 0.784*** 0.001*** —0.032%** 0.002
(0.004) (0.024) (0.005) (0.191) (0.0003) (0.007) (0.009)
Wastewater discharge —0.0002*** —0.0004 0.00002 —0.0004 —0.00000 —0.00003* 0.00003*
(0.00003) (0.001) (0.00003) (0.0004) (0.00000) (0.00002) (0.00002)
Superfund Site —0.135%*** —0.049 0.329*** —1.774 —0.002 —0.061 0.355%**
(0.020) (0.150) (0.036) (1.329) (0.002) (0.054) (0.072)
Constant 3.735%** —23.290 —1.434%** 11.584 0.016 2.810** —1.032
(0.410) (9,426.608) (0.152) (37.853) (0.056) (1.184) (1.703)
State control Yes Yes Yes Yes Yes Yes Yes
Observations 34,635 34,635 8,394 27,438 27,138 42,320 22,184

Notes: *p<0.1; **p<0.05; ***p<0.01. Each row represents a specific EJSCREEN environmental indicator. These include
potential community-level exposure to lead paint, ozone levels, fine particulate matter, proximity to hazardous waste sites,

wastewater discharge, and superfund site proximity.
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Table A7: Demographic Regression Results According to the County served

Health-based Lead PFAS DBP TCR ARS NITR
1 2 ®3) 4) (5) (6) (M
% American Indian 6.829*** 0.353*** 8.791 —0.172 0.003 0.438** —0.795%**
(0.485) (0.111) (7.543) (3.086) (0.003) (0.199) (0.239)
% Asian —8.166*** 1.937*** 29.751%** —45.099*** 0.011 0.575 3.608***
(0.965) (0.220) (7.316) (6.286) (0.008) (0.411) (0.482)
% Black —0.325 —0.171*** 7.554%** 2.286 —0.011*** —1.277*** —2.003***
(0.268) (0.061) (2.422) (1.588) (0.002) (0.112) (0.134)
% Hispanic 3.805"** —0.300*** 7.557*** —16.023*** —0.018*** 2.403*** 1.544***
(0.213) (0.049) (1.931) (1.389) (0.002) (0.089) (0.105)
% Pacific Islander 12.813** —7.656%** —178.648*** 5.990 0.328*** —1.512 —8.722%**
(5.685) (1.297) (50.697) (32.763) (0.038) (2.354) (2.811)
% Low incomet 4.776*** —0.604*** —16.719*** 37.176%** 0.018*** 0.272* 0.342*
(0.375) (0.086) (3.188) (2.345) (0.003) (0.159) (0.190)
Tribal System —0.876 0.157 —4.854 —11.761*** 0.004 1.449*** —0.325
(0.582) (0.133) (10.164) (4.019) (0.004) (0.247) (0.295)
Large system®+ —0.536%** 0.159*** —0.854 —0.803 0.014*** —0.080 0.068
(0.129) (0.029) (0.651) (0.702) (0.001) (0.056) (0.066)
Small system 0.364*** —0.037 —2.401*** —0.392 0.0001 0.037 0.124**
(0.101) (0.023) (0.779) (0.564) (0.001) (0.044) (0.052)
Very Large system —1.172%** 0.343*** 2.636** —2.630* 0.046*** —0.068 0.147
(0.297) (0.068) (1.322) (1.581) (0.002) (0.122) (0.144)
Very small system 0.374*** —0.064*** —1.245* —5.926*** 0.008*** 0.092** 0.198***
(0.097) (0.022) (0.756) (0.564) (0.001) (0.042) (0.049)
Groundwater —1.576%** —0.201*** —0.575 —45.605%** 0.005*** 0.361*** 0.127***
(0.072) (0.016) (0.560) (0.410) (0.0005) (0.037) (0.042)
Constant 0.400*** 0.841*** 9.081*** 53.678%** 0.006*** —0.008 0.399***
(0.153) (0.035) (1.159) (0.923) (0.001) (0.067) (0.079)
Observations 45,600 45,600 10,956 30,460 39,589 38,209 39,035

Notes: *p<0.1; **p<0.05; ***p<0.01. % Low income refers to the % of the population served with incomes below twice the
Federal Poverty Level. System size categories are based on the population served by the system, where medium-sized systems
are the omitted category. Very small systems serve fewer than 500 individuals, small systems serve 501-3,300, large systems
serve 10,000 to 100,000, and very large systems serve over 100,000 people.
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Table A8: Environmental Burden Regression Results According to the County served

Health-based Lead PFAS DBP TCR ARS NITR
1) (2) (3) (4) (5) (6) (M)
Lead Paint 0.293%** 1.179%* —11.444%* 17.242%% —0.002* 0.094 1.394%%
(0.029) (0.047) (1.729) (1.527) (0.001) (0.084) (0.101)
Ozone 0.043%** 0.004*** —0.064 —0.219%** —0.0002*** 0.039*** 0.046%**
(0.001) (0.001) (0.041) (0.037) (0.00003) (0.002) (0.002)
PMa s 0.141%%* —0.057*** —0.319** 1647 —0.002%** 0.045%** 0.036%**
(0.002) (0.004) (0.153) (0.150) (0.0001) (0.007) (0.009)
Toxic Release Facility —0.325%** 0.133%** 1.102%* —0.083 0.002*** 0.066*** 0.109***
(0.007) (0.003) (0.184) (0.224) (0.0002) (0.012) (0.014)
Wastewater discharge —0.001%** 0.0002*** —0.001 —0.003* —0.00001** —0.0001 0.001***
(0.0001) (0.00004) (0.002) (0.002) (0.00000) (0.0001) (0.0001)
Superfund Site —2.199%** 0.444%%* 12.217%% —27.399%** —0.003 —0.668%** 0.410%**
(0.061) (0.059) (2.076) (2.286) (0.002) (0.122) (0.145)
Constant —2.394%%+ —0.997*** 10.969** 23.549%** 0.042%** —1.325%%%  _1.826***
(0.031) (0.057) (1.938) (1.953) (0.002) (0.093) (0.112)
Observations 45,190 45,190 10,838 29,992 38,930 37,544 38,372

Notes: *p<0.1; **p<0.05; ***p<0.01. Each row represents a specific EJSCREEN environmental indicator. These include
potential community-level exposure to lead paint, ozone levels, fine particulate matter, proximity to hazardous waste sites,
wastewater discharge, and superfund site proximity.
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