AUTHORIZATION TO DISCHARGE UNDER CLEAN WATER ACT SECTION 301 (h) NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. § 1251 et seq.; the "CWA"), and Title 38 Maine Revised Statutes § 414-A et seq.,

Stonington Sanitary District 17 Main Street Stonington, ME, 04681

is authorized to discharge from a facility located at

17 Main Street Stonington, Maine

to receiving water named Deer Island Thorofare, East Penobscot Bay

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This NPDES permit shall become effective on the first day of the calendar month following 60 days after signature by both the Director of the United States Environmental Protection Agency (EPA or Region 1) and the Commissioner of the Maine Department of Environmental Protection (MEDEP or the Department). * This Waste Discharge License (WDL) shall become effective immediately upon signature by the Commissioner of the Maine Department of Environmental Protection.

Both the NPDES permit and WDL shall expire concurrently at midnight, five (5) years from the effective date.

This permit supersedes the NPDES permit/WDL issued on March 22, 2019. This permit consists of the National Pollutant Discharge Elimination System Permit including effluent limitations and monitoring requirements (Part I) and MEPDES Standard Conditions Applicable to All Permits, (last revised July 1, 2002), and EPA NPDES Part II Standard Conditions (April 26, 2018).

Signed thisday of	Signed thisday of
Ken Moraff, Director	Melanie Loyzim, Commissioner
Office of Ecosystems Protection	Maine Department of Environmental
Environmental Protection Agency	Protection
Boston, Massachusetts	Augusta, Maine

^{*} Pursuant to 40 C.F.R. § 124.15(b)(3), if no comments requesting a change to the draft permit are received, the NPDES permit will become effective upon the date of signature by the Commissioner of the Maine DEP.

IN THE MATTER OF

STONINGTON SANITARY DISTRICT) NATIONAL POLLUTANT
STONINGTON, HANCOCK COUNTY, MAINE) DISCHARGE ELIMINATION SYSTEM
PUBLICLY OWNED TREATMENT WORKS) DISCHARGE ELIMINATION STSTEIN
NPDES PERMIT No: ME0101851) WASTE DISCHARGE LICENSE
MAINE WASTE DISCHARGE LICENCE: W001475-	<u>'</u>
6C-D-R) RENEWAL

Pursuant to the provisions of the Federal Water Pollution Control Act, Title 33 U.S.C. Section 1251, et seq., and 38 M.R.S., Section 414-A et seq., and applicable regulations, the U.S. Environmental Protection Agency (EPA or Region1) and the Maine Department of Environmental Protection (ME DEP or Department) have considered the application of the Stonington Sanitary District (SSD or permitee), with its supportive data, agency review comments, and other related materials on file and FINDS THE FOLLOWING FACTS:

APPLICATION SUMMARY

The SSD has applied for issuance of a combined National Pollutant Discharge Elimination System (NPDES) permit #ME0101851 and Maine Waste Discharge License (WDL) #W001475-6C-D-R. The permit/license (permit) authorizes the discharge of up to a 12-month rolling average flow of 175,000 gallons per day (gpd) of primary treated sanitary wastewater to the Deer Island Thorofare, Class SB, in Stonington, Maine.

PERMIT SUMMARY

This permitting action is <u>similar to</u> the previous Permit and State Licensing action in that it carries forward:

- 1. The two-tier system for 12-month rolling average flow limit (Tier I) of up to 106,000 gpd and (Tier II) of 106,000 gpd up to 175,000 gpd.
- 2. The 12-month rolling average technology-based requirements to achieve a minimum of 30% removal of biochemical oxygen demand (BOD_5) and a minimum of 50% removal for total suspended solids (TSS).
- 3. The 12-month rolling average mass limits for BOD₅ and TSS based on the two-tier flow limits.
- 4. Reporting of the monthly average BOD₅ and TSS results with the DMR cover letter is required.
- 5. The daily maximum concentration reporting requirement for settleable solids.
- 6. The limits for pH, total residual chlorine, enterococci, fecal coliform.

BASED on the findings in the Fact Sheet dated 10/23/2024, and subject to the Conditions listed below, the EPA and MEDEP make the following conclusions:

- 1. The discharge, either by itself or in combination with other discharges, will not lower the quality of any classified body of water below its classification.
- 2. The discharge, either by itself or in combination with other discharges, will not lower the quality of any unclassified body of water below the classification which the Department expects to adopt in accordance with state law.
- 3. In addition to any other grounds specified herein, this permit shall be modified or revoked at any time if, on the basis of any new data, the EPA or MEDEP determine that continued discharges may cause unreasonable degradation of the marine environment.
- 4. The provisions of the State's antidegradation policy, 38 M.R.S. Section 464(4)(F), will be met, in that:
 - (a) Existing in-stream water uses and the level of water quality necessary to protect and maintain those existing uses will be maintained and protected;
 - (b) Where high quality waters of the State constitute an outstanding national resource, that water quality will be maintained and protected;
 - (c) The standards of classification of the receiving water body are met or, where the standards of classification of the receiving water body are not met, the discharge will not cause or contribute to the failure of the water body to meet the standards of classification;
 - (d) Where the actual quality of any classified receiving water body exceeds the minimum standards of the next highest classification, that higher water quality will be maintained and protected; and
 - (e) Where a discharge will result in lowering the existing quality of any water body, the Department has made the finding, following opportunity for public participation, that this action is necessary to achieve important economic or social benefits to the State.
- 5. The discharge will be subject to effluent limitations that require application of best practicable treatment.

ACTION

THEREFORE, the USEPA and the Department APPROVE the above noted application of the STONINGTON SANITARY DISTRICT, to discharge up to a 12-month rolling average flow of 175,000 gpd of primary treated wastewaters to the Deer Island Thorofare, Class SB, in Stonington, Maine, SUBJECT TO THE ATTACHED CONDITIONS, and all applicable standards and regulations including:

- 1. "Maine Pollutant Discharge Elimination System Permit Standard Conditions Applicable To All Permits," revised July 1, 2002, and EPA NPDES Part II, Standard Conditions, April 26, 2018) copies attached.
- 2. The Special Conditions on the following pages.
- 3. If a renewal application is timely submitted and accepted as complete for processing prior to the expiration of this permit, the terms and conditions of this permit and all subsequent modifications and minor revisions thereto shall remain in effect until a final decision on the renewal application becomes effective (See 40 C.F.R. §122 6). [Maine Administrative Procedure Act, 5 M.R.S. § 10002 and Rules Concerning the Processing of Applications and Other Administrative Matters, 06-096 CMR 2(21)(A) (amended June 9, 2018).

Date of initial receipt of application: _	November 28, 2023	
Date of application acceptance:	November 28, 2023	
Date filed with Maine Board of Enviro	nmental Protection	
This order prepared jointly by GREGG	WOOD, Bureau of Water Quality a	and GEORGE
PAPADOPOULOS, EPA Region I.		

PART I – EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

A. REGULATORY AUTHORITY

- 1. This authorization to discharge includes two separate and independent permit authorizations. The two permit authorizations are (i) a federal National Pollutant Discharge Elimination System permit issued by the U.S. Environmental Protection Agency (EPA) pursuant to the Federal Clean Water Act, 33 U.S.C. §§1251 et seq.; and (ii) an identical state Waste Discharge License (WDL) issued by the Commissioner of the Maine Department of Environmental Protection (MEDEP) pursuant to the Maine law, 38 M.R.S., Section 414-A et seq., and applicable regulations. All of the requirements contained in this authorization, as well as the standard conditions contained in 314 C.M.R. 3.19, are hereby incorporated by reference into this surface water discharge permit/license (permit).
- 2. This authorization also incorporates the state water quality certification issued by MEDEP under § 401(a) of the Federal Clean Water Act, 40 C.F.R. 124.53, M.G.L. c. 21, § 27. All of the requirements (if any) contained in MEDEP's water quality certification for the permit are hereby incorporated by reference into this state permit.
- 3. Each agency shall have the independent right to enforce the terms and conditions of this permit. Any modification, suspension or revocation of this permit shall be effective only with respect to the agency taking such action, and shall not affect the validity or status of this permit/license as issued by the other agency, unless and until each agency has concurred in writing with such modification, suspension or revocation. In the event any portion of this permit is declared invalid, illegal or otherwise issued in violation of state law such permit shall remain in full force and effect under federal law as an NPDES Permit issued by the U.S. Environmental Protection Agency. In the event this permit/license is declared invalid, illegal or otherwise issued in violation of federal law, this permit shall remain in full force and effect under state law as a WDL issued by the State of Maine.

B. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

1. The permittee is authorized to discharge primary treated sanitary wastewaters from **Outfall 001** to the Deer Island Thorofare and must monitor and limit discharges as follows:

TIER I – Twelve Month Rolling Average of ≤ 106,000 gallons per day (gpd).

Effluent Characteristic	<u>Discharge Limitations</u>				Monitoring Requirement	
	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type
Flow ⁽¹⁾ [50050] 12 Month Rolling Average	106,000 gpd [07]				Continuous [99/99]	Recorder [RC]
Flow [50050] Monthly Average	Report gpd [07]				Continuous [99/99]	Recorder [RC]
BOD ₅ ⁽¹⁾ [00310] 12 Month Rolling Average	217 lb/day [26]	Report, lb/day [26]	245 mg/L [19]	Report, mg/L [19]	1/Week [01/07]	Composite [24]
BOD ₅ % Removal ⁽²⁾ [50076]			30 % [23]		1/Month [01/30]	Calculate [CA]
TSS ⁽¹⁾ [00530] 12 Month Rolling Average	144 lb/day [26]	Report, lb/day [26]	163 mg/L [19]	Report, mg/L [19]	1/Week [01/07]	Composite [24]
TSS % Removal ⁽²⁾ [81011]			50 % [23]		1/Month [01/30]	Calculate[CA]
Settleable Solids [00545] May 15 – September 30 October 1 – May 14		 	 	Report, (ml/L) [25] Report, (ml/L) [25]	3/Week [03/07] 1/Week [01/07]	Grab [<i>GR</i>] Grab [<i>GR</i>]
Fecal Coliform Bacteria (3) [31615]			14 CFU/100 ml [30]	31 CFU/100 ml [30]	1/Week [01/07]	Grab [GR]
Enterococci bacteria ^{(3),} [61211] (April 15th – October 31 st each year)			8 CFU/100 ml [30]	54 CFU/100 ml [30]	1/Week [01/07]	Grab [GR]
Total Residual Chlorine (4) [50060]				1.0 mg/L [19]	1/Day [01/01]	Grab [GR]
pH [00400] May 15 – September 30 October 1 – May 14	The pH shall not be less than 6.0 standard units (SU) or greater than 9.0 SU at any time. Report minimum and maximum for the month.				1/Day [01/01] 3/Week [03/07]	Grab [GR] Grab [GR]

The italicized numeric values bracketed in the table above are code numbers used to code the monthly Discharge Monitoring Reports (DMR's).

2. The permittee is authorized to discharge primary treated sanitary wastewaters from **Outfall 001** to the Deer Island Thorofare and must monitor and limit discharges as follows:

TIER II – Twelve Month Rolling Average of >106,000 gpd but ≤175,000 gpd.

Effluent Characteristic	Discharge Limitations				Monitoring Requirement	
	Monthly Average	Daily Maximum	Monthly Average	<u>Daily Maximum</u>	Measurement Frequency	Sample Type
Flow ⁽¹⁾ [50050] 12 Month Rolling Average	175,000 gpd				Continuous [99/99]	Recorder [RC]
Flow [50050] Monthly Average	Report gpd [07]				Continuous [99/99]	Recorder [RC]
BOD ₅ ⁽¹⁾ [00310] 12 Month Rolling Average	358 lb/day [26]	Report, lb/day [26]	245 mg/L [19]	Report, mg/L [19]	1/Week [01/07]	Composite [24]
BOD ₅ % Removal ⁽²⁾ [50076]			30 % [23]		1/Month [01/30]	Calculate _[CA]
TSS ⁽¹⁾ [00530] 12 Month Rolling Average	238 lb/day [26]	Report, lb/day [26]	163 mg/L [19]	Report, mg/L [19]	1/Week [01/07]	Composite [24]
TSS % Removal ⁽²⁾ [81011]			50 % [23]		1/Month [01/30]	Calculate[CA]
Settleable Solids [00545]						
May 15 – September 30				Report, (ml/L) [25]	3/Week <i>[03/07]</i>	Grab [GR]
October 1 – May 14				Report, (ml/L) [25]	1/Week [01/07]	Grab [GR]
Fecal Coliform Bacteria (3) [31615] Year-round			14 CFU/100 ml	31 CFU/100 ml [30]	1/Week [01/07]	Grab [GR]
Enterococci bacteria ⁽³⁾ [61211] (April 15th– October 31 st each year)			8 CFU/100 ml [30]	54 CFU/100 ml [30]	1/Week [01/07]	Grab [GR]
Total Residual Chlorine [50060] (4)				1.0 mg/L [19]	1/Day [01/01]	Grab [GR]
pH [00400]						
May 15 – September 30	The pH shall not be less than 6.0 standard units (SU) or greater than 9.0 SU at				1/Day [01/01]	Grab [GR]
October 1 – May 14	any tir	me. Report minimum	he month.	3/Week [03/07]	Grab [GR]	

The italicized numeric values bracketed in the table above are code numbers that are used to code the monthly Discharge Monitoring Reports (DMR's).

W001671-6B-F-R

B. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (cont'd)

Sampling – Sampling and analysis must be conducted in accordance with; a) methods approved in 40 Code of Federal Regulations (C.F.R.) Part 136, b) alternative methods approved by the Department in accordance with the procedures in 40 C.F.R. Part 136, or c) as otherwise specified by EPA and the Department. Samples that are sent out for analysis shall be analyzed by a laboratory certified by the State of Maine's Department of Health and Human Services for waste water. Samples that are sent to another POTW licensed pursuant to *Waste discharge licenses*, 38 M.R.S.A. § 413 or laboratory facilities that analyze compliance samples in-house are subject to the provisions and restrictions of *Maine Comprehensive and Limited Environmental Laboratory Certification Rules*, 10-144 CMR 263 (last amended March 15, 2023).

Sampling Locations – BOD₅, TSS, pH, settleable solids, and TRC samples shall be collected from sampling point, on the end of the dechlorination chamber. Bacteria samples shall be taken from the sampling point before dechlorination.

Footnotes

- 1. Flow is 12-month rolling average limitation. Report annual average, monthly average, and the maximum daily flow. The (gpd) limit is an annual average, which shall be reported as a 12-month rolling average. The value shall be calculated as the arithmetic mean of the monthly average flow for the reporting month and the monthly average flows of the previous eleven months. BOD₅ and TSS 12 month rolling average mass and concentration limits shall also be calculated as the arithmetic mean of the monthly average values for the reporting month and the monthly average values of the previous eleven months. The permittee shall also report the monthly average BOD₅ and TSS for each month with the Discharge Monitoring Report cover letter.
- 2. Percent removal The permittee shall achieve at least 30% removal for BOD₅ and 50% removal for TSS. For the purposes of calculating a 12-month rolling average, the permittee shall use the total sum of monthly averages divided by 12 to get the rolling average of monthly averages. The permittee shall also report the monthly average percent removal for each month.

Calculating BOD₅ 12-Month Rolling Monthly Average 30% Removal Limit

$$(350 \text{ mg/L} - \text{X mg/L}) * (100\%) = \text{Y \% Removal}$$

(350 mg/l)

Where 350 mg/L is the default influent BOD_5 Concentration in mg/L X = 12-Month Rolling Monthly Average BOD_5 effluent concentration in mg/L Y = Actual 12-Month Rolling Monthly Average BOD_5 Percent Removal

Calculating TSS 12-Month Rolling 50% Average Removal Limit

$$(325 \text{ mg/L} - \text{X mg/L}) * (100\%) = \text{Y \% Removal}$$

(325 mg/L)

Where 325 mg/L is the default influent TSS Concentration in mg/L X = 12-Month Rolling Average TSS effluent concentration in mg/L Y = Actual 12-Month Rolling Average TSS Percent Removal

- 3. Fecal coliform and enterococci bacteria The monthly average limits for fecal coliform and enterococci are expressed as and must be reported as a geometric mean. Enterococci bacteria limitations and monitoring requirements are in effect between April 15th October 31st of each year. The EPA and MEDEP reserve the right to impose the limitation on a year-round basis to protect the health, safety and welfare of the public.
- 4. **Total residual chlorine (TRC)** Limitations and monitoring requirements for TRC are in effect whenever elemental chlorine or chlorine-based compounds are utilized for disinfection or cleaning. The permittee shall utilize approved test methods that are capable of bracketing the limitations in this permit.

C. NARRATIVE EFFLUENT LIMITATIONS

- 1. The effluent must not contain materials that cause a visible oil sheen, foam or floating solids in the receiving waters.
- 2. The discharge must not cause a change in color, taste, or turbidity in the receiving waters.

D. TREATMENT PLANT OPERATOR

The treatment facility must be operated by a person holding a minimum of a **Grade II** certificate or higher (or Registered Maine Professional Engineer) pursuant to *Sewerage Treatment Operators*, Title 32 M.R.S., Sections 4171-4182 and *Regulations for Wastewater Operator Certification*, 06-096 CMR 531 (effective May 8, 2006). All proposed contracts for facility operation by any person must be approved by the Department before the permittee may engage the services of the contract operator.

E. AUTHORIZED DISCHARGES

The permittee is authorized to discharge only in accordance with: 1) the permittee's General Application for Waste Discharge Permit, accepted for processing on November 28, 2023; 2) the terms and conditions of this permit; and 3) only from Outfall #001. Discharges

of wastewater from any other point source are not authorized under this permit, and shall be reported in accordance with Standard Conditions in Part II.D.1.e of this permit.

Any pollutant loading greater than the proposed discharge (based on the chemical-specific data and the facility's design flow as described in the permit application, or any other information provided to EPA during the permitting process) is not authorized by this permit.

F. NOTIFICATION REQUIREMENT

In accordance with EPA Part II Standard Condition D, the permittee shall notify the Department and the EPA of the following:

- 1. Any substantial change in the volume or character of pollutants being introduced into the wastewater collection and treatment system by a source introducing pollutants to the system at the time of permit issuance.
- 2. For the purposes of this section, adequate notice shall include information on:
 - a The quality or quantity of wastewater introduced to the wastewater collection and treatment system; and
 - b Any anticipated impact of the change in the quality or quantity of the wastewater to be discharged from the treatment system.

G. SEPTIC TANK MAINTENANCE

To ensure that the individual septic tanks are providing best practicable treatment and achieving desired percent concentration removal levels for BOD₅ and TSS, the permittee is required to maintain a revolving inspection and maintenance schedule for pumping out the solids in all the septic tanks.

All septic tanks and other treatment tanks shall be inspected at least once during the five-year term of this permit and maintained to ensure that they are providing best practicable treatment. Tank contents shall be removed as required in the Maine State Waste Water Disposal Rules 144A CMR 241, Section 909.1 *Maintenance* and managed in accordance with the Maine State Septage Management rules found at Chapter 420.

Septic tank inspections shall include: tank, chimney & baffle condition, depth of scum & sludge levels, dates of inspection & pumping, and gallons pumped.

H. WET WEATHER FLOW MANAGEMENT PLAN

The treatment facility staff shall maintain a current written Wet Weather Management Plan to direct the staff on how to operate the facility effectively during periods of high flow.

The Department acknowledges that the existing collection system may deliver flows in excess of the monthly average design capacity of the treatment plant during periods of high infiltration and rainfall.

The plan shall include operating procedures for a range of intensities, address solids handling procedures (including septic waste and other high strength wastes if applicable) and provide written operating and maintenance procedures during the events.

The permittee shall review their plan annually and record necessary changes to keep the plan up to date.

I. OPERATIONS AND MAINTENANCE FOR THE TREATMENT PLANT

This facility shall maintain a current written comprehensive Operation & Maintenance (O&M) Plan. The plan shall provide a systematic approach by which the permittee shall at all times, properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit.

By December 31 of each year and within 90 days of any process changes or minor equipment upgrades [PCS Code 09699], the permittee shall evaluate and modify the O&M Plan including site plan(s) and schematic(s) for the waste water treatment facility to ensure that it is up-to-date. The O&M Plan shall be kept on-site at all times and made available to Department and EPA personnel upon request.

Within 90 days of completion of new and or substantial upgrades of the wastewater PCS Codes treatment facility [PCS Codes 50108], the permittee shall submit the updated O&M Plan to their Department's compliance inspector for review and comment.

Within ninety (90) days of the effective date of this permit, [PCS Code 00701], the permittee shall submit to the Maine Department of Environmental Protection for review and approval, a public education program designed to minimize the entrance of non-industrial toxic pollutants and pesticides into the collection system and wastewater treatment facility.

Within one hundred and twenty (120) days of the effective date of this permit, [PCS Code 53399], the permittee shall provide written notice to the Maine Department of Environmental Protection, that the approved public education program has been implemented.

J. OPERATION AND MAINTENANCE OF THE TREATMENT AND CONTROL FACILITIES

1. Adaptation Planning

a. Adaptation Plan. Within the timeframes described below, the Permittee shall develop an Adaptation Plan for the Wastewater Treatment System (WWTS) ¹ and/or sewer system² that they own and operate. Additional information on the procedures and resources to aid permittees in development of the Adaptation Plan is provided on EPA's Region 1 NPDES website at https://www.epa.gov/npdes-permits/npdes-water-permit-program-new-england. The Adaptation Plan shall contain sufficient detail for EPA to evaluate the analyses.

Component 1: Identification of Vulnerable Critical Assets. Within 24 months of the effective date of the permit, the Permittee shall develop and sign, consistent with the signatory requirements in Part II.D.2 of this Permit, an identification of critical assets³ and related operations⁴ within the WWTS and/or sewer system which they own and operate, as applicable, that are most vulnerable due to major storm and flood events⁵ under baseline conditions⁶ and under future conditions.⁷ This information shall be provided to EPA upon request. For these critical assets and related operations, the Permittee shall assess the ability of

^{1 &}quot;Wastewater Treatment System" or "WWTS" means any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage or industrial wastes of a liquid nature. It does not include sewers, pipes and other conveyances to the wastewater treatment facility.

^{2 &}quot;Sewer System" refers to the sewers, pump stations, manholes and other infrastructure use to convey sewage to the wastewater treatment facility from homes or other sources.

³ A "critical asset" is an asset necessary to ensure the safe and continued operation of the WWTS or the sewer system and ensure the forward flow and treatment of wastewater in accordance with the limits set forth in this permit.

^{4 &}quot;Asset related operations" are elements of an asset that enable that asset to function. For example, pumps and power supply enable the operation of a pump station.

^{5 &}quot;Major storm and flood events" refer to instances resulting from major storms such as hurricanes, extreme/heavy precipitation events, and pluvial, fluvial, and flash flood events such as high-water events, storm surge, and high-tide flooding, including flooding caused by sea level change. "Extreme/heavy precipitation" refers to instances during which the amount of rain or snow experienced in a location substantially exceeds what is normal according to location and season.

^{6 &}quot;Baseline conditions" refers to the 100-year flood based on historical records.

^{7 &}quot;Future conditions" refers to projected flood elevations using one of two approaches: a) <u>Climate Informed Science Approach (CISA)</u>: The elevation and flood hazard area that result from using the best-available, actionable hydrologic and hydraulic data and methods that integrate current and future changes in flooding based on climate science. These shall include both short term (10-25 years forward-looking) and long term (25-70 years forward-looking) relative to the baseline conditions and must include projections of flooding due to major storm and flood events using federal, state and local data, where available; b) <u>Freeboard Value and 500-year floodplain Approach</u>: The flood elevations that result from adding an additional 2 feet to the 100-year flood elevation for non-critical actions and by adding an additional 3 feet to the 100-year flood elevation for critical actions compared to the flood elevations that result from 500-year flood (the 0.2% -annual-chance flood) and selecting the higher of the two flood elevations.

each to function properly in the event of impacts⁸ from major storm and flood events in terms of effluent flow (e.g., bypass, upset or failure), sewer flow (e.g., overflow, inflow and infiltration), and discharges of pollutants (e.g., effluent limit exceedance).

Component 2: Adaptive Measures Assessment. Within 36 months of the effective date of the permit, the Permittee shall develop and sign, consistent with the signatory requirements in Part II.D.2 of this Permit, an assessment of adaptive measures, and/or, if appropriate, the combinations of adaptive measures that minimize the impact of future conditions on the critical assets and related operations of the WWTS and/or sewer system(s). This information shall be provided to EPA upon request. The Permittee shall identify the critical assets and related operations at the highest risk of not functioning properly under such conditions and, for those, select the most effective adaptation measures that will ensure proper operation of the highest risk critical assets and the system as a whole.

Component 3: Implementation and Maintenance Schedule. Within 48 months of the effective date of the permit, the Permittee shall submit to EPA a proposed schedule for implementation and maintenance of adaptive measures. The Implementation and Maintenance Schedule shall summarize the general types of significant risks¹¹ identified in Component 1, including the methodology and data used to derive future conditions¹² used in the analysis and describe the adaptive measures taken (or planned) to minimize those risks from the impact of major storm and flood events for each of the critical assets and related operations of the WWTS and the sewer system and how those adaptive measures will be maintained, including the rationale for either implementing or not implementing each adaptive measure that was

^{8 &}quot;Impacts" refers to a strong effect on an asset and/or asset-related operation that may include destruction, damage or ineffective operation of the asset and/or asset operation. Impacts may be economic, environmental, or public health related.

⁹ The Permittee may complete this component using EPA's Climate Resilience Evaluation and Awareness Tool (CREAT) Risk Assessment Application for Water Utilities, found on EPA's website Creating Resilient Water Utilities (CRWU) (https://www.epa.gov/crwu), or methodology that provides comparable analysis.

^{10 &}quot;Adaptive Measures" refers to physical infrastructure or actions and strategies that a utility can use to protect their assets and mitigate the impacts of threats. They may include but are not limited to: building or modifying infrastructure, utilization of models (including but not limited to: flood, sea-level rise and storm surge, sewer/collection system, system performance), monitoring and inspecting (including but not limited to: flood control, infrastructure, treatment) and repair/retrofit.

¹¹ In light of security concerns posed by the public release of information regarding vulnerabilities to wastewater infrastructure, the Permittee shall provide information only at a level of generality that indicates the overall nature of the vulnerability but omitting specific information regarding such vulnerability that could pose a security risk. 12 See footnote 7.

assessed and an evaluation of how each adaptive measure taken (or planned) will be funded.

- b. Credit for Prior Assessment(s) Completed by Permittee. If the Permittee has undertaken assessment(s) that were completed within 5 years of the effective date of this permit, or is currently undertaking an assessment that address some or all of the Adaptation Plan components, such prior assessment(s) undertaken by the Permittee may be used (as long as the reporting time frames (set forth in Part I.J.1.a) and the signatory requirements (set forth in Part II.D.2 of this permit) are met) in satisfaction of some or all of these components, as long as the Permittee explains how its prior assessments specifically meet the requirements set forth in this permit and how the Permittee will address any permit requirements that have not been addressed in its prior or ongoing assessment(s).
- c. Adaptation Plan Progress Report. The Permittee shall submit an Adaptation Plan Progress Report on the Adaptation Plan for the prior calendar year that documents progress made toward completing the Adaptation Plan and, following its completion, any progress made toward implementation of adaptive measures, and any changes to the WWTF or other assets that may impact the current risk assessment. The first Adaptation Progress Report is due the first March 31 following completion of the Identification of Critical Vulnerable Assets (Component 1) and shall be submitted by March 31 each year thereafter. The Adaptation Plan shall be revised if on- or off-site structures are added, removed, or otherwise significantly changed in any way that will impact the vulnerability of the WWTS or sewer system.

2. Sewer System

Operation and maintenance of the sewer system must be in compliance with the General Requirements of NPDES Part II Standard Conditions and the following terms and conditions. The permittee is required to complete the following activities for the collection system which it owns:

a. Maintenance Staff

The Permittee must provide an adequate staff to carry out the operation, maintenance, repair, and testing functions required to ensure compliance with the terms and conditions of this permit. Provisions to meet this requirement must be described in the O&M Plan required in Section I, above.

b. Preventive Maintenance Program

The Permittee must maintain an ongoing preventive maintenance program to prevent overflows and bypasses caused by malfunctions or failures of the sewer system infrastructure. The program must include an inspection program designed to identify all potential and actual unauthorized discharges. Provisions to meet this requirement must be described in the O&M Plan required in Section I, above.

c. Infiltration/Inflow

The Permittee must control infiltration and inflow (I/I) into the sewer system as necessary to prevent high flow related unauthorized discharges from their collection system and high flow related violations of the wastewater treatment plant's effluent limitations, or excessive I/I.

d. Collection System Mapping

The Permittee must maintain a map of the sewer collection system it owns.

The map must be on a street map of the community, with sufficient detail and at a scale to allow easy interpretation. The collection system information shown on the map must be based on current conditions and shall be kept up-to-date and available for review by federal, state, or local agencies. Such map(s) must include, but not be limited to the following:

- 1. All sanitary sewer lines and related manholes;
- 2. All pump stations and force mains;
- 3. All surface waters (labeled);
- 4. Other major appurtenances such as inverted siphons and air release valves;
- 5. A numbering system which uniquely identifies manholes, catch basins, overflow points, regulators and outfalls; and
- 6. The scale and a north arrow; and the pipe diameter, date of installation, type of material, distance between manholes and the direction of flow.

K. 06-096 CMR 530(2)(D)(4) STATEMENT FOR REDUCED/WAIVED TOXICS TESTING

By December 31 of each calendar year, the permittee shall provide the Department with a certification describing any of the following that have occurred since the effective date of this permit **[PCS Code 95799]**.

- (a) Changes in the number or types of non-domestic wastes contributed directly or indirectly to the wastewater treatment works that may increase the toxicity of the discharge;
- (b) Changes in the operation of the treatment works that may increase the toxicity of the discharge; and

(c) Changes in industrial manufacturing processes contributing wastewater to the treatment works that may increase the toxicity of the discharge.

In addition, in the comments section of the certification form, the permittee shall provide the Department with statements describing;

- (d) Changes in storm water collection or inflow/infiltration affecting the facility that may increase the toxicity of the discharge.
- (e) Increases in the type or volume of hauled wastes accepted by the facility.

The Department reserves the right to require annual (surveillance level) testing or other toxicity testing if new information becomes available that indicates the discharge may cause or have a reasonable potential to cause exceedances of ambient water quality criteria/thresholds.

L. SEPTAGE USE/DISPOSAL

- 1. The permittee shall comply with all existing federal and state laws and regulations that apply to septage use and disposal practices, including EPA regulations promulgated at 40 C.F.R. Part 503 and Maine State Septage Management rules found at Chapter 420.
- If both state and federal requirements apply to the permittee's septage use and/or disposal practices, the permittee shall comply with the more stringent of the applicable requirements.
- 3. The following information shall be kept onsite by the permittee for a minimum of five years.
 - a) The location of the site where domestic septage is applied, either the street address, or the longitude and latitude of the site (available from the U.S. Geological Survey maps).
 - b) The number of acres to which domestic septage is applied at each site.
 - c) The date and time of each domestic septage application.
 - d) The nitrogen requirement for the crop or vegetation grown on each site during the year. Also, while not required, indicating the expected crop yield would help establish the nitrogen requirement.
 - e) The gallons of septage which are applied to the site during the specified 365-day period.

4. The certification shown below must be signed and submitted by the Cognizant Official with each sludge report.

CERTIFICATION

"I certify under penalty of law, that the pathogen requirements in [insert whether alternative 1 or 2] and the vector attraction reduction requirements in [insert either vector reduction alternative 1, 2 or 3] have/have not [circle one] been met. This determination has been made under my direction and supervision in accordance with the system designed to assure that qualified personnel properly gather and evaluate the information used to determine that the pathogen requirements and the vector attraction reduction requirements have been met. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment."

_	٠					
5	ı	gn	а	tu	re	

- 5. A description of how the pathogen requirements are met for each batch of domestic septage that is land applied.
- 6. A description of how the vector attraction reduction requirement is met for each batch of domestic septage that is land applied.
- 7. The permittee shall notify EPA and the Department of any change in septage use or disposal practices.

M. MONITORING AND REPORTING

1. Electronic Reporting: NPDES Electronic Reporting, 40 C.F.R. 127, requires MEPDES permit holders to submit monitoring results obtained during the previous month on an electronic discharge monitoring report to the regulatory agency utilizing the USEPA electronic system.

Electronic DMRs submitted using the USEPA CDX system, must be:

- a) Submitted by a facility authorized signatory; and
- b) Submitted no later than midnight on the 15th day of the month following the completed reporting period.
- c) Documentation submitted in support of the electronic DMR may be attached to the electronic DMR. Toxics reporting must be done using the DEP Toxsheet reporting form. An electronic copy of the Toxsheet reporting document must be submitted to your Department compliance inspector as an attachment to an email.

- In addition, a hardcopy form of this sheet must be signed and submitted to your compliance inspector, or a copy attached to your CDX submittal will suffice.
 Documentation submitted electronically to the Department in support of the electronic DMR must be submitted no later than midnight on the 15th day of the month following the completed reporting period.
- 3. Any verbal reports or verbal notifications, if required in Parts I and/or II of this permit, shall be made to EPA. This includes verbal reports and notifications which require reporting within 24 hours. (As examples, see EPA Standard Conditions, Part II.B.4.c. (2), Part II.B.5.c. (3), and Part II.D.1.e.) Verbal reports and verbal notifications shall be made to EPA's Office of Environmental Stewardship at:

U.S. Environmental Protection Agency Enforcement and Compliance Assurance Division 617-918-1746

O. RE-OPENING OF PERMIT FOR MODIFICATIONS

Upon evaluation of test results required by the Special Conditions of this permitting action, additional site specific information or any other pertinent information or test result obtained during the term of this permit, the Department and EPA may, at any time, and with notice to the permittee, modify this permit to: (1) include effluent limits necessary to control specific pollutants or whole effluent toxicity where there is a reasonable potential that the effluent may cause water quality criteria to be exceeded, (2) require additional monitoring if results on file are inconclusive, or (3) change the monitoring requirements and/or limitations based on new information.

P. SEVERABILITY

In the event that any provision or part thereof, of this permit is declared to be unlawful by a reviewing court, the remainder of the permit shall remain in full force and effect, and shall be construed and enforced in all aspects as if such unlawful provision, or part thereof, had been omitted, unless otherwise ordered by the court.

MAINE POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

CONTENTS

SECTIO	NC	TOPIC	PAGE
A		GENERAL PROVISIONS	
	1	General compliance	2
	2	Other materials	2
	3	Duty to Comply	2
	4	Duty to provide information	2
	5	Permit actions	2
	6	Reopener clause	2
	7	Oil and hazardous substances	2
	8	Property rights	3
	9	Confidentiality	3
	10	Duty to reapply	3
		Other laws	3
	12	Inspection and entry	3
В		OPERATION AND MAINTENANCE OF FACILITIES	
	1	General facility requirements	3
	2	Proper operation and maintenance	4
	3	Need to halt reduce not a defense	4
	4	Duty to mitigate	4
	5	Bypasses	4
	6	Upsets	5
C		MONITORING AND RECORDS	
	1	General requirements	6
	2	Representative sampling	6
	3	Monitoring and records	6
D		REPORTING REQUIREMENTS	
	1	Reporting requirements	7
	2	Signatory requirement	8
	3	Availability of reports	8
	4	Existing manufacturing, commercial, mining, and silvicultural dischargers	8
	5	Publicly owned treatment works	9
E		OTHER PROVISIONS	
	1	Emergency action - power failure	9
	2	Spill prevention	10
	3	Removed substances	10
	4	Connection to municipal sewer	10
F		DEFINITIONS	10

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

A. GENERAL PROVISIONS

- 1. **General compliance**. All discharges shall be consistent with the terms and conditions of this permit; any changes in production capacity or process modifications which result in changes in the quantity or the characteristics of the discharge must be authorized by an additional license or by modifications of this permit; it shall be a violation of the terms and conditions of this permit to discharge any pollutant not identified and authorized herein or to discharge in excess of the rates or quantities authorized herein or to violate any other conditions of this permit.
- **2. Other materials.** Other materials ordinarily produced or used in the operation of this facility, which have been specifically identified in the application, may be discharged at the maximum frequency and maximum level identified in the application, provided:
 - (a) They are not
 - (i) Designated as toxic or hazardous under the provisions of Sections 307 and 311, respectively, of the Federal Water Pollution Control Act; Title 38, Section 420, Maine Revised Statutes; or other applicable State Law; or
 - (ii) Known to be hazardous or toxic by the licensee.
 - (b) The discharge of such materials will not violate applicable water quality standards.
- **3. Duty to comply.** The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of State law and the Clean Water Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or denial of a permit renewal application.
 - (a) The permittee shall comply with effluent standards or prohibitions established under section 307(a) of the Clean Water Act, and 38 MRSA, §420 or Chapter 530.5 for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions, even if the permit has not yet been modified to incorporate the requirement.
 - (b) Any person who violates any provision of the laws administered by the Department, including without limitation, a violation of the terms of any order, rule license, permit, approval or decision of the Board or Commissioner is subject to the penalties set forth in 38 MRSA, §349.
- **4. Duty to provide information.** The permittee shall furnish to the Department, within a reasonable time, any information which the Department may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit or to determine compliance with this permit. The permittee shall also furnish to the Department upon request, copies of records required to be kept by this permit.
- **5. Permit actions.** This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition.
- **6. Reopener clause**. The Department reserves the right to make appropriate revisions to this permit in order to establish any appropriate effluent limitations, schedule of compliance or other provisions which may be authorized under 38 MRSA, §414-A(5).

...........

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

- **7. Oil and hazardous substances.** Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities or penalties to which the permittee is or may be subject under section 311 of the Federal Clean Water Act; section 106 of the Federal Comprehensive Environmental Response, Compensation and Liability Act of 1980; or 38 MRSA §§ 1301, et. seq.
- **8.** Property rights. This permit does not convey any property rights of any sort, or any exclusive privilege.
- 9. Confidentiality of records. 38 MRSA §414(6) reads as follows. "Any records, reports or information obtained under this subchapter is available to the public, except that upon a showing satisfactory to the department by any person that any records, reports or information, or particular part or any record, report or information, other than the names and addresses of applicants, license applications, licenses, and effluent data, to which the department has access under this subchapter would, if made public, divulge methods or processes that are entitled to protection as trade secrets, these records, reports or information must be confidential and not available for public inspection or examination. Any records, reports or information may be disclosed to employees or authorized representatives of the State or the United States concerned with carrying out this subchapter or any applicable federal law, and to any party to a hearing held under this section on terms the commissioner may prescribe in order to protect these confidential records, reports and information, as long as this disclosure is material and relevant to any issue under consideration by the department."
- **10. Duty to reapply.** If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain a new permit.
- 11. Other laws. The issuance of this permit does not authorize any injury to persons or property or invasion of other property rights, nor does it relieve the permittee if its obligation to comply with other applicable Federal, State or local laws and regulations.
- **12. Inspection and entry**. The permittee shall allow the Department, or an authorized representative (including an authorized contractor acting as a representative of the EPA Administrator), upon presentation of credentials and other documents as may be required by law, to:
 - (a) Enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit;
 - (b) Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
 - (c) Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
 - (d) Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act, any substances or parameters at any location.

B. OPERATION AND MAINTENACE OF FACILITIES

1. General facility requirements.

(a) The permittee shall collect all waste flows designated by the Department as requiring treatment and discharge them into an approved waste treatment facility in such a manner as to

...........

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

maximize removal of pollutants unless authorization to the contrary is obtained from the Department.

- (b) The permittee shall at all times maintain in good working order and operate at maximum efficiency all waste water collection, treatment and/or control facilities.
- (c) All necessary waste treatment facilities will be installed and operational prior to the discharge of any wastewaters.
- (d) Final plans and specifications must be submitted to the Department for review prior to the construction or modification of any treatment facilities.
- (e) The permittee shall install flow measuring facilities of a design approved by the Department.
- (f) The permittee must provide an outfall of a design approved by the Department which is placed in the receiving waters in such a manner that the maximum mixing and dispersion of the wastewaters will be achieved as rapidly as possible.
- **2. Proper operation and maintenance.** The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems which are installed by a permittee only when the operation is necessary to achieve compliance with the conditions of the permit.
- **3.** Need to halt or reduce activity not a defense. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
- **4. Duty to mitigate.** The permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

5. Bypasses.

- (a) Definitions.
 - (i) Bypass means the intentional diversion of waste streams from any portion of a treatment facility.
 - (ii) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- (b) Bypass not exceeding limitations. The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of paragraphs (c) and (d) of this section.
- (c) Notice.
 - (i) Anticipated bypass. If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass.

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

(ii) Unanticipated bypass. The permittee shall submit notice of an unanticipated bypass as required in paragraph D(1)(f), below. (24-hour notice).

(d) Prohibition of bypass.

- (i) Bypass is prohibited, and the Department may take enforcement action against a permittee for bypass, unless:
 - (A) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - (B) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
 - (C) The permittee submitted notices as required under paragraph (c) of this section.
- (ii) The Department may approve an anticipated bypass, after considering its adverse effects, if the Department determines that it will meet the three conditions listed above in paragraph (d)(i) of this section.

6. Upsets.

- (a) Definition. Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation.
- (b) Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph (c) of this section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- (c) Conditions necessary for a demonstration of upset. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (i) An upset occurred and that the permittee can identify the cause(s) of the upset;
 - (ii) The permitted facility was at the time being properly operated; and
 - (iii) The permittee submitted notice of the upset as required in paragraph D(1)(f), below. (24 hour notice).
 - (iv) The permittee complied with any remedial measures required under paragraph B(4).
- (d) Burden of proof. In any enforcement proceeding the permittee seeking to establish the occurrence of an upset has the burden of proof.

......

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

C. MONITORING AND RECORDS

- 1. General Requirements. This permit shall be subject to such monitoring requirements as may be reasonably required by the Department including the installation, use and maintenance of monitoring equipment or methods (including, where appropriate, biological monitoring methods). The permittee shall provide the Department with periodic reports on the proper Department reporting form of monitoring results obtained pursuant to the monitoring requirements contained herein.
- 2. Representative sampling. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. If effluent limitations are based wholly or partially on quantities of a product processed, the permittee shall ensure samples are representative of times when production is taking place. Where discharge monitoring is required when production is less than 50%, the resulting data shall be reported as a daily measurement but not included in computation of averages, unless specifically authorized by the Department.

3. Monitoring and records.

- (a) Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.
- (b) Except for records of monitoring information required by this permit related to the permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least five years, the permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of the sample, measurement, report or application. This period may be extended by request of the Department at any time.
- (c) Records of monitoring information shall include:
 - (i) The date, exact place, and time of sampling or measurements;
 - (ii) The individual(s) who performed the sampling or measurements;
 - (iii) The date(s) analyses were performed;
 - (iv) The individual(s) who performed the analyses;
 - (v) The analytical techniques or methods used; and
 - (vi) The results of such analyses.
- (d) Monitoring results must be conducted according to test procedures approved under 40 CFR part 136, unless other test procedures have been specified in the permit.
- (e) State law provides that any person who tampers with or renders inaccurate any monitoring devices or method required by any provision of law, or any order, rule license, permit approval or decision is subject to the penalties set forth in 38 MRSA, §349.

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

D. REPORTING REQUIREMENTS

1. Reporting requirements.

- (a) Planned changes. The permittee shall give notice to the Department as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:
 - (i) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or
 - (ii) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements under Section D(4).
 - (iii) The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan;
- (b) Anticipated noncompliance. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.
- (c) Transfers. This permit is not transferable to any person except upon application to and approval of the Department pursuant to 38 MRSA, § 344 and Chapters 2 and 522.
- (d) Monitoring reports. Monitoring results shall be reported at the intervals specified elsewhere in this permit.
 - (i) Monitoring results must be reported on a Discharge Monitoring Report (DMR) or forms provided or specified by the Department for reporting results of monitoring of sludge use or disposal practices.
 - (ii) If the permittee monitors any pollutant more frequently than required by the permit using test procedures approved under 40 CFR part 136 or as specified in the permit, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Department.
 - (iii) Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Department in the permit.
- (e) Compliance schedules. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.
- (f) Twenty-four hour reporting.
 - (i) The permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within 5 days of the time the permittee becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance

.....

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.

- (ii) The following shall be included as information which must be reported within 24 hours under this paragraph.
 - (A) Any unanticipated bypass which exceeds any effluent limitation in the permit.
 - (B) Any upset which exceeds any effluent limitation in the permit.
 - (C) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Department in the permit to be reported within 24 hours.
- (iii) The Department may waive the written report on a case-by-case basis for reports under paragraph (f)(ii) of this section if the oral report has been received within 24 hours.
- (g) Other noncompliance. The permittee shall report all instances of noncompliance not reported under paragraphs (d), (e), and (f) of this section, at the time monitoring reports are submitted. The reports shall contain the information listed in paragraph (f) of this section.
- (h) Other information. Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Department, it shall promptly submit such facts or information.
- **2. Signatory requirement**. All applications, reports, or information submitted to the Department shall be signed and certified as required by Chapter 521, Section 5 of the Department's rules. State law provides that any person who knowingly makes any false statement, representation or certification in any application, record, report, plan or other document filed or required to be maintained by any order, rule, permit, approval or decision of the Board or Commissioner is subject to the penalties set forth in 38 MRSA, §349.
- **3.** Availability of reports. Except for data determined to be confidential under A(9), above, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the Department. As required by State law, effluent data shall not be considered confidential. Knowingly making any false statement on any such report may result in the imposition of criminal sanctions as provided by law.
- **4.** Existing manufacturing, commercial, mining, and silvicultural dischargers. In addition to the reporting requirements under this Section, all existing manufacturing, commercial, mining, and silvicultural dischargers must notify the Department as soon as they know or have reason to believe:
 - (a) That any activity has occurred or will occur which would result in the discharge, on a routine or frequent basis, of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 - (i) One hundred micrograms per liter (100 ug/l);
 - (ii) Two hundred micrograms per liter (200 ug/l) for acrolein and acrylonitrile; five hundred micrograms per liter (500 ug/l) for 2,4-dinitrophenol and for 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/l) for antimony;
 - (iii) Five (5) times the maximum concentration value reported for that pollutant in the permit application in accordance with Chapter 521 Section 4(g)(7); or
 - (iv) The level established by the Department in accordance with Chapter 523 Section 5(f).

.....

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

- (b) That any activity has occurred or will occur which would result in any discharge, on a non-routine or infrequent basis, of a toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following ``notification levels":
 - (i) Five hundred micrograms per liter (500 ug/l);
 - (ii) One milligram per liter (1 mg/l) for antimony;
 - (iii) Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with Chapter 521 Section 4(g)(7); or
 - (iv) The level established by the Department in accordance with Chapter 523 Section 5(f).

5. Publicly owned treatment works.

- (a) All POTWs must provide adequate notice to the Department of the following:
 - (i) Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to section 301 or 306 of CWA or Chapter 528 if it were directly discharging those pollutants.
 - (ii) Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of issuance of the permit.
 - (iii) For purposes of this paragraph, adequate notice shall include information on (A) the quality and quantity of effluent introduced into the POTW, and (B) any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW.
- (b) When the effluent discharged by a POTW for a period of three consecutive months exceeds 80 percent of the permitted flow, the permittee shall submit to the Department a projection of loadings up to the time when the design capacity of the treatment facility will be reached, and a program for maintaining satisfactory treatment levels consistent with approved water quality management plans.

E. OTHER REQUIREMENTS

- **1. Emergency action power failure.** Within thirty days after the effective date of this permit, the permittee shall notify the Department of facilities and plans to be used in the event the primary source of power to its wastewater pumping and treatment facilities fails as follows.
 - (a) For municipal sources. During power failure, all wastewaters which are normally treated shall receive a minimum of primary treatment and disinfection. Unless otherwise approved, alternate power supplies shall be provided for pumping stations and treatment facilities. Alternate power supplies shall be on-site generating units or an outside power source which is separate and independent from sources used for normal operation of the wastewater facilities.
 - (b) For industrial and commercial sources. The permittee shall either maintain an alternative power source sufficient to operate the wastewater pumping and treatment facilities or halt, reduce or otherwise control production and or all discharges upon reduction or loss of power to the wastewater pumping or treatment facilities.

.....

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

- **2. Spill prevention.** (applicable only to industrial sources) Within six months of the effective date of this permit, the permittee shall submit to the Department for review and approval, with or without conditions, a spill prevention plan. The plan shall delineate methods and measures to be taken to prevent and or contain any spills of pulp, chemicals, oils or other contaminates and shall specify means of disposal and or treatment to be used.
- 3. **Removed substances.** Solids, sludges trash rack cleanings, filter backwash, or other pollutants removed from or resulting from the treatment or control of waste waters shall be disposed of in a manner approved by the Department.
- 4. **Connection to municipal sewer.** (applicable only to industrial and commercial sources) All wastewaters designated by the Department as treatable in a municipal treatment system will be cosigned to that system when it is available. This permit will expire 90 days after the municipal treatment facility becomes available, unless this time is extended by the Department in writing.
- **F. DEFINITIONS.** For the purposes of this permit, the following definitions shall apply. Other definitions applicable to this permit may be found in Chapters 520 through 529 of the Department's rules

Average means the arithmetic mean of values taken at the frequency required for each parameter over the specified period. For bacteria, the average shall be the geometric mean.

Average monthly discharge limitation means the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month. Except, however, bacteriological tests may be calculated as a geometric mean.

Average weekly discharge limitation means the highest allowable average of daily discharges over a calendar week, calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

Best management practices ("BMPs") means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the State. BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Composite sample means a sample consisting of a minimum of eight grab samples collected at equal intervals during a 24 hour period (or a lesser period as specified in the section on monitoring and reporting) and combined proportional to the flow over that same time period.

Continuous discharge means a discharge which occurs without interruption throughout the operating hours of the facility, except for infrequent shutdowns for maintenance, process changes, or other similar activities.

Daily discharge means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the daily discharge is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the daily discharge is calculated as the average measurement of the pollutant over the day.

......

STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

Discharge Monitoring Report ("**DMR**") means the EPA uniform national form, including any subsequent additions, revisions, or modifications for the reporting of self-monitoring results by permittees. DMRs must be used by approved States as well as by EPA. EPA will supply DMRs to any approved State upon request. The EPA national forms may be modified to substitute the State Agency name, address, logo, and other similar information, as appropriate, in place of EPA's.

Flow weighted composite sample means a composite sample consisting of a mixture of aliquots collected at a constant time interval, where the volume of each aliquot is proportional to the flow rate of the discharge.

Grab sample means an individual sample collected in a period of less than 15 minutes.

Interference means a Discharge which, alone or in conjunction with a discharge or discharges from other sources, both:

- (1) Inhibits or disrupts the POTW, its treatment processes or operations, or its sludge processes, use or disposal; and
- (2) Therefore is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation) or of the prevention of sewage sludge use or disposal in compliance with the following statutory provisions and regulations or permits issued thereunder (or more stringent State or local regulations): Section 405 of the Clean Water Act, the Solid Waste Disposal Act (SWDA) (including title II, more commonly referred to as the Resource Conservation and Recovery Act (RCRA), and including State regulations contained in any State sludge management plan prepared pursuant to subtitle D of the SWDA), the Clean Air Act, the Toxic Substances Control Act, and the Marine Protection, Research and Sanctuaries Act.

Maximum daily discharge limitation means the highest allowable daily discharge.

New source means any building, structure, facility, or installation from which there is or may be a discharge of pollutants, the construction of which commenced:

- (a) After promulgation of standards of performance under section 306 of CWA which are applicable to such source, or
- (b) After proposal of standards of performance in accordance with section 306 of CWA which are applicable to such source, but only if the standards are promulgated in accordance with section 306 within 120 days of their proposal.

Pass through means a discharge which exits the POTW into waters of the State in quantities or concentrations which, alone or in conjunction with a discharge or discharges from other sources, is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation).

Permit means an authorization, license, or equivalent control document issued by EPA or an approved State to implement the requirements of 40 CFR parts 122, 123 and 124. Permit includes an NPDES general permit (Chapter 529). Permit does not include any permit which has not yet been the subject of final agency action, such as a draft permit or a proposed permit.

Person means an individual, firm, corporation, municipality, quasi-municipal corporation, state agency, federal agency or other legal entity.

MAINE POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT STANDARD CONDITIONS APPLICABLE TO ALL PERMITS

Point source means any discernible, confined and discrete conveyance, including, but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation or vessel or other floating craft, from which pollutants are or may be discharged.

Pollutant means dredged spoil, solid waste, junk, incinerator residue, sewage, refuse, effluent, garbage, sewage sludge, munitions, chemicals, biological or radiological materials, oil, petroleum products or byproducts, heat, wrecked or discarded equipment, rock, sand, dirt and industrial, municipal, domestic, commercial or agricultural wastes of any kind.

Process wastewater means any water which, during manufacturing or processing, comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product.

Publicly owned treatment works ("**POTW**") means any facility for the treatment of pollutants owned by the State or any political subdivision thereof, any municipality, district, quasi-municipal corporation or other public entity.

Septage means, for the purposes of this permit, any waste, refuse, effluent sludge or other material removed from a septic tank, cesspool, vault privy or similar source which concentrates wastes or to which chemicals have been added. Septage does not include wastes from a holding tank.

Time weighted composite means a composite sample consisting of a mixture of equal volume aliquots collected over a constant time interval.

Toxic pollutant includes any pollutant listed as toxic under section 307(a)(1) or, in the case of sludge use or disposal practices, any pollutant identified in regulations implementing section 405(d) of the CWA. Toxic pollutant also includes those substances or combination of substances, including disease causing agents, which after discharge or upon exposure, ingestion, inhalation or assimilation into any organism, including humans either directly through the environment or indirectly through ingestion through food chains, will, on the basis of information available to the board either alone or in combination with other substances already in the receiving waters or the discharge, cause death, disease, abnormalities, cancer, genetic mutations, physiological malfunctions, including malfunctions in reproduction, or physical deformations in such organism or their offspring.

Wetlands means those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

Whole effluent toxicity means the aggregate toxic effect of an effluent measured directly by a toxicity test.

NPDES PART II STANDARD CONDITIONS (April 26, 2018)¹

TABLE OF CONTENTS

A.	GENER	AL CONDITIONS	Page
	1.	Duty to Comply	2
	2.	Permit Actions	3
	3.	Duty to Provide Information	4
		Oil and Hazardous Substance Liability	4
	5.	Property Rights	4
	6.		4
		Duty to Reapply	4
	8.	State Authorities	4
	9.	Other laws	5
В.	OPERA'	TION AND MAINTENANCE OF POLLUTION CONTROLS	
	1.	Proper Operation and Maintenance	5
	2.	Need to Halt or Reduce Not a Defense	5
	3.	Duty to Mitigate	5
	4.	<u>Bypass</u>	5
	5.	<u>Upset</u>	6
C.	MONIT	ORING AND RECORDS	
	1.	Monitoring and Records	7
	2.	Inspection and Entry	8
D.	REPOR'	TING REQUIREMENTS	
	1.	Reporting Requirements	8
		a. Planned changes	8
		b. Anticipated noncompliance	8
		c. Transfers	9
		d. Monitoring reports	9
		e. Twenty-four hour reporting	9
		f. Compliance schedules	10
		g. Other noncompliance	10
		h. Other information	10
		i. Identification of the initial recipient for NPDES electronic reporting of	lata 11
	2.	Signatory Requirement	11
	3.	Availability of Reports	11
E.	DEFINI	ΓΙΟΝS AND ABBREVIATIONS	
	1.	General Definitions	11
	2.	Commonly Used Abbreviations	20

¹ Updated July 17, 2018 to fix typographical errors.

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

A. GENERAL REQUIREMENTS

1. Duty to Comply

The Permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Clean Water Act (CWA or Act) and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or denial of a permit renewal application.

- a. The Permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under Section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions, or standards for sewage sludge use or disposal, even if the permit has not yet been modified to incorporate the requirement.
- b. Penalties for Violations of Permit Conditions: The Director will adjust the civil and administrative penalties listed below in accordance with the Civil Monetary Penalty Inflation Adjustment Rule (83 Fed. Reg. 1190-1194 (January 10, 2018) and the 2015 amendments to the Federal Civil Penalties Inflation Adjustment Act of 1990, 28 U.S.C. § 2461 note. See Pub. L.114-74, Section 701 (Nov. 2, 2015)). These requirements help ensure that EPA penalties keep pace with inflation. Under the above-cited 2015 amendments to inflationary adjustment law, EPA must review its statutory civil penalties each year and adjust them as necessary.

(1) Criminal Penalties

- (a) Negligent Violations. The CWA provides that any person who negligently violates permit conditions implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Act is subject to criminal penalties of not less than \$2,500 nor more than \$25,000 per day of violation, or imprisonment of not more than 1 year, or both. In the case of a second or subsequent conviction for a negligent violation, a person shall be subject to criminal penalties of not more than \$50,000 per day of violation or by imprisonment of not more than 2 years, or both.
- (b) *Knowing Violations*. The CWA provides that any person who knowingly violates permit conditions implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Act is subject to a fine of not less than \$5,000 nor more than \$50,000 per day of violation, or by imprisonment for not more than 3 years, or both. In the case of a second or subsequent conviction for a knowing violation, a person shall be subject to criminal penalties of not more than \$100,000 per day of violation, or imprisonment of not more than 6 years, or both.
- (c) *Knowing Endangerment*. The CWA provides that any person who knowingly violates permit conditions implementing Sections 301, 302, 303, 306, 307, 308, 318, or 405 of the Act and who knows at that time that he or she is placing another person in imminent danger of death or serious bodily injury shall upon conviction be subject to a fine of not more than \$250,000 or by imprisonment of not more than 15 years, or both. In the case of a second or subsequent conviction for a knowing

NPDES PART II STANDARD CONDITIONS

(April 26, 2018)

endangerment violation, a person shall be subject to a fine of not more than \$500,000 or by imprisonment of not more than 30 years, or both. An organization, as defined in Section 309(c)(3)(B)(iii) of the Act, shall, upon conviction of violating the imminent danger provision, be subject to a fine of not more than \$1,000,000 and can be fined up to \$2,000,000 for second or subsequent convictions.

- (d) False Statement. The CWA provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or both. The Act further provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or noncompliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than 6 months per violation, or by both.
- (2) Civil Penalties. The CWA provides that any person who violates a permit condition implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Act is subject to a civil penalty not to exceed the maximum amounts authorized by Section 309(d) of the Act, the 2015 amendments to the Federal Civil Penalties Inflation Adjustment Act of 1990, 28 U.S.C. § 2461 note, and 40 C.F.R. Part 19. See Pub. L.114-74, Section 701 (Nov. 2, 2015); 83 Fed. Reg. 1190 (January 10, 2018).
- (3) Administrative Penalties. The CWA provides that any person who violates a permit condition implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the Act is subject to an administrative penalty as follows:
 - (a) Class I Penalty. Not to exceed the maximum amounts authorized by Section 309(g)(2)(A) of the Act, the 2015 amendments to the Federal Civil Penalties Inflation Adjustment Act of 1990, 28 U.S.C. § 2461 note, and 40 C.F.R. Part 19. See Pub. L.114-74, Section 701 (Nov. 2, 2015); 83 Fed. Reg. 1190 (January 10, 2018).
 - (b) Class II Penalty. Not to exceed the maximum amounts authorized by Section 309(g)(2)(B) of the Act the 2015 amendments to the Federal Civil Penalties Inflation Adjustment Act of 1990, 28 U.S.C. § 2461 note, and 40 C.F.R. Part 19. See Pub. L.114-74, Section 701 (Nov. 2, 2015); 83 Fed. Reg. 1190 (January 10, 2018).

2. Permit Actions

This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

condition.

3. Duty to Provide Information

The Permittee shall furnish to the Director, within a reasonable time, any information which the Director may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The Permittee shall also furnish to the Director, upon request, copies of records required to be kept by this permit.

4. Oil and Hazardous Substance Liability

Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the Permittee from responsibilities, liabilities or penalties to which the Permittee is or may be subject under Section 311 of the CWA, or Section 106 of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA).

5. Property Rights

This permit does not convey any property rights of any sort, or any exclusive privilege.

6. Confidentiality of Information

- a. In accordance with 40 C.F.R. Part 2, any information submitted to EPA pursuant to these regulations may be claimed as confidential by the submitter. Any such claim must be asserted at the time of submission in the manner prescribed on the application form or instructions or, in the case of other submissions, by stamping the words "confidential business information" on each page containing such information. If no claim is made at the time of submission, EPA may make the information available to the public without further notice. If a claim is asserted, the information will be treated in accordance with the procedures in 40 C.F.R. Part 2 (Public Information).
- b. Claims of confidentiality for the following information will be denied:
 - (1) The name and address of any permit applicant or Permittee;
 - (2) Permit applications, permits, and effluent data.
- c. Information required by NPDES application forms provided by the Director under 40 C.F.R. § 122.21 may not be claimed confidential. This includes information submitted on the forms themselves and any attachments used to supply information required by the forms.

7. Duty to Reapply

If the Permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the Permittee must apply for and obtain a new permit. The Permittee shall submit a new application at least 180 days before the expiration date of the existing permit, unless permission for a later date has been granted by the Director. (The Director shall not grant permission for applications to be submitted later than the expiration date of the existing permit.)

8. State Authorities

Nothing in Parts 122, 123, or 124 precludes more stringent State regulation of any activity

NPDES PART II STANDARD CONDITIONS

(April 26, 2018)

covered by the regulations in 40 C.F.R. Parts 122, 123, and 124, whether or not under an approved State program.

9. Other Laws

The issuance of a permit does not authorize any injury to persons or property or invasion of other private rights, or any infringement of State or local law or regulations.

B. OPERATION AND MAINTENANCE OF POLLUTION CONTROLS

1. Proper Operation and Maintenance

The Permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems which are installed by a Permittee only when the operation is necessary to achieve compliance with the conditions of the permit.

2. Need to Halt or Reduce Not a Defense

It shall not be a defense for a Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.

3. Duty to Mitigate

The Permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

4. Bypass

a. Definitions

- (1) *Bypass* means the intentional diversion of waste streams from any portion of a treatment facility.
- (2) Severe property damage means substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production.
- b. Bypass not exceeding limitations. The Permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of paragraphs (c) and (d) of this Section.

c. Notice

NPDES PART II STANDARD CONDITIONS

(April 26, 2018)

- (1) Anticipated bypass. If the Permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible at least ten days before the date of the bypass. As of December 21, 2020 all notices submitted in compliance with this Section must be submitted electronically by the Permittee to the Director or initial recipient, as defined in 40 C.F.R. § 127.2(b), in compliance with this Section and 40 C.F.R. Part 3 (including, in all cases, Subpart D to Part 3), § 122.22, and 40 C.F.R. Part 127. Part 127 is not intended to undo existing requirements for electronic reporting. Prior to this date, and independent of Part 127, Permittees may be required to report electronically if specified by a particular permit or if required to do so by state law.
- (2) Unanticipated bypass. The Permittee shall submit notice of an unanticipated bypass as required in paragraph D.1.e. of this part (24-hour notice). As of December 21, 2020 all notices submitted in compliance with this Section must be submitted electronically by the Permittee to the Director or initial recipient, as defined in 40 C.F.R. § 127.2(b), in compliance with this Section and 40 C.F.R. Part 3 (including, in all cases, Subpart D to Part 3), § 122.22, and 40 C.F.R. Part 127. Part 127 is not intended to undo existing requirements for electronic reporting. Prior to this date, and independent of Part 127, Permittees may be required to report electronically if specified by a particular permit or required to do so by law.

d. Prohibition of bypass.

- (1) Bypass is prohibited, and the Director may take enforcement action against a Permittee for bypass, unless:
 - (a) Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage;
 - (b) There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventative maintenance; and
 - (c) The Permittee submitted notices as required under paragraph 4.c of this Section.
- (2) The Director may approve an anticipated bypass, after considering its adverse effects, if the Director determines that it will meet the three conditions listed above in paragraph 4.d of this Section.

5. Upset

a. *Definition. Upset* means an exceptional incident in which there is an unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the Permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

improper operation.

- b. *Effect of an upset*. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph B.5.c. of this Section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review.
- c. *Conditions necessary for a demonstration of upset*. A Permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs, or other relevant evidence that:
 - (1) An upset occurred and that the Permittee can identify the cause(s) of the upset;
 - (2) The permitted facility was at the time being properly operated; and
 - (3) The Permittee submitted notice of the upset as required in paragraph D.1.e.2.b. (24-hour notice).
 - (4) The Permittee complied with any remedial measures required under B.3. above.
- d. *Burden of proof.* In any enforcement proceeding the Permittee seeking to establish the occurrence of an upset has the burden of proof.

C. MONITORING REQUIREMENTS

1. Monitoring and Records

- a. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.
- b. Except for records of monitoring information required by this permit related to the Permittee's sewage sludge use and disposal activities, which shall be retained for a period of at least 5 years (or longer as required by 40 C.F.R. § 503), the Permittee shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least 3 years from the date of the sample, measurement, report or application. This period may be extended by request of the Director at any time.
- c. Records of monitoring information shall include:
 - (1) The date, exact place, and time of sampling or measurements;
 - (2) The individual(s) who performed the sampling or measurements;
 - (3) The date(s) analyses were performed;
 - (4) The individual(s) who performed the analyses;
 - (5) The analytical techniques or methods used; and
 - (6) The results of such analyses.
- d. Monitoring must be conducted according to test procedures approved under 40 C.F.R. § 136 unless another method is required under 40 C.F.R. Subchapters N or O.
- e. The Clean Water Act provides that any person who falsifies, tampers with, or

(April 26, 2018)

knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than 2 years, or both. If a conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or both.

2. Inspection and Entry

The Permittee shall allow the Director, or an authorized representative (including an authorized contractor acting as a representative of the Administrator), upon presentation of credentials and other documents as may be required by law, to:

- a. Enter upon the Permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit;
- b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit;
- c. Inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this permit; and
- d. Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act, any substances or parameters at any location.

D. REPORTING REQUIREMENTS

1. Reporting Requirements

- a. *Planned Changes*. The Permittee shall give notice to the Director as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required only when:
 - (1) The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 C.F.R. § 122.29(b); or
 - (2) The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements at 40 C.F.R. § 122.42(a)(1).
 - (3) The alteration or addition results in a significant change in the Permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan.
- b. Anticipated noncompliance. The Permittee shall give advance notice to the Director of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

- c. *Transfers*. This permit is not transferable to any person except after notice to the Director. The Director may require modification or revocation and reissuance of the permit to change the name of the Permittee and incorporate such other requirements as may be necessary under the Clean Water Act. *See* 40 C.F.R. § 122.61; in some cases, modification or revocation and reissuance is mandatory.
- d. *Monitoring reports*. Monitoring results shall be reported at the intervals specified elsewhere in this permit.
 - (1) Monitoring results must be reported on a Discharge Monitoring Report (DMR) or forms provided or specified by the Director for reporting results of monitoring of sludge use or disposal practices. As of December 21, 2016 all reports and forms submitted in compliance with this Section must be submitted electronically by the Permittee to the Director or initial recipient, as defined in 40 C.F.R. § 127.2(b), in compliance with this Section and 40 C.F.R. Part 3 (including, in all cases, Subpart D to Part 3), § 122.22, and 40 C.F.R. Part 127. Part 127 is not intended to undo existing requirements for electronic reporting. Prior to this date, and independent of Part 127, Permittees may be required to report electronically if specified by a particular permit or if required to do so by State law.
 - (2) If the Permittee monitors any pollutant more frequently than required by the permit using test procedures approved under 40 C.F.R. § 136, or another method required for an industry-specific waste stream under 40 C.F.R. Subchapters N or O, the results of such monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Director.
 - (3) Calculations for all limitations which require averaging or measurements shall utilize an arithmetic mean unless otherwise specified by the Director in the permit.
- e. Twenty-four hour reporting.
 - (1) The Permittee shall report any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the Permittee becomes aware of the circumstances. A written report shall also be provided within 5 days of the time the Permittee becomes aware of the circumstances. The written report shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance. For noncompliance events related to combined sewer overflows, sanitary sewer overflows, or bypass events, these reports must include the data described above (with the exception of time of discovery) as well as the type of event (combined sewer overflows, sanitary sewer overflows, or bypass events), type of sewer overflow structure (e.g., manhole, combined sewer overflow outfall), discharge volumes untreated by the treatment works treating domestic sewage, types of human health and environmental impacts of the sewer overflow event, and whether the noncompliance was related to wet weather. As of December 21, 2020 all

(April 26, 2018)

reports related to combined sewer overflows, sanitary sewer overflows, or bypass events submitted in compliance with this section must be submitted electronically by the Permittee to the Director or initial recipient, as defined in 40 C.F.R. § 127.2(b), in compliance with this Section and 40 C.F.R. Part 3 (including, in all cases Subpart D to Part 3), § 122.22, and 40 C.F.R. Part 127. Part 127 is not intended to undo existing requirements for electronic reporting. Prior to this date, and independent of Part 127, Permittees may be required to electronically submit reports related to combined sewer overflows, sanitary sewer overflows, or bypass events under this section by a particular permit or if required to do so by state law. The Director may also require Permittees to electronically submit reports not related to combined sewer overflows, sanitary sewer overflows, or bypass events under this section.

- (2) The following shall be included as information which must be reported within 24 hours under this paragraph.
 - (a) Any unanticipated bypass which exceeds any effluent limitation in the permit. *See* 40 C.F.R. § 122.41(g).
 - (b) Any upset which exceeds any effluent limitation in the permit.
 - (c) Violation of a maximum daily discharge limitation for any of the pollutants listed by the Director in the permit to be reported within 24 hours. *See* 40 C.F.R. § 122.44(g).
- (3) The Director may waive the written report on a case-by-case basis for reports under paragraph D.1.e. of this Section if the oral report has been received within 24 hours.
- f. *Compliance Schedules*. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit shall be submitted no later than 14 days following each schedule date.
- g. Other noncompliance. The Permittee shall report all instances of noncompliance not reported under paragraphs D.1.d., D.1.e., and D.1.f. of this Section, at the time monitoring reports are submitted. The reports shall contain the information listed in paragraph D.1.e. of this Section. For noncompliance events related to combined sewer overflows, sanitary sewer overflows, or bypass events, these reports shall contain the information described in paragraph D.1.e. and the applicable required data in Appendix A to 40 C.F.R. Part 127. As of December 21, 2020 all reports related to combined sewer overflows, sanitary sewer overflows, or bypass events submitted in compliance with this section must be submitted electronically by the Permittee to the Director or initial recipient, as defined in 40 C.F.R. § 127.2(b), in compliance with this Section and 40 C.F.R. Part 3 (including, in all cases, Subpart D to Part 3), §122.22, and 40 C.F.R. Part 127. Part 127 is not intended to undo existing requirements for electronic reporting. Prior to this date, and independent of Part 127, Permittees may be required to electronically submit reports related to combined sewer overflows, sanitary sewer overflows, or bypass events under this section by a particular permit or if required to do so by state law. The Director may also require Permittees to electronically submit reports not related to combined sewer overflows, sanitary sewer overflows, or bypass events under this Section.
- h. Other information. Where the Permittee becomes aware that it failed to submit any

(April 26, 2018)

relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Director, it shall promptly submit such facts or information.

i. *Identification of the initial recipient for NPDES electronic reporting data*. The owner, operator, or the duly authorized representative of an NPDES-regulated entity is required to electronically submit the required NPDES information (as specified in Appendix A to 40 C.F.R. Part 127) to the appropriate initial recipient, as determined by EPA, and as defined in 40 C.F.R. § 127.2(b). EPA will identify and publish the list of initial recipients on its Web site and in the FEDERAL REGISTER, by state and by NPDES data group (see 40 C.F.R. § 127.2(c) of this Chapter). EPA will update and maintain this listing.

2. Signatory Requirement

- a. All applications, reports, or information submitted to the Director shall be signed and certified. *See* 40 C.F.R. §122.22.
- b. The CWA provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or non-compliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than 6 months per violation, or by both.

3. Availability of Reports.

Except for data determined to be confidential under paragraph A.6. above, all reports prepared in accordance with the terms of this permit shall be available for public inspection at the offices of the State water pollution control agency and the Director. As required by the CWA, effluent data shall not be considered confidential. Knowingly making any false statements on any such report may result in the imposition of criminal penalties as provided for in Section 309 of the CWA.

E. DEFINITIONS AND ABBREVIATIONS

1. General Definitions

For more definitions related to sludge use and disposal requirements, see EPA Region 1's NPDES Permit Sludge Compliance Guidance document (4 November 1999, modified to add regulatory definitions, April 2018).

Administrator means the Administrator of the United States Environmental Protection Agency, or an authorized representative.

Applicable standards and limitations means all, State, interstate, and federal standards and limitations to which a "discharge," a "sewage sludge use or disposal practice," or a related activity is subject under the CWA, including "effluent limitations," water quality standards, standards of performance, toxic effluent standards or prohibitions, "best management practices," pretreatment standards, and "standards for sewage sludge use or disposal" under Sections 301, 302, 303, 304, 306, 307, 308, 403 and 405 of the CWA.

Application means the EPA standard national forms for applying for a permit, including any additions, revisions, or modifications to the forms; or forms approved by EPA for use in

(April 26, 2018)

"approved States," including any approved modifications or revisions.

Approved program or approved State means a State or interstate program which has been approved or authorized by EPA under Part 123.

Average monthly discharge limitation means the highest allowable average of "daily discharges" over a calendar month, calculated as the sum of all "daily discharges" measured during a calendar month divided by the number of "daily discharges" measured during that month.

Average weekly discharge limitation means the highest allowable average of "daily discharges" over a calendar week, calculated as the sum of all "daily discharges" measured during a calendar week divided by the number of "daily discharges" measured during that week.

Best Management Practices ("BMPs") means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of "waters of the United States." BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Bypass see B.4.a.1 above.

C-NOEC or "Chronic (Long-term Exposure Test) – No Observed Effect Concentration" means the highest tested concentration of an effluent or a toxicant at which no adverse effects are observed on the aquatic test organisms at a specified time of observation.

Class I sludge management facility is any publicly owned treatment works (POTW), as defined in 40 C.F.R. § 501.2, required to have an approved pretreatment program under 40 C.F.R. § 403.8 (a) (including any POTW located in a State that has elected to assume local program responsibilities pursuant to 40 C.F.R. § 403.10 (e)) and any treatment works treating domestic sewage, as defined in 40 C.F.R. § 122.2, classified as a Class I sludge management facility by the EPA Regional Administrator, or, in the case of approved State programs, the Regional Administrator in conjunction with the State Director, because of the potential for its sewage sludge use or disposal practice to affect public health and the environment adversely.

Contiguous zone means the entire zone established by the United States under Article 24 of the Convention on the Territorial Sea and the Contiguous Zone.

Continuous discharge means a "discharge" which occurs without interruption throughout the operating hours of the facility, except for infrequent shutdowns for maintenance, process changes, or similar activities.

CWA means the Clean Water Act (formerly referred to as the Federal Water Pollution Control Act or Federal Water Pollution Control Act Amendments of 1972) Public Law 92-500, as amended by Public Law 95-217, Public Law 95-576, Public Law 96-483and Public Law 97-117, 33 U.S.C. 1251 *et seq*.

CWA and regulations means the Clean Water Act (CWA) and applicable regulations promulgated thereunder. In the case of an approved State program, it includes State program requirements.

Daily Discharge means the "discharge of a pollutant" measured during a calendar day or any

(April 26, 2018)

other 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurements, the "daily discharge" is calculated as the average measurement of the pollutant over the day.

Direct Discharge means the "discharge of a pollutant."

Director means the Regional Administrator or an authorized representative. In the case of a permit also issued under Massachusetts' authority, it also refers to the Director of the Division of Watershed Management, Department of Environmental Protection, Commonwealth of Massachusetts.

Discharge

- (a) When used without qualification, discharge means the "discharge of a pollutant."
- (b) As used in the definitions for "interference" and "pass through," *discharge* means the introduction of pollutants into a POTW from any non-domestic source regulated under Section 307(b), (c) or (d) of the Act.

Discharge Monitoring Report ("DMR") means the EPA uniform national form, including any subsequent additions, revisions, or modifications for the reporting of self-monitoring results by Permittees. DMRs must be used by "approved States" as well as by EPA. EPA will supply DMRs to any approved State upon request. The EPA national forms may be modified to substitute the State Agency name, address, logo, and other similar information, as appropriate, in place of EPA's.

Discharge of a pollutant means:

- (a) Any addition of any "pollutant" or combination of pollutants to "waters of the United States" from any "point source," or
- (b) Any addition of any pollutant or combination of pollutants to the waters of the "contiguous zone" or the ocean from any point source other than a vessel or other floating craft which is being used as a means of transportation.

This definition includes additions of pollutants into waters of the United States from: surface runoff which is collected or channeled by man; discharges through pipes, sewers, or other conveyances owned by a State, municipality, or other person which do not lead to a treatment works; and discharges through pipes, sewers, or other conveyances, leading into privately owned treatment works. This term does not include an addition of pollutants by any "indirect discharger."

Effluent limitation means any restriction imposed by the Director on quantities, discharge rates, and concentrations of "pollutants" which are "discharged" from "point sources" into "waters of the United States," the waters of the "contiguous zone," or the ocean.

Effluent limitation guidelines means a regulation published by the Administrator under section 304(b) of CWA to adopt or revise "effluent limitations."

Environmental Protection Agency ("EPA") means the United States Environmental Protection

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

Agency.

Grab Sample means an individual sample collected in a period of less than 15 minutes.

Hazardous substance means any substance designated under 40 C.F.R. Part 116 pursuant to Section 311 of CWA.

Incineration is the combustion of organic matter and inorganic matter in sewage sludge by high temperatures in an enclosed device.

Indirect discharger means a nondomestic discharger introducing "pollutants" to a "publicly owned treatment works."

Interference means a discharge (see definition above) which, alone or in conjunction with a discharge or discharges from other sources, both:

- (a) Inhibits or disrupts the POTW, its treatment processes or operations, or its sludge processes, use or disposal; and
- (b) Therefore is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation) or of the prevention of sewage sludge use or disposal in compliance with the following statutory provisions and regulations or permits issued thereunder (or more stringent State or local regulations): Section 405 of the Clean Water Act, the Solid Waste Disposal Act (SWDA) (including title II, more commonly referred to as the Resources Conservation and Recovery Act (RCRA), and including State regulations contained in any State sludge management plan prepared pursuant to Subtitle D of the SDWA), the Clean Air Act, the Toxic Substances Control Act, and the Marine Protection, Research and Sanctuaries Act.

Landfill means an area of land or an excavation in which wastes are placed for permanent disposal, and that is not a land application unit, surface impoundment, injection well, or waste pile.

Land application is the spraying or spreading of sewage sludge onto the land surface; the injection of sewage sludge below the land surface; or the incorporation of sewage sludge into the soil so that the sewage sludge can either condition the soil or fertilize crops or vegetation grown in the soil.

Land application unit means an area where wastes are applied onto or incorporated into the soil surface (excluding manure spreading operations) for agricultural purposes or for treatment and disposal.

 LC_{50} means the concentration of a sample that causes mortality of 50% of the test population at a specific time of observation. The $LC_{50} = 100\%$ is defined as a sample of undiluted effluent.

Maximum daily discharge limitation means the highest allowable "daily discharge."

Municipal solid waste landfill (MSWLF) unit means a discrete area of land or an excavation that receives household waste, and that is not a land application unit, surface impoundment, injection well, or waste pile, as those terms are defined under 40 C.F.R. § 257.2. A MSWLF unit also may receive other types of RCRA Subtitle D wastes, such as commercial solid waste, nonhazardous sludge, very small quantity generator waste and industrial solid waste. Such a landfill may be

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

publicly or privately owned. A MSWLF unit may be a new MSWLF unit, an existing MSWLF unit or a lateral expansion. A construction and demolition landfill that receives residential lead-based paint waste and does not receive any other household waste is not a MSWLF unit.

Municipality

- (a) When used without qualification *municipality* means a city, town, borough, county, parish, district, association, or other public body created by or under State law and having jurisdiction over disposal of sewage, industrial wastes, or other wastes, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under Section 208 of CWA.
- (b) As related to sludge use and disposal, *municipality* means a city, town, borough, county, parish, district, association, or other public body (including an intermunicipal Agency of two or more of the foregoing entities) created by or under State law; an Indian tribe or an authorized Indian tribal organization having jurisdiction over sewage sludge management; or a designated and approved management Agency under Section 208 of the CWA, as amended. The definition includes a special district created under State law, such as a water district, sewer district, sanitary district, utility district, drainage district, or similar entity, or an integrated waste management facility as defined in Section 201 (e) of the CWA, as amended, that has as one of its principal responsibilities the treatment, transport, use or disposal of sewage sludge.

National Pollutant Discharge Elimination System means the national program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 402, 318, and 405 of the CWA. The term includes an "approved program."

New Discharger means any building, structure, facility, or installation:

- (a) From which there is or may be a "discharge of pollutants;"
- (b) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979:
- (c) Which is not a "new source;" and
- (d) Which has never received a finally effective NPDES permit for discharges at that "site."

This definition includes an "indirect discharger" which commences discharging into "waters of the United States" after August 13, 1979. It also includes any existing mobile point source (other than an offshore or coastal oil and gas exploratory drilling rig or a coastal oil and gas exploratory drilling rig or a coastal oil and gas developmental drilling rig) such as a seafood processing rig, seafood processing vessel, or aggregate plant, that begins discharging at a "site" for which it does not have a permit; and any offshore or coastal mobile oil and gas exploratory drilling rig or coastal mobile oil and gas developmental drilling rig that commences the discharge of pollutants after August 13, 1979, at a "site" under EPA's permitting jurisdiction for which it is not covered by an individual or general permit and which is located in an area determined by the Director in the issuance of a final permit to be in an area of biological concern. In determining whether an area is an area of biological concern, the Director shall consider the factors specified in 40 C.F.R. §§ 125.122 (a) (1) through (10).

(April 26, 2018)

An offshore or coastal mobile exploratory drilling rig or coastal mobile developmental drilling rig will be considered a "new discharger" only for the duration of its discharge in an area of biological concern.

New source means any building, structure, facility, or installation from which there is or may be a "discharge of pollutants," the construction of which commenced:

- (a) After promulgation of standards of performance under Section 306 of CWA which are applicable to such source, or
- (b) After proposal of standards of performance in accordance with Section 306 of CWA which are applicable to such source, but only if the standards are promulgated in accordance with Section 306 within 120 days of their proposal.

NPDES means "National Pollutant Discharge Elimination System."

Owner or operator means the owner or operator of any "facility or activity" subject to regulation under the NPDES programs.

Pass through means a Discharge (see definition above) which exits the POTW into waters of the United States in quantities or concentrations which, alone or in conjunction with a discharge or discharges from other sources, is a cause of a violation of any requirement of the POTW's NPDES permit (including an increase in the magnitude or duration of a violation).

Pathogenic organisms are disease-causing organisms. These include, but are not limited to, certain bacteria, protozoa, viruses, and viable helminth ova.

Permit means an authorization, license, or equivalent control document issued by EPA or an "approved State" to implement the requirements of Parts 122, 123, and 124. "Permit" includes an NPDES "general permit" (40 C.F.R § 122.28). "Permit" does not include any permit which has not yet been the subject of final agency action, such as a "draft permit" or "proposed permit."

Person means an individual, association, partnership, corporation, municipality, State or Federal agency, or an agent or employee thereof.

Person who prepares sewage sludge is either the person who generates sewage sludge during the treatment of domestic sewage in a treatment works or the person who derives a material from sewage sludge.

pH means the logarithm of the reciprocal of the hydrogen ion concentration measured at 25° Centigrade or measured at another temperature and then converted to an equivalent value at 25° Centigrade.

Point Source means any discernible, confined, and discrete conveyance, including but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, landfill leachate collection system, vessel or other floating craft from which pollutants are or may be discharged. This term does not include return flows from irrigated agriculture or agricultural storm water runoff (see 40 C.F.R. § 122.3).

Pollutant means dredged spoil, solid waste, incinerator residue, filter backwash, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials

NPDES PART II STANDARD CONDITIONS (April 26, 2018)

Atomic Energy Act of 1954, as amended (42 U.S

(except those regulated under the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011 *et seq.*)), heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal, and agricultural waste discharged into water. It does not mean:

- (a) Sewage from vessels; or
- (b) Water, gas, or other material which is injected into a well to facilitate production of oil or gas, or water derived in association with oil and gas production and disposed of in a well, if the well is used either to facilitate production or for disposal purposes is approved by the authority of the State in which the well is located, and if the State determines that the injection or disposal will not result in the degradation of ground or surface water resources.

Primary industry category means any industry category listed in the NRDC settlement agreement (Natural Resources Defense Council et al. v. Train, 8 E.R.C. 2120 (D.D.C. 1976), modified 12 E.R.C. 1833 (D.D.C. 1979)); also listed in Appendix A of 40 C.F.R. Part 122.

Privately owned treatment works means any device or system which is (a) used to treat wastes from any facility whose operator is not the operator of the treatment works and (b) not a "POTW."

Process wastewater means any water which, during manufacturing or processing, comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, or waste product.

Publicly owned treatment works (POTW) means a treatment works as defined by Section 212 of the Act, which is owned by a State or municipality (as defined by Section 504(4) of the Act). This definition includes any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage or industrial wastes of a liquid nature. It also includes sewers, pipes and other conveyances only if they convey wastewater to a POTW Treatment Plant. The term also means the municipality as defined in Section 502(4) of the Act, which has jurisdiction over the indirect discharges to and the discharges from such a treatment works.

Regional Administrator means the Regional Administrator, EPA, Region I, Boston, Massachusetts.

Secondary industry category means any industry which is not a "primary industry category."

Septage means the liquid and solid material pumped from a septic tank, cesspool, or similar domestic sewage treatment system, or a holding tank when the system is cleaned or maintained.

Sewage Sludge means any solid, semi-solid, or liquid residue removed during the treatment of municipal waste water or domestic sewage. Sewage sludge includes, but is not limited to, solids removed during primary, secondary, or advanced waste water treatment, scum, septage, portable toilet pumpings, type III marine sanitation device pumpings (33 C.F.R. Part 159), and sewage sludge products. Sewage sludge does not include grit or screenings, or ash generated during the incineration of sewage sludge.

Sewage sludge incinerator is an enclosed device in which only sewage sludge and auxiliary fuel are fired.

Sewage sludge unit is land on which only sewage sludge is placed for final disposal. This does

(April 26, 2018)

not include land on which sewage sludge is either stored or treated. Land does not include waters of the United States, as defined in 40 C.F.R. § 122.2.

Sewage sludge use or disposal practice means the collection, storage, treatment, transportation, processing, monitoring, use, or disposal of sewage sludge.

Significant materials includes, but is not limited to: raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substance designated under Section 101(14) of CERCLA; any chemical the facility is required to report pursuant to Section 313 of title III of SARA; fertilizers; pesticides; and waste products such as ashes, slag and sludge that have the potential to be released with storm water discharges.

Significant spills includes, but is not limited to, releases of oil or hazardous substances in excess of reportable quantities under Section 311 of the CWA (see 40 C.F.R. §§ 110.10 and 117.21) or Section 102 of CERCLA (see 40 C.F.R. § 302.4).

Sludge-only facility means any "treatment works treating domestic sewage" whose methods of sewage sludge use or disposal are subject to regulations promulgated pursuant to section 405(d) of the CWA, and is required to obtain a permit under 40 C.F.R. § 122.1(b)(2).

State means any of the 50 States, the District of Columbia, Guam, the Commonwealth of Puerto Rico, the Virgin Islands, American Samoa, the Commonwealth of the Northern Mariana Islands, the Trust Territory of the Pacific Islands, or an Indian Tribe as defined in the regulations which meets the requirements of 40 C.F.R. § 123.31.

Store or storage of sewage sludge is the placement of sewage sludge on land on which the sewage sludge remains for two years or less. This does not include the placement of sewage sludge on land for treatment.

Storm water means storm water runoff, snow melt runoff, and surface runoff and drainage.

Storm water discharge associated with industrial activity means the discharge from any conveyance that is used for collecting and conveying storm water and that is directly related to manufacturing, processing, or raw materials storage areas at an industrial plant.

Surface disposal site is an area of land that contains one or more active sewage sludge units.

Toxic pollutant means any pollutant listed as toxic under Section 307(a)(1) or, in the case of "sludge use or disposal practices," any pollutant identified in regulations implementing Section 405(d) of the CWA.

Treatment works treating domestic sewage means a POTW or any other sewage sludge or waste water treatment devices or systems, regardless of ownership (including federal facilities), used in the storage, treatment, recycling, and reclamation of municipal or domestic sewage, including land dedicated for the disposal of sewage sludge. This definition does not include septic tanks or similar devices.

For purposes of this definition, "domestic sewage" includes waste and waste water from humans or household operations that are discharged to or otherwise enter a treatment works. In States where there is no approved State sludge management program under Section 405(f) of the CWA, the Director may designate any person subject to the standards for sewage sludge use and

(April 26, 2018)

disposal in 40 C.F.R. Part 503 as a "treatment works treating domestic sewage," where he or she finds that there is a potential for adverse effects on public health and the environment from poor sludge quality or poor sludge handling, use or disposal practices, or where he or she finds that such designation is necessary to ensure that such person is in compliance with 40 C.F.R. Part 503.

Upset see B.5.a. above.

Vector attraction is the characteristic of sewage sludge that attracts rodents, flies, mosquitoes, or other organisms capable of transporting infectious agents.

Waste pile or pile means any non-containerized accumulation of solid, non-flowing waste that is used for treatment or storage.

Waters of the United States or waters of the U.S. means:

- (a) All waters which are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;
- (b) All interstate waters, including interstate "wetlands;"
- (c) All other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, "wetlands", sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds the use, degradation, or destruction of which would affect or could affect interstate or foreign commerce including any such waters:
 - (1) Which are or could be used by interstate or foreign travelers for recreational or other purpose;
 - (2) From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
 - (3) Which are used or could be used for industrial purposes by industries in interstate commerce:
- (d) All impoundments of waters otherwise defined as waters of the United States under this definition;
- (e) Tributaries of waters identified in paragraphs (a) through (d) of this definition;
- (f) The territorial sea; and
- (g) "Wetlands" adjacent to waters (other than waters that are themselves wetlands) identified in paragraphs (a) through (f) of this definition.

Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of CWA (other than cooling ponds as defined in 40 C.F.R. § 423.11(m) which also meet the criteria of this definition) are not waters of the United States. This exclusion applies only to manmade bodies of water which neither were originally created in waters of the United States (such as disposal area in wetlands) nor resulted from the impoundment of waters of the United States. Waters of the United States do not include prior converted cropland.

(April 26, 2018)

Notwithstanding the determination of an area's status as prior converted cropland by any other federal agency, for the purposes of the Clean Water Act, the final authority regarding Clean Water Act jurisdiction remains with EPA.

Wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas.

Whole Effluent Toxicity (WET) means the aggregate toxic effect of an effluent measured directly by a toxicity test.

Zone of Initial Dilution (ZID) means the region of initial mixing surrounding or adjacent to the end of the outfall pipe or diffuser ports, provided that the ZID may not be larger than allowed by mixing zone restrictions in applicable water quality standards.

2. Commonly Used Abbreviations

BOD Five-day biochemical oxygen demand unless otherwise specified

CBOD Carbonaceous BOD

CFS Cubic feet per second

COD Chemical oxygen demand

Chlorine

Cl₂ Total residual chlorine

TRC Total residual chlorine which is a combination of free available chlorine

(FAC, see below) and combined chlorine (chloramines, etc.)

TRO Total residual chlorine in marine waters where halogen compounds are

present

FAC Free available chlorine (aqueous molecular chlorine, hypochlorous acid,

and hypochlorite ion)

Coliform

Coliform, Fecal Total fecal coliform bacteria

Coliform, Total Total coliform bacteria

Cont. Continuous recording of the parameter being monitored, i.e.

flow, temperature, pH, etc.

Cu. M/day or M³/day Cubic meters per day

DO Dissolved oxygen

(April 26, 2018)

kg/day Kilograms per day

lbs/day Pounds per day

mg/L Milligram(s) per liter

mL/L Milliliters per liter

MGD Million gallons per day

Nitrogen

Total N Total nitrogen

NH3-N Ammonia nitrogen as nitrogen

NO3-N Nitrate as nitrogen

NO2-N Nitrite as nitrogen

NO3-NO2 Combined nitrate and nitrite nitrogen as nitrogen

TKN Total Kjeldahl nitrogen as nitrogen

Oil & Grease Freon extractable material

PCB Polychlorinated biphenyl

Surface-active agent

Temp. °C Temperature in degrees Centigrade

Temp. °F Temperature in degrees Fahrenheit

TOC Total organic carbon

Total P Total phosphorus

TSS or NFR Total suspended solids or total nonfilterable residue

Turb. or Turbidity Turbidity measured by the Nephelometric Method (NTU)

μg/L Microgram(s) per liter

WET "Whole effluent toxicity"

ZID Zone of Initial Dilution

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT

AND

MAINE WASTE DISCHARGE LICENSE

FACT SHEET

Prepared Jointly by the Maine Department of Environmental Protection and the U.S. Environmental Protection Agency – Region 1

NPDES PERMIT NUMBER: ME0101851

MAINE WASTE DISCHARGE LICENSE NUMBER: W001475-6C-D-R

PUBLIC NOTICE DATE: October 24, 2024 – November 25, 2024

NAME AND ADDRESS OF APPLICANT:

Stonington Sanitary District P.O Box 175 Stonington ME, 04681

COUNTY: Hancock

NAME AND ADDRESS WHERE DISCHARGE OCCURS:

Stonington Sanitary District
Stonington Harbor/Deer Island Thorofare

RECEIVING WATER: Deer Isle Thorofare, East Penobscot Bay

CLASSIFICATION: Class SB

COGNIZANT OFFICIAL AND TELEPHONE NUMBER:

Ms. D. Gay Atkinson II Stonington Sanitary District P.O Box 175 Stonington, Maine 04681 207-367-5161 (Message Only)

FACT SHEET

Table of Contents

1. AP	PLICATION SUMMARY	3
a.	Application	3
b.	Source Description	3
2. PEI	RMIT SUMMARY	2
3. C	CONDITIONS OF PERMITS	
4. RI	ECEIVING WATER QUALITY CONDITIONS	
5. W <i>A</i>	AIVER OF SECONDARY TREATMENT REQUIREMENTS	<u>c</u>
6. EN	DANGERED SPECIES ACT	10
a.	Terrestrial and Avian Species (US Fish and Wildlife Service)	11
b.	Marine and Anadromous Species (National Marine Fisheries Service)	12
7. Ess	sential Fish Habitat	13
8. EFF	FLUENT LIMITATIONS	15
a.	Effluent Flow	15
b.	Dilution Factors	18
c.	Biochemical Oxygen Demand (BOD₅) and Total Suspended Solids (TSS)	19
d.	Settleable solids (SS)	20
e.	Enterococci bacteria and fecal coliform bacteria	21
f.	Total residual chlorine (TRC)	22
g.	pH	24
h.	Whole Effluent Toxicity (WET) & Chemical-Specific Testing	24
9. DIS	SCHARGE IMPACT ON RECEIVING WATERS	25
10. SI	EPTAGE INFORMATION AND REQUIREMENTS	26
11. 0	PERATIONS AND MAINTENANCE FOR THE TREATMENT PLANT	26
12. PI	UBLIC COMMENTS PERIOD AND PROCEDURES FOR FINAL DECISION	27
13. C	ONTACTS	28
Figure	e 1 – Location Map	29
Figur	e 2 – Flow Schematic	3(

Appendix A - Discharge Monitoring Report Data

Appendix B – Rationale on the Appropriateness of, and the Authority for, the Inclusion of the Wastewater Treatment System and Sewer System Adaptation Plan Requirements

1. APPLICATION SUMMARY

a. Application

The Stonington Sanitary District (SSD/District/permittee hereinafter) has applied for renewal of a combined National Pollutant Discharge Elimination System (NPDES) permit # ME0101851 and Maine Waste Discharge License (WDL) # W001475-5L-C-R, that was issued on March 22, 2019, and expired on May 31, 2024. The current permit/license (permit hereinafter) is based on a Section 301(h) variance of secondary treatment and authorizes the discharge of up to a 12-month rolling average flow of 175,000 gallons per day (gpd) of primary treated sanitary wastewater to the Deer Island Thorofare, East Penobscot Bay, Class SB, in Stonington, Maine. See **Figure 1** of this Fact Sheet for a location map.

b. Source Description

Sanitary wastewaters received at the treatment facility are generated by residential and commercial entities within the area served by the SSD. The facility does not receive any flows from industrial sources but does receive backwash waters from a local public drinking water treatment facility. The sewer collection system is a separated system and is not known to contain any combined sewer overflows.

The facility currently provides a primary level of treatment for flows from 285 on-site septic tanks located on individually and publicly owned lots. The collection system network conveys the septic tank effluent from each lot to a common disinfection tank with chlorination and dechlorination capabilities prior to discharge to Deer Island Thorofare. See **Figure 2** of this Fact Sheet for a flow schematic.

The outfall consists of a ductile iron/PVC discharge pipe measuring 8 inches in diameter that extends out into the receiving waters approximately 600 feet. The outfall discharges at minus 20.0 feet mean low tide elevation according to a plan prepared by Wright-Pierce Engineers, entitled, Stonington Sanitary District, Stonington, Maine, Wastewater Facilities, Wastewater Collection, Outfall Sewer & Treatment Facilities, Ocean Outfall, dated July 11, 1991, and revised May 22, 1995. The permittee is required to maintain the septic tanks according to a regular maintenance schedule where the tanks are periodically inspected to determine malfunctions, amount of accumulated solids retained in the tanks, appropriate pump-out frequency, and to facilitate accrued solids removal from the system. The permittee is required to submit a record of septic tank inspections and maintenance documenting the amount of solids removed from each tank.

The Stonington treatment facility receives 1,000 gallons (150 gallons & 350 gallons 2x/year) of uranium brine backwash water from the two Stonington Water Co. uranium

removal units. The concentration of Uranium in the backwash is estimated to be 15 μ g/L.

Uranium is a naturally occurring element in groundwater. Uranium gets into drinking water when groundwater dissolves minerals that contain uranium. Naturally occurring uranium has very low levels of radioactivity. However, the chemical properties of uranium in drinking water are of greater concern than its radioactivity. Most ingested uranium is eliminated from the body. However, a small amount is absorbed and carried through the bloodstream. Studies show that drinking water with elevated levels of uranium can affect the kidneys over time. Bathing and showering with water that contains uranium is not a health concern. Filter backwash discharged through the Stonington treatments system does not contain pollutants in concentrations that pose a reasonable potential to cause or contribute to an exceedance of any state water quality criteria.

2. PERMIT SUMMARY

a. <u>Regulatory</u>

Section 301(h) of the Clean Water Act (CWA) provides a vehicle by which a permittee may request a variance from secondary treatment requirements. Although the State of Maine received authorization from the U. S. Environmental Protection Agency (EPA) to administer the NPDES permit program on January 12, 2001, the Clean Water Act does not allow delegation of the 301(h) waiver process to States. Therefore, issuance of a permit granting such a variance may only be issued by the EPA.

Also, pursuant to Maine law, anyone discharging pollutants to waters of the State must obtain a license to do so from the State of Maine. Therefore, this document serves as a combination NPDES permit and a Maine WDL, to satisfy both federal and State requirements.

b. History

The most recent permitting/licensing actions include the following:

June 30, 1977 – The U.S. Environmental Protection Agency (EPA) issued National Pollutant Discharge Elimination System (NPDES) permit #ME0101851 authorizing the direct discharge of untreated municipal sewage to the Stonington Harbor. NPDES permit #ME0101851 expired on February 15, 1982.

December 22, 1982 - The Maine Department of Environmental Protection (DEP) issued Waste Discharge License #1475 to the SSD that authorized the discharge of untreated municipal wastewaters to the Deer Isle Thorofare until the construction of a waste water treatment facility was completed. The SSD also submitted a final application to

the EPA for a variance from secondary treatment requirements (primary treatment only) pursuant to Section 301(h) of the Clean Water Act.

April 26, 1986 – The EPA tentatively denied issuing a Section 301(h) variance based on insufficient information in 12/22/82 application submission.

July 14, 1986 – The Department extended the Time Schedule Variance (variance from statutory water pollution abatement requirements) pursuant to 38 M.R.S.A., Section 451-A.

May 19, 1987 – The EPA denied the SSD's Section 301(h) application based on a missed submission deadline date of May 1, 1987.

April 19, 1988 – The EPA notified the SSD that they would permit them to resubmit their Section 301(h) application to correct deficiencies cited in the 4/26/86 denial.

July 11, 1988 – The Department, on behalf of the SSD, resubmitted the Section 301(h) application to the EPA.

August 25, 1988 – The EPA issued a tentative variance from the secondary treatment requirements of the Clean Water Act (pursuant to Section 301(h) of the Act) to the Stonington Sanitary District.

October 12, 1988 – The EPA issued a public notice for draft NPDES permit #ME0101851 authorizing the discharge of primary treated and disinfected wastewaters from a single outfall pipe to Stonington Harbor. The permit included a schedule of compliance with a deadline of June 30, 1991 to install the treatment facility. At that time, the SSD was discharging untreated wastewaters to the harbor via 55 overboard discharge pipes. The EPA subsequently determined that a permit could not be issued until full primary treatment was in place.

November 1993 – Construction of the new, separate wastewater collection system was completed and the SSD primary waste water treatment facility commenced operation.

March 30, 1995 – The SSD submitted an application to the EPA for the reissuance of NPDES permit #ME0101851 and an application to the Department for the renewal of WDL #1475.

April 19, 1995 – A meeting between the Department, the EPA, the SSD and their engineering consultant was held in the Department's Eastern Maine Regional Office in Bangor, Maine. The purpose of the meeting was to discuss what the appropriate monthly average flow limit was to be in the NPDES permit and State WDL. It was agreed at the meeting to increase the SSD's monthly average flow limitation from 73,000

gallons per day to 175,000 gallons a day to correspond with the SSD's treatment plant's design flow capacity.

April 25, 1995 – The SSD submitted an application to the Department for the renewal of WDL #1475.

May 18, 1995 – The EPA issued a letter to the SSD confirming that the EPA agreed to the 175,000 GPD limit for the permitting/licensing purposes.

October 23, 1995 – The Department issued WDL renewal #W001475-59-B-R for a five-year term. The monthly average flow limit was established at 175,000 GPD.

December 4, 2007 – The SSD submitted an application to the Department for the renewal of WDL #1475.

January 12, 2001 – The Department received authorization from the EPA to administer the NPDES program for all areas of Maine, other than Indian Lands. 301(h) permits, however, must be issued by EPA. This permit shall also serve as a Maine Waste Discharge Licensee. This permit replaces NPDES permit #ME0101851 last issued by the EPA on June 30, 1977.

June 1, 2001 – The SSD submitted an application to the Department for the renewal of WDL #W001475-59-B-R.

November 29, 2001 – The SSD received a copy of the preliminary draft NPDES permit/Maine WDL. The SSD submitted written comments to the Department on the preliminary draft permit/license.

November 26, 2002 – The SSD received a copy of the proposed draft NPDES permit/Maine WDL. The SSD submitted written comments to the Department on the proposed draft permit/license.

January 23, 2003 – A meeting between the Department, the EPA (by phone), and the SSD and their consulting engineer and legal counsel (by phone) held a meeting in the Department's Eastern Maine Regional Office to discuss the SSD's comments on the 11/26/02 proposed draft permit/license. The meeting once again focused on what the appropriate monthly average flow limit was to be in the NPDES permit/State WDL.

March 14, 2003 – The EPA and the Department issued a joint NPDES permit/WDL for a five –year term. The permit/license established three tiers of limitations as the SSD wanted assurance from the EPA that the facility was permitted at its design capacity of 175,000 gpd.

December 4, 2007 – The SSD submitted a timely and complete application to the EPA and the Department for renewal of the March 14, 2003 license/permit. The Department accepted the application for processing on December 7, 2007.

March 22, 2019 – The Department issued WDL renewal #WDL 1475 for a five-year term. The monthly average flow limit was established at 175,000 gpd.

November 29, 2023 – The SSD submitted a current 301(h) Waiver Reapplication to EPA for the renewal of WDL 1475.

May 31, 2024 – Combined WDL and NPDES permit (WDL 1475-6C-D-R and ME0101851) expired and was administratively continued.

3. CONDITIONS OF PERMITS

Maine law, 38 M.R.S.A. Section 414-A, requires that the effluent limitations prescribed for discharges, including, but not limited to, effluent toxicity, application of best practicable treatment (BPT), be consistent with the U.S. Clean Water Act, and that the receiving waters attain the State water quality standards as described in Maine's Surface Water Classification System. In addition, 38 M.R.S.A., Section 420 and Department rule 06-096 CMR Chapter 530, Surface Water Toxics Control Program, the regulation of toxic substances not to exceed levels set forth in Department rule 06-096 CMR Chapter 584, Surface Water Quality Criteria for Toxic Pollutants, and to ensure safe levels for the discharge of toxic pollutants such that existing and designated uses of surface waters are maintained and protected.

Maine law, 38 M.R.S., Section 469 classifies the receiving water at the point of discharge as Class SB water. Maine water quality standards at 38 M.R.S., Section 465-B(2) contain the designated uses and specific water quality criteria for Class SB waters. Designated uses are identified as "recreation in and on the water, fishing, aquaculture, propagation and harvesting of shellfish, industrial processes and cooling water supply, hydroelectric power generation, navigation and as habitat for fish and other estuarine and marine life."

Federal regulation 40 C.F.R., Part 125, Subpart G, more specifically Part 125.57(a)(2), states that discharge of pollutants in accordance with such modified requirements [301(h)] will not interfere, alone or in combination with pollutants from other sources, with the attainment or maintenance of that water quality which assures protection of public water supplies and protection and propagation of a balanced indigenous population of shellfish, fish, and wildlife, and allows recreational activities in and on the water.

4. RECEIVING WATER QUALITY CONDITIONS

Section 303(d) of the Federal Clean Water Act (CWA) requires states to identify those waterbodies that are not expected to meet surface water quality standards after the implementation of technology-based controls and, as such require the development of total

maximum daily loads (TMDL). The State of Maine 2018/2020/2022 Integrated Water Quality Monitoring and Assessment Report (IWQMA), prepared by the Department pursuant to Sections 303(d) and 305(b) of the Federal Water Pollution Control Act, lists the receiving water as Category 3: Estuarine and Marine Waters with Insufficient Data or Information to Determine if Shellfish Harvesting Designated Use is Attained.¹

Due to multiple shellfish closure areas throughout Maine, the DEP issued a Statewide Bacteria TMDL (Total Maximum Daily Load) in August of 2009 (Report # DEPLW-1002). The TMDL set a goal of meeting bacteria water quality criteria at the point of discharge for all sources in order to meet water quality standards throughout each waterbody. Achievement of the goal will be assessed by ambient water quality monitoring conducted by the Maine Department of Marine Resources (MEDMR). Maximum bacteria levels are set for both point and nonpoint sources. The TMDL references the 2008 Integrated Water Quality Monitoring and Assessment Report which at that time placed Stonington in the category of Estuarine and Marine Waters Impaired only by Bacteria (TMDL Required) [Maine Listing Category 5-B].

The MEDMR issued an updated Shellfish closure notice for area #38 on June 5, 2015.

MEDMR traditionally closes shellfish harvesting areas in the vicinity of outfall pipes when field data on bacteria counts in the immediate area is insufficient, inconclusive or exceeds standards set in the National Shellfish Sanitation Program of the U.S. Department of Health and Human Services. As discussed in Section 8e, compliance with the monthly average and daily maximum limitations for fecal coliform bacteria is intended to ensure the Stonington facility will not cause or contribute to the closure of the shellfish harvesting area.

MRSA §465-B(B) states that "the dissolved oxygen content of Class SB waters must be not less than 85% of saturation". The existing data in the vicinity of the discharge for average daily DO concentrations is in compliance with 85% standard. The average daily concentrations are greater than the 85% saturation standard found in Maine law.

This is also based on monitoring conducted in the summer of 1995 by MDEP divers at a number of 301(h) facility outfalls (including Stonington) that indicated that receiving water biological and water quality conditions were consistent with water quality standards.

The MEDEP and EPA have since agreed that SCUBA inspections of 301(h) outfalls are too dangerous due to the swift currents generally found in these receiving waters. EPA and the Department have made the determination that based on the sampling to date and past effluent monitoring data, the discharge complies with 40 CFR, §125.57(a)(2).

According to a document entitled "301(h) Facilities in Maine, Report of 1995 Monitoring Activities," prepared by the Department, dated July 1996 and submitted to EPA, "Water quality, sediment, and photographic information indicates that Stonington and these

¹ MEDEP 2018/2020/2022 IWQMA Appendix V, Page 198.

ME0101851 W001475-6C-D-R

[301(h)-type] discharges are not causing any significant impact to the receiving waters". That document concluded that no further ambient monitoring be conducted and recommended that effluent monitoring be continued. By letter dated February 17, 1995 from the EPA Regional Administrator, the EPA found there would be little risk of adverse impacts to the receiving waters from these discharges provided that the permittee performed effluent monitoring as part of the regular permit conditions.

A recent study of 40 marine outfalls published in the Marine Pollution Bulletin Journal² found that; The main physical processes that govern the mixing and evolution of wastewater in the ocean are turbulent dispersion, transport (advection and diffusion) and resuspension ...In high energy environments all constituents will be broadly dispersed with a minor chance of concentrating. The study demonstrated where significant currents and wave action were present, there was almost no degradation to the marine environment from small municipal dischargers. This is entirely consistent with the findings of the Maine DEP SCUBA survey of the Stonington outfall and vicinity.

5. WAIVER OF SECONDARY TREATMENT REQUIREMENTS

Under Section 301(b)(1)(B) of the Clean Water Act (CWA), publicly owned treatment works (POTWs) in existence on July 1, 1977 were required to meet effluent limitations based on secondary treatment, which is defined in terms of the parameters BOD₅, TSS and pH. National effluent limitations for these pollutants were promulgated and are included in POTW permits issued under Section 402 of the CWA. Congress subsequently amended the CWA, adding Section 301(h), which authorizes the EPA Administrator, with State concurrence, to issue NPDES permits modifying the secondary treatment requirements with respect to the discharge of pollutants from a POTW into marine waters, provided that the applicant meet several conditions.

EPA issued a 301(h) waiver to Stonington on August 25, 1988, based upon the following findings:

- That the discharge will comply with the State of Maine water quality standards for dissolved oxygen and suspended solids.
- That the proposed discharge will not adversely impact public water supplies as the discharge is to salt water and there are no nearby desalinization facilities.
- The discharge will not interfere with the protection and propagation of a balanced indigenous population of marine life and will allow for recreational activities.
 Section 4 of this fact sheet discusses that there are no observed changes to marine life as a result of the discharge. Bacteria limits is the draft permit serve to protect shellfish and human recreational activities.

² Marine Pollution Bulletin Journal (101(2015)174–181): <u>Response of benthos to ocean outfall discharges: does a general pattern exist?</u> A. Puente, R.J. Diaz: <u>www.elsevier.com/locate/marpolbul</u>

- That the discharge will not result in additional treatment requirements on other point and non-point sources.
- That the State of Maine concurs with the approval of the 301(h) waiver.

Federal regulation 40 CFR Part 125.57(a)(3), states that the applicant must establish a system for monitoring the impact of POTW discharges with 301(h) waivers on a representative sample of aquatic biota, to the extent practicable, and the scope of such monitoring must be limited to include only those scientific investigations which are necessary to study the effects of the proposed discharge.

EPA has made a determination that the scope of effluent limitations and monitoring requirements in Special Condition B1 and B2 of this permit are sufficient to provide the necessary information to study the effects of the discharge on the receiving waters.

Because all the prior 301(h) conditions have been maintained and because there has been no new or substantially increased discharge from the permittee's facility, EPA proposes, through the re-issuance of the Stonington Sanitary District's permit, to carry forward the original 301(h) waiver decision.

6. ENDANGERED SPECIES ACT

Section 7(a) of the Endangered Species Act of 1973, as amended (ESA), grants authority to and imposes requirements on Federal agencies regarding species of fish, wildlife, or plants that have been federally listed as endangered or threatened (listed species) and regarding habitat of such species that has been designated as critical (critical habitat).

Section 7(a)(2) of the ESA requires every federal agency, in consultation with and with the assistance of the Secretary of Interior and the Secretary of Commerce, to ensure that any action it authorizes, funds or carries out, in the United States or upon the high seas, is not likely to jeopardize the continued existence of any listed species or result in the destruction or adverse modification of critical habitat. The United States Fish and Wildlife Service (USFWS) administers Section 7 consultations for federally protected bird, terrestrial and freshwater species, while the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NOAA Fisheries) administers Section 7 consultations for listed species of marine organisms (including marine mammals and reptiles), as well as for anadromous fish species.

The federal action being considered in this case is EPA's proposed reissuance of an NPDES permit for the Facility's discharge of pollutants. The Draft Permit is intended to replace the 2019 Permit in authorizing discharges from the Facility. As the federal agency charged with authorizing the Facility's pollutant discharges, EPA assesses potential impacts to federally listed species and critical habitat and initiates consultation to the extent required, under Section 7(a)(2) of the ESA.

EPA has reviewed the federal endangered or threatened species of fish, wildlife, and plants in the expected action area of the outfalls to determine if EPA's proposed NPDES permit could potentially impact any such listed species.

a. Terrestrial and Avian Species (US Fish and Wildlife Service)

Regarding protected species under the jurisdiction of USFWS, three species may be present in the action area of the Facility's discharge,³ the endangered northern long-eared bat (Myotis septentrionalis), the endangered roseate tern (Sterna dougallii dougallii) and the proposed endangered tricolored bat (Perimyotis subflavus).

According to the USFWS, the northern long-eared bat is found in, "winter – mines and caves, summer – wide variety of forested habitats." This species is not considered aquatic. However, because the Facility's projected action area overlaps with the general statewide range of the northern long-eared bat, EPA submitted an evaluation on potential effects of the project to the Information for Planning and Consultation (IPaC) system provided by the USFWS. The USFWS system confirmed by letter that, based on the specific project information submitted, the project would have "no effect" on the northern long-eared bat⁴.

At this time, no such USFWS IPaC mechanism is in place to evaluate potential impacts to the proposed endangered tricolored bat. Because the habitat of the tricolored bat is generally similar to the NLE bat (overwintering - caves or mines; spring/summer/fall – deciduous live or dead hardwood trees), EPA has determined that the reissuance of this permit would also have "no effect" on the proposed endangered tricolored bat⁵.

Finally, the action area of the facility may overlap with the roseate tern. According to the **USFWS:**

The roseate tern (Sterna dougallii) is found throughout the world. The North Atlantic subspecies, Sterna dougallii dougallii, is divided into two populations in North America because they breed in two discrete areas and rarely mix. The Northeastern population, federally listed as endangered, breeds on coastal islands from Eastern Canada, in Nova Scotia and Quebec, to New York.

Unfortunately, the bird's beauty led to its decline as hunters shot them indiscriminately to decorate hats in the late 1800s. Since the 1930s, the species began to rebound when hunting was banned and many of its breeding colonies were protected. Nevertheless, the two populations remain small and vulnerable to extirpation because many of their breeding colony sites are no longer suitable for nesting. This lack of suitable nesting is due to the combined negative impacts from sea level rise, predation and human development.

³ See https://ecos.fws.gov/ipac/

⁴ USFWS IPaC Project code: 2024-0148407, September 30, 2024.

⁵ EPA Supplemental Basis Document – Tricolored Bat; May 14, 2024.

EPA has determined that because the reissuance of this permit will not impact the above factors, this federal action will have no effect on the roseate tern. To support this no effect determination, EPA also completed a USFWS determination key that made the same conclusion. ⁶

This concluded EPA's consultation responsibilities for this NPDES permitting action under ESA section 7(a)(2) with respect to the northern long-eared bat, tricolored bat, and roseate tern. No ESA section 7 consultation is required with USFWS for these species.

b. Marine and Anadromous Species (National Marine Fisheries Service)

The Facility discharges into the Deer Isle Thorofare. The outfall and action area overlap with coastal waters where several protected marine species are found. Three species of anadromous fish; shortnose sturgeon (*Acipenser brevirostrum*), Atlantic sturgeon (*Acipenser oxyrinchus oxyrinchus*), and Atlantic salmon (*Salmo salar*) are potentially present in the vicinity of the discharge. In general, adults and subadults of these species are present in coastal waters.

Also present in the action area are four listed species of sea turtle, including: the leatherback sea turtle (*Dermochelys coriacea*), green sea turtle (*Chelonia mydas*), kemp's ridley sea turtle (*Lepidochelys kempii*), and the loggerhead sea turtle (*Caretta caretta*). According to NOAA Fisheries, adult and juvenile life stages of leatherback, loggerhead, Kemp's ridley and green sea turtles are expected in coastal Maine waters from June 1 through November 30 while migrating and foraging. Also, adult shortnose sturgeon and adult and subadult Atlantic sturgeon are likely present in the action area.

Because these species may be affected by the discharges authorized by the proposed permit, EPA has thoroughly evaluated the potential impacts of the permit action on these anadromous species. Based on that evaluation, EPA's preliminary determination is that this action may affect, but is not likely to adversely affect, the protect species that are expected in the vicinity of the action area of the discharge. Therefore, EPA has judged that a formal consultation pursuant to Section 7 of the ESA is not required. EPA is seeking concurrence from NOAA Fisheries regarding this determination during the Draft Permit's public comment period.

Initiation of consultation is required and shall be requested by EPA or by USFWS/NOAA Fisheries where discretionary federal involvement or control over the action has been retained or is authorized by law and if: 1) new information reveals that the action may affect listed species or critical habitat in a manner or to an extent not previously considered in the analysis; 2) the identified action is subsequently modified in a manner that causes an effect to the listed species or critical habitat that was not considered in the previous analysis; 3) a new species is listed or critical habitat designated that may be affected by the identified action; or 4) there is any incidental taking of a listed species that is not covered by an incidental take statement.

7. Essential Fish Habitat

Under the 1996 Amendments (PL 104-267) to the Magnuson-Stevens Fishery Conservation and Management Act, 16 U.S.C. §§ 1801, et seq., EPA is required to consult with NOAA Fisheries if proposed actions that EPA funds, permits, or undertakes, "may adversely impact any essential fish habitat." See 16 U.S.C. § 1855(b).

The Amendments broadly define "essential fish habitat" (EFH) as: "waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity". See 16 U.S.C. § 1802(10). "Adverse impact" means any impact that reduces the quality and/or quantity of EFH. 50 CFR § 600.910(a). Adverse effects may include direct (e.g., contamination or physical disruption), indirect (e.g., loss of prey, reduction in species' fecundity), site specific or habitat-wide impacts, including individual, cumulative, or synergistic consequences of actions.

Essential fish habitat is only designated for species for which federal fisheries management plans exist (16 U.S.C. § 1855(b)(1)(A)). EFH designations for New England were approved by the U.S. Department of Commerce on March 3, 1999. A New England Fishery Management Council's Omnibus Essential Fish Habitat Amendment in 2017 updated the descriptions. The information is included on the NOAA Fisheries website at:

https://www.fisheries.noaa.gov/topic/habitat-conservation. In some cases, a narrative identifies rivers and other waterways that should be considered EFH due to present or historic use by federally managed species.

The Federal action being considered in this case is EPA's proposed NPDES permit for the Eastport Wastewater Treatment Facility, which discharges though Outfall 001 to Deer Isle Thorofare as discussed in Section 4.1 of this document. Based on available EFH information, including the NOAA Fisheries EFH Mapper, EPA has determined that the receiving water in the vicinity of the discharge is designated as EFH for the species shown in Table 1, below.

Table 1. EFH Designated Species

Species/Management Unit	Lifestage(s) Found at Location
Acadian Redfish	Larvae
American Plaice	Adults, Juveniles, Eggs, Larvae
Atlantic Butterfish	Adult, Juvenile
Atlantic Cod	Adult, Eggs, Juvenile, Larvae
Atlantic Herring	Adults, Juvenile, Larvae
Atlantic Mackerel	Adult, Juvenile
Atlantic Sea Scallop	All
Atlantic Wolffish	All
Bluefish	Adult, Juvenile
Little Skate	Adult, Juvenile

^{7 &}lt;a href="https://www.habitat.noaa.gov/apps/efhmapper/">https://www.habitat.noaa.gov/apps/efhmapper/

Monkfish	Juvenile
Ocean Pout	Adult, Eggs, Juvenile
Pollock	Juvenile
Red Hake	Adult, Eggs/Larvae/Juvenile
Silver Hake	Adult, Eggs/Larvae
Smooth Skate	Juvenile
Thorny Skate	Juvenile
White Hake	Adult, Juvenile, Larvae
Windowpane Flounder	Adults, Eggs, Juvenile, Larvae
Winter Flounder	Eggs, Juvenile, Larvae/Adult
Winter Skate	Eggs, Juvenile, Larvae/Adult
Yellowtail Flounder	Adult
Habitat Area of Particular Concern	
Atlantic Salmon	
Inshore 20m Juvenile Cod	

Therefore, consultation with NOAA Fisheries under the Magnuson-Stevens Fishery Conservation and Management Act is required. EPA has determined that actions regulated by the Draft Permit may adversely affect EFH. The Draft Permit has been conditioned in the following ways to minimize any impacts that reduce the quality and/or quantity of EFH for the species listed in Table 1.

- This Draft Permit action does not constitute a new source of pollutants because it is the reissuance of an existing NPDES permit;
- Discharge limitations have been proposed for pH, total suspended solids, settleable solids, fecal coliform bacteria, enterococci bacteria, total residual chlorine, in order to meet technology-based or state water quality standards;
- The effluent limitations and conditions in the Draft Permit were developed to be protective of all aquatic life;
- The proposed Draft Permit requirements minimize any reduction in quality and/or quantity of EFH, either directly or indirectly.

EPA has determined that the conditions and limitations contained in the Draft Permit adequately protect all aquatic life, as well as the essential fish habitat for the species listed above in Deer Isle Thorofare. Further mitigation is not warranted. Should adverse impacts to EFH be detected as a result of this permit action, or if new information is received that changes the basis for EPA's conclusions, NOAA Fisheries Habitat and Ecosystem Services Division will be contacted and an EFH consultation will be re-initiated.

At the beginning of the public comment period, EPA notified NOAA Fisheries Habitat and Ecosystem Services Division that the Draft Permit and this Fact Sheet were available for review and provided a link to the EPA NPDES Permit website to allow direct access to the documents.

In addition to this Fact Sheet and the Draft Permit, information to support EPA's finding was included in a letter under separate cover that will be sent to the NOAA Fisheries Habitat and Ecosystem Services Division during the public comment period.

8. EFFLUENT LIMITATIONS

a. Effluent Flow

Effluent Flow - The SSD treatment plant discharge is encompassed within the definition of "pollutant" and is subject to regulation under the CWA. The CWA defines "pollutant" to mean, inter alia, "municipal . . . waste" and "sewage...discharged into water." 33 U.S.C. § 1362(6).

EPA may use design flow of effluent both to determine the necessity for effluent limitations in the permit that comply with the Act, and to calculate the limits themselves.

EPA practice is to use design flow as a reasonable and important worst-case condition in EPA's reasonable potential and water quality-based effluent limitations (WQBEL) calculations to ensure compliance with water quality standards under Section 301(b)(1)(C). Should the effluent discharge flow exceed the flow assumed in these calculations, the instream dilution would decrease and the calculated effluent limits may not be protective of WQS. Further, pollutants that do not have the reasonable potential to exceed WQS at the lower discharge flow may have reasonable potential at a higher flow due to the decreased dilution.

To ensure that the assumptions underlying the Region's reasonable potential analyses and derivation of permit effluent limitations remain sound for the duration of the permit, the Region may ensure its "worst-case" effluent wastewater flow assumption through imposition of permit conditions for effluent flow. Thus, the effluent flow limit is a component of WQBELs because the WQBELs are premised on a maximum level of flow. In addition, the flow limit is necessary to ensure that other pollutants remain at levels that do not have a reasonable potential to exceed WQS.

Using a facility's design flow in the derivation of pollutant effluent limitations, including conditions to limit wastewater effluent flow, is consistent with, and anticipated by NPDES permit regulations. Regarding the calculation of effluent limitations for POTWs, 40 C.F.R. § 122.45(b)(1) provides, "permit effluent limitations...shall be calculated based on design flow." POTW permit applications are required to include the design flow of the treatment facility. Id. § 122.21(j)(1)(vi).

Similarly, EPA's reasonable potential regulations require EPA to consider "where appropriate, the dilution of the effluent in the receiving water," 40 C.F.R. § 122.44(d)(1)(ii), which is a function of both the wastewater effluent flow and receiving water flow.

EPA guidance directs that this "reasonable potential" (RP) analysis be based on "worst-case" conditions. EPA accordingly is authorized to carry out its reasonable potential calculations by presuming that a plant is operating at its design flow when assessing reasonable potential.

The limitation on sewage effluent flow is within EPA's authority to condition a permit in order to carry out the objectives of the Act. See CWA §§ Sections 402(a)(2) and 301(b)(1)(C); 40 C.F.R. §§ 122.4(a) and (d); 122.43 and 122.44(d).

A condition on the discharge designed to protect EPA's WQBEL and reasonable potential calculations is encompassed by the references to "condition" and "limitations" in Sections 402 and 301 and implementing regulations, as they are designed to assure compliance with applicable water quality regulations, including antidegradation. Regulating the quantity of pollutants in the discharge through a restriction on the quantity of wastewater effluent is consistent with the overall structure and purposes of the CWA.

In addition, as provided in Part II.B.1 and B.2. of this permit and 40 C.F.R. § 122.41(e), the permittee is required to properly operate and maintain all facilities and systems of treatment and control. Operating the facilities wastewater treatment systems as designed includes operating within the facility's design effluent flow. Thus, the permit's effluent flow limitation is necessary to ensure proper facility operation, which in turn is a requirement applicable to all NPDES permits. See 40 C.F.R. § 122.41.

The 2019 Permit established a 12-month rolling average flow limitation of 175,000 gpd based on the SSD's system design flow capacity. The 1988 301(h) waiver document issued by the EPA specified a design flow of 73,000 gpd which is the value the SSD cited as the "estimated" design capacity of their, yet to be installed, system in their application for a Section 301(h) waiver. In April of 1995, the SSD submitted additional information to the EPA and the Department that indicated the initial application submitted to the EPA was in error regarding flow. The SSD conducted a more comprehensive evaluation of the potential population growth within the District's boundaries and the infrastructure of the system and determined the system was capable of collecting and treating up to the Design Flow Capacity of 175,000 gpd. The SSD considered this additional information submitted to the EPA as a correction to the original application.

Due to high inflow and infiltration (I/I) rates during wet weather, the SSD requested that the EPA and the Department establish the flow limit as a 12-month rolling average limitation as provided by federal regulation 40 CFR, §125.60.

The previous permit established the flow limit as such. The 12-month rolling average permit limits are carried forward in this draft permit. The current permit required the reporting, without a limit, of the monthly average flow to allow the tracking of wet weather flows. The Draft Permit also requires the permittee to address excessive I/I.

This permitting action is carrying forward the model of tiered permit limits from the previous permit for flow limitations and corresponding BOD_5 and TSS limits. The current permit contains two tiers of flow. In 1995, Olver Associates conducted a study of the capacity of all the septic tanks then on the system and added an allowance for infiltration/inflow to arrive at the existing design flow of the treatment system (106,000 gpd). They also projected the flow of all potential users of the system if they are connected.

The first effluent flow tier is up to 106,000 gpd and the second tier is from 106,000 to 175,000 gpd. Tier I shall be based on a 12-month rolling average flow of up to 106,000 and Tier 2 shall be based on a 12-month rolling average flow of 175,000 gpd. The highest actual 12-month rolling average recorded during the period of July 2019 through June 2024 was 43,404, which occurred in April 2024. These Tier I and II flow limits are carried forward as 12-month rolling average flow limits.

The District has a contractual obligation to accept connection from any property within the boundaries of the district. Maximum build out is estimated to be 175,000 GPD. The flow of 175,000 GPD also represents the maximum capacity of the SSD's chlorine contact chambers.

Flow limits for municipal systems are based on the design flow (40 CFR §122.45(b)(1) which EPA considers to be the combined capacity of the septic tanks in use plus non-excessive I/I, which by regulation (40 CFR §35.2005(b)(16)) is less than 275 gallons per capita per day. Therefore, the revised Tier I flow limit will be based on the 1995 system capacity report below.

OLVER ASSOCIATES INC.

Mr. Stephen Austin, Chairman March 20, 1995 Page 15

STONINGTON'S WASTEWATER GENERATION POTENTIAL

WASTEWATER SOURCE	POTENTIAL FLOW* (GPD)
SEWERED AREA CONNECTED USERS	
Connected residential users	64,530
Connected commercial users	15,505
Connected institutional users	3,335
Connected school users	6,000
Groundwater infiltration design allowance	16,320
Connected user wastewater generation potential	105,690
SEWERED AREA UNCONNECTED USERS	
Unconnected residential users	3,420
Unconnected commercial users	360
Unconnected institutional users	350
Unconnected user wastewater generation potential	4,130
VACANT LOT WASTEWATER GENERATION POTENTIA	<u>L</u> 10,000
IDENTIFIED GROWTH POTENTIAL FROM SURVEY	
Residential flow growth potential	8,100
Commercial flow growth potential	45,330
Institutional flow growth potential	2,000
Total flow growth potential	55,430
Total Stonington sewered areas future flow potential*	175,250
* Based on minimum Maine State Plumbing Code flows identified in District's user survey. (Results are attached)	for Stonington user uni

b. <u>Dilution Factors</u>

For estuaries where tidal flow is dominant and marine discharges, dilution factors are calculated as follows. These methods may be supplemented with additional information such as current studies or dye studies.

(a) For discharges to the ocean, dilution must be calculated as near-field or initial dilution, or that dilution available as the effluent plume rises from the point of discharge to its trapping level, at mean low water level and slack tide for the

acute exposure analysis, and at mean tide for the chronic exposure analysis using appropriate models determined by the Department such as MERGE, CORMIX or another predictive model.

- (b) For discharges to estuaries, dilution must be calculated using a method such as MERGE, CORMIX or another predictive model determined by the Department to be appropriate for the site conditions.
- (c) In the case of discharges to estuaries where tidal flow is dominant and marine waters, the human health criteria must be analyzed using a dilution equal to three times the chronic dilution factor.

The Maine DEP determined the following dilutions using a CORMIX model. The acute and chronic dilution factors are >1,000:1 and the harmonic mean dilution factor is >3,000:1 (See page 14 of the SSD May 5, 2014 301(h) application).

c. Biochemical Oxygen Demand (BOD₅) and Total Suspended Solids (TSS)

Federal regulations state that primary or equivalent treatment means treatment by screening, sedimentation, and skimming adequate to remove at least thirty percent (30%) of the BOD₅ and 30% of the TSS material in the treatment works influent (40 CFR §125.58(r)). The Department considers a thirty percent (30%) removal of BOD₅ and a fifty percent (50%) removal of TSS from the influent loading as a best professional judgment (BPJ) determination of best practicable treatment (BPT) for primary facilities. EPA will require 50% removal of TSS consistent with Maine requirements. The percent removal requirements were included in the 2019 permitting action and are being carried forward in this Draft Permit.

It is not practical to measure the influent into each septic system from each household. Compliance with the percent removal limits was based on an assumed influent (into the individual septic tanks) concentrations of 350 mg/L for BOD₅ and 325 mg/L for TSS.

These assumed values fall within the range of values found in the publications entitled EPA Design Manual, Onsite Wastewater Treatment and Disposal Systems (EPA 625/1-80-012), dated October 1980, table 4-3 entitled "Characteristics of Typical Residential Wastewater" and Wastewater Engineering, Treatment, Disposal, and Reuse, Third Edition, by Metcalf & Eddy, Inc., 1991page 109, Table 3-16, "Typical Composition of Untreated Domestic Wastewater."

The 2019 Permit included mass limits based on the effluent concentration limits and the authorized flow of 175,000 gpd.

The permit/license established a 12-month rolling average technology-based mass and concentration limits for BOD₅ and TSS. The effluent BOD₅ concentration limits were based on an assumed influent concentration of 350 mg/L and a 30 percent removal. The effluent TSS

concentration limits were based on an assumed influent concentration of 325 mg/L and a 50 percent removal.

BOD₅ 12-Month Rolling Average Limit TSS 12-Month Rolling Average Limit

(350 mg/L - X mg/L)*(100%) = 30 % (325 mg/L - X mg/L)*(100%) = 50 % (350 mg/I) (325 mg/I)

X = 245 mg/l X = 163 mg/l

Calculation of BOD₅ and TSS Mass Limits:

The twelve-month rolling average mass limits for BOD₅ were derived as follows:

Tier I – Flow limitation of 106,000 gpd (0.106 MGD)

BOD₅: (0.106 MGD)(8.34)(245 mg/L) = 217 lbs/dayTSS: (0.106 MGD)(8.34)(163 mg/L) = 144 lbs/day

Tier II — Flow limitation of 175,000 gpd (0.175 MGD)

BOD₅: (0.175 MGD)(8.34)(245 mg/L) = 358 lbs/dayTSS: (0.175 MGD)(8.34)(163 mg/L) = 238 lbs/day

A review of the DMR data for the period July 2019 through June 2024, shows that the facility has complied with the Tier I permit limits on a 12-month rolling average basis. The Tier II flow limits did not apply since all monthly flows were below the Tier I maximum of 106,000 gpd. See Fact Sheet Appendix A.

The Draft Permit carries forward the sampling frequency of once per week. This frequency is based on a BPJ determination by the EPA and the Department given the size and type of treatment facility.

d. Settleable solids (SS)

The settleable solids test indicates how the solids are settling in a treatment plant. "Settleable Solids" is the term applied to the material settling out of suspension within a defined period of time. The settleable solids test can help the operator estimate the volume of sludge to be expected. Conventional primary treatment units remove 90 to 95% of settleable solids. This test is mostly for operational control and thus it is reported without limits.

Pathogenic organisms naturally present in sewage may be adhered to solid particles, which might afford protection from inactivation by a disinfectant (chlorine). The removal of solids and resultant disinfection efficiency makes increased SS monitoring prudent during the disinfection season. The previous permitting action established monthly average and daily maximum reporting requirements with a 3/Week monitoring frequency during the chlorination season and 1/Week during the non-chlorination season. Those frequencies are carried forward in the Draft Permit. The range of the monthly average values for settleable solids from July 2019 through June 2024 show eight readings of 0.1 ml/L with all other values being non-detect.

e. Enterococci bacteria and fecal coliform bacteria

Specific types of non-pathogenic bacteria are used as indicator organisms, or surrogates, for waterborne pathogens (bacteria, viruses, etc.) which enter surface waters from a variety of sources, including human sewage and the feces of warm-blooded wildlife. These pathogens can pose a risk to human health due to gastrointestinal illness through different exposure routes, including contact with and ingestion of recreational waters, ingestion of drinking water, and consumption of filter-feeding shellfish (clams, mussels, etc.).⁸

Enterococci

Maine water quality standards use enterococci as indicator organisms for protection of estuarine and marine recreational waters (38 MRSA Ch. 3 §465). Because contact recreation occurs largely in the summer months, the enterococci criteria are applied seasonally. Between April 15th and October 31st, the number of enterococcus bacteria in these waters may not exceed a geometric mean of 8 CFU per 100 milliliters in any 90-day interval or 54 CFU per 100 milliliters in more than 10% of the samples in any 90-day interval. 9

The current permit includes these enterococci limits. During the monitoring period, enterococci values have ranged from 0-27 colonies/100 mL with no violations of either limit. The monitoring frequency of once per week is carried forward in the Draft Permit.

Fecal Coliform

To determine risk in designated shellfish harvesting areas, fecal coliform organisms are used. The current permit applied the fecal coliform limits seasonally (May 15 – September 30). The current permit requires that fecal coliform limits be met year-round consistent with year-round harvesting of shellfish. The Maine Department of Marine Resources (MEDMR) regulates shellfishing within the state. MEDMR sets shellfish closure areas around all outfalls discharging sanitary wastewater in order to protect shellfish beds in case of failure of disinfection systems.

ME0101851 W001475-6C-D-R

Even with the outfall closure areas, the permit limits must still protect the designated uses¹⁰, which include *harvesting of shellfish*¹¹. The MEDMR Closure does not remove the designated use of *harvesting of shellfish*, nor EPA's responsibility to set fecal coliform limits in the draft permit to protect that use. The Maine Class SB water quality standards state:

The numbers of total coliform bacteria or other specified indicator organisms in samples representative of the waters in shellfish harvesting areas may not exceed the criteria recommended under the National Shellfish Sanitation Program, United States Food and Drug Administration.¹²

The Food and Drug Administration (FDA) periodically updates the shellfish standards. The most recent revision is the <u>National Shellfish Sanitation Program (NSSP) Guide for the Control of Molluscan Shellfish, 2023 Revision</u>. EPA will apply the same bacteriological standards from this Guidance Document, as used by the MDMR in the protection shellfish resources¹³ as permit limits. These specify that:

The fecal coliform median or geometric mean most probable number (MPN) or membrane filter (MF) (membrane-Thermotolerant Escherichia coli [mTEC]) of the water sample results shall not exceed fourteen (14) per 100 ml, and not more than ten (10) percent of the samples shall exceed an MPN or MF (mTEC) of: (a) 43 MPN per 100 ml for a five-tube decimal dilution test; (b) 49 MPN per 100 ml for a three-tube decimal dilution test; (c) 28 MPN per 100 ml for a twelve-tube single dilution test; or (d) 31 colony-forming units (CFU) per 100 ml for a MF¹⁴ (mTEC) test.

The Draft Permit includes limits of 14 cfu/100 ml and 31 cfu/100 ml, which are carried forward from the 2019 Permit and are consistent with the recommendations in the 2023 NSSP Guide for the Control of Molluscan Shellfish. During the monitoring period, fecal coliform values have ranged from 0 – 201 colonies/100 mL with 2 violations of the daily maximum limit. The monitoring frequency requirement of once per week is based on MEDEP guidance for POTWs and is applicable year-round, consistent with Maine's water quality standards. The permittee may continue to use the Standard Method 9222-D-1997- Thermotolerant (Fecal) Coliform Membrane Filter Procedure which is the closest method to that used by MEDMR that is approved for wastewater under 40 C.F.R. § 136.

f. Total residual chlorine (TRC)

^{10 40} CFR §131.3(f) Designated uses are those uses specified in water quality standards for each water body or segment whether or not they are being attained.

^{11 38} MRSA Ch. 3 §465-B(2). Standards for classification of estuarine and marine waters-Class SB waters 12 38 MRSA Ch. 3 §465-B(2). Standards for classification of estuarine and marine waters-Class SB waters

¹³ National Shellfish Sanitation Program (NSSP) Guide for the Control of Molluscan Shellfish 2023 Revision section

¹⁴ A membrane filtration test method using Modified membrane-Thermotolerant Escherichia coli or mTEC agar or medium.

Total Residual Chlorine (TRC) - Chlorine compounds resulting from the disinfection process can be extremely toxic to aquatic life. The instream chlorine criteria are defined in National Recommended Water Quality Criteria: 2002, EPA 822R-02-047 (November 2002), as adopted by the Maine DEP into the Chapter 584: Surface Water Quality Criteria for Toxic Pollutants.

The criteria establish that the total residual chlorine in the receiving water should not exceed 7.5 ug/l (chronic) and 13 ug/l (acute). The draft permit TRC limit will be the more stringent, Maine technology based best practicable treatment (BPT) limit of 1.0 mg/l. See the following explanation.

The previous permitting action established a technology based daily maximum limitation of 1.0 mg/L with monitoring frequency of 1/Day. Limits on total residual chlorine are specified to ensure attainment of the in-stream water quality criteria for chlorine and that BPT technology is utilized to abate the discharge of chlorine. Permits issued by MEDEP impose the more stringent of the calculated water quality based or BPT based limits. The Department has established a daily maximum BPT limitation of 1.0 mg/L for facilities that disinfect their effluent with elemental chlorine or chlorine-based compounds unless the calculated acute water quality based threshold is lower than 1.0 mg/L. For facilities that need to de-chlorinate the discharge to meet water quality based thresholds, the Department has established daily maximum and monthly average best practicable treatment limits of 0.3 mg/L and 0.1 mg/L respectively.

Municipal wastewater treatment facilities treating only to primary, require stronger disinfection measures because of shading of bacteria in the higher solids content found in such effluent. For this reason, MEDEP does not hold Stonington to the limits of 0.3 mg/L and 0.1 mg/L. Department's BPT limit of 1.0 mg/L is applicable.

End-of-pipe water quality-based concentration thresholds may be calculated as shown below, however, as stated above, since the technology-based limit is more stringent the current permit contains a TRC limit of 1.0 mg/L. The current permit requires year-round disinfection to protect shellfish resources.

Parameter	Acute	Chronic	Acute	Chronic	Acute	Chronic
	Criteria	Criteria	Dilution	Dilution	Limit	Limit
Chlorine	13 ug/L	7.5 ug/L	1000:1	1000:1	79.0 mg/L	7.5 mg/L

Example calculation: Acute 0.013 mg/L (1000) = 13.0 mg/L

Chronic 0.0075 mg/L(1000) = 7.5 mg/L

During the period of July 2019 through June 2024, there have been no violations of this limit, with a high value of 0.91 mg/L and a median value of 0.42 mg/L. The 1.0 mg/L daily maximum limit is carried forward in the Draft Permit and is consistent with Maine CWA Section 401 permit certification requirements¹⁵.

15 Maine DEP Memorandum from John Moulton (DEP) to EPA, September 24, 1992

ME0101851 W001475-6C-D-R

g. <u>pH</u>

Pursuant to 40 C.F.R § 125.61 (a) There must exist a water quality standard or standards applicable to the pollutant(s) [including] pH. Additionally, Maine Water Quality Standards State that: Discharge of pollutants to any water of the State that violates sections 465...or causes the "pH" of estuarine and marine waters to fall outside of the 7.0 to 8.5 range is not permissible.

The previous permitting action recognized there is dilution of the effluent and established a BPT pH range limit of 6.0 –9.0 standard units pursuant to Department rule, Chapter 525(3)(III)(c), along with a monitoring frequency of 1/Day for the period of May 15 through September 30 and 3/week for the period of October 1 through May 14. During the period of July 2019 through June 2024, the effluent pH ranged from 6.0 to 8.1 S.U. with no violations of the permitted range. The pH limits in this draft permit are consistent with the secondary treatment standards for pH found in 40 CFR §133.102(c).

h. Whole Effluent Toxicity (WET) & Chemical-Specific Testing

Maine law, 38 M.R.S.A., Sections 414-A and 420, prohibit the discharge of effluents containing substances in amounts that would cause the surface waters of the State to contain toxic substances above levels set forth in Federal Water Quality Criteria as established by the USEPA. Department Rules, 06-096 CMR Chapter 530, Surface Water Toxics Control Program, and Chapter 584, Surface Water Quality Criteria for Toxic Pollutants set forth ambient water quality criteria (AWQC) for toxic pollutants and procedures necessary to control levels of toxic pollutants in surface waters.

Though the facility has never conducted WET or chemical specific testing pursuant to Department rule Chapter 530, the Department has made the determination the SSD facility is not a new discharge, nor has it substantially changed since issuance of the previous permit/license. Therefore, the SSD qualifies for the waiver from the Chapter 530 testing requirements. Chapter 530 §(2)(D) states:

All dischargers having waived or reduced testing must file statements with the Department on or before December 31 of each year describing the following.

- (a) Changes in the number or types of non-domestic wastes contributed directly or indirectly to the wastewater treatment works that may increase the toxicity of the discharge.
- (b) Changes in the operation of the treatment works that may increase the toxicity of the discharge; and
- (c) Changes in industrial manufacturing processes contributing wastewater to the treatment works that may increase the toxicity of the discharge.

W001475-6C-D-R

Special Condition I, 06-096 CMR 530(D)(2)(4) Statement For Reduced/Waived Toxics Testing, of this permitting action requires the permittee to file an annual certification with the Department. A sample of the form for this certification is provided in Appendix B.

It is noted however, that if future WET testing results indicates the discharge exceeds critical water quality thresholds this permit will be reopened pursuant to Special Condition M, *Reopening of Permit For Modification*, of this permit to establish applicable limitations and monitoring requirements and require the permittee to submit a toxicity reduction evaluation (TRE) pursuant to Department rule, Chapter 530(3)(c).

The permittee must also comply with the provisions of 40 CFR § 122.44 which require notification to EPA of any new or increased discharge of potentially toxic pollutants by the permittee.

9. DISCHARGE IMPACT ON RECEIVING WATERS

EPA and the Department have determined that the permit limits and conditions are sufficient to ensure that the existing water uses will be maintained and protected and the discharge will not cause or contribute to failure of the waterbody to meet standards for Class SB classification.

As discussed in Section 8.a, EPA conducted a reasonable potential analysis to ensure that the existing water uses will be maintained and protected. Given that EPA guidance ¹⁶ directs that these reasonable potential analyses be based on critical conditions, EPA uses the pollutant concentrations based on all available information provided to EPA during the development of the permit. As discussed in more detail in the pollutant-specific sections below, this information includes data from the Permittee's most recent application, DMR data during the review period, and any other available information included in the administrative record.

If the permitting authority determines that the discharge of a pollutant will cause, has the reasonable potential to cause, or contribute to an excursion above WQSs, the permit must contain WQBELs for that pollutant. See 40 CFR § 122.44(d)(1)(i).

If the permitting authority determines that the discharge of a pollutant will not cause, have the reasonable potential to cause, or contribute to an excursion above WQSs, the permit does not need to contain WQBELs for that pollutant. However, EPA must ensure that the discharge of that pollutant does not increase during the permit term to the point that would violate water quality standards. Therefore, Part I.E (Unauthorized Discharges) of the permit includes the following provision to ensure that EPA's reasonable potential analyses (for all pollutants) remain protective throughout the life of the permit, and which would also clearly articulate the scope of the protections afforded to the Permittee pursuant to CWA section 402(k):

W001475-6C-D-R

"Any pollutant loading greater than the proposed discharge (based on the chemicalspecific data and the facility's design flow as described in the permit application, or any other information provided to EPA during the permitting process) is not authorized by this permit."

EPA notes that such increases may be allowable, but the Permittee must first submit a request to EPA to authorize such an increase. This request will allow EPA to conduct an updated reasonable potential analysis to reassess whether a WQBEL is needed for the newly proposed discharge. Permit modification or reissuance may be required before the proposed discharge would be authorized.

10. SEPTAGE INFORMATION AND REQUIREMENTS

Domestic septage is the liquid or solid material removed from a septic tank cesspool, portable toilet, type II marine sanitation device, or similar system that receives only domestic septage (household, non-commercial, non-industrial sewage).

Maine regulates sludge under Department Regulations Chapter 400 et seq. In its application, the Permittee reported that 80,000 gallons of liquid septage from the SSD septic tanks is applied to a 2.5 acre Department-approved land spreading site on the island on an annual basis. DEP set a limit of 98,724 gallons/year for the site.

Domestic septage is regulated under Federal requirements found at 40 CFR Part 503. These requirements are self-implementing by the permittee. The permittee must keep records onsite for 5 years for inspection by EPA or the Department upon request. The permittee must stay apprised of all regulations applicable to their practice for the use or disposal of septage. The Draft Permit includes a summary of records to be kept by the permittee related to the current land application of septage. If the ultimate septage disposal method changes, the permittee must notify EPA and DEP and the requirements pertaining to septage monitoring and other conditions would change accordingly.

11. OPERATIONS AND MAINTENANCE FOR THE TREATMENT PLANT

The permit standard conditions for "Proper Operation and Maintenance" are found at 40 CFR 122.41(e). These require proper operation and maintenance of permitted wastewater systems and related facilities to achieve permit conditions. Similarly, the permittee has a 'duty to mitigate' are stated in 40 CFR §122.41(d). This requires the permittee to take all reasonable steps to minimize or prevent any discharge in violation of the permit which has the reasonable likelihood of adversely affecting human health or the environment. EPA maintains that these programs are an integral component of ensuring permit compliance under both these provisions.

The draft permit includes requirements for the permittee to control infiltration and inflow (I/I). Infiltration is groundwater that enters the collection system through physical defects such as cracked pipes, or deteriorated joints. Inflow is extraneous flow entering the collection system

through point sources such as roof leaders, yard and area drains, sump pumps, manhole covers, tide gates, and cross connections from storm water systems.

Significant I/I in a collection system may reduce the efficiency of disinfection. It greatly increases the potential for sanitary sewer overflows (SSO).

The Stonington collection system connects primary treated wastewater (from individual septic systems) to disinfection facilities and the outfall. This process is different from conventional treatment systems where influent is treated at the end of the collection system. This complicates the measurement of treatment efficiency by having the collection system between the influent and effluent sampling points. This is comparable to having a collection system within a treatment process. If additional water (I/I) was neither added nor lost after the septic systems and prior to discharge sampling, the measure of treatment efficiency would be true.

The significant I/I in the collection system acts in the same manner as internal dilution within a treatment process. 40 CFR §122.45(f)(1)(iii) states in part that; permit conditions [shall] ensure that dilution will not be used as a substitute for treatment. Given enough I/I in the system, both concentration and percent removal limits could be met entirely by internal dilution of the waste stream and without any treatment.

40 CFR §125.60(c)(iii) addresses I/I in a conventional primary treatment process. It recognizes that significant I/I prior to treatment can hinder the POTW's ability to meet the percent removal limits and allows for their adjustment provided the I/I is deemed nonexcessive.¹⁷

For the above stated reasons, the permit requires an ongoing program to address and remove I/I from the system. EPA has incorporated Department Wet Weather Flow Management Plan requirements in the draft permit as they are necessary to proper operation of the WWTF.

Additionally, the Draft Permit, in Part I.J.1. requires the Permittee to develop an Adaptation Plan to address major storm and flood events as part of their operation and maintenance planning for the part of the wastewater treatment system (WWTS) and/or sewer systems that they own and operate. These requirements are new. EPA has determined that these additional requirements are necessary to ensure the proper operation and maintenance of the WWTS and/or sewer system and has included a schedule in the Draft Permit for completing these requirements.

See Appendix B for a further rationale regarding this Adaptation Plan.

12. PUBLIC COMMENTS PERIOD AND PROCEDURES FOR FINAL DECISION

The Draft Permit public notice will be placed on the EPA Region I NPDES website at: https://www.epa.gov/npdes-permits/maine-draft-individual-npdes-permits.

¹⁷ Nonexcessive (i.e., wastewater plus inflow plus infiltration) is less than 275 gallons per capita per day. 40 CFR §125.60(c)(iii)

ME0101851 W001475-6C-D-R

All persons, including applicants, who believe any condition of the Draft Permit is inappropriate must raise all issues and submit all available arguments and all supporting material for their arguments in full by the close of the public comment period, to the EPA Permit Writer and the MEDEP contact named in Section 13 below.

Prior to the close of the public comment period, any person may submit a written request to EPA for a public hearing to consider the Draft Permit. Such requests shall state the nature of the issues proposed to be raised in the hearing. A public hearing may be held if the criteria stated in 40 CFR § 124.12 are satisfied. In reaching a final decision on the Draft Permit, EPA will respond to all significant comments in a Response to Comments document attached to the Final Permit and make these responses available to the public on EPA's website.

Following the close of the comment period, and after any public hearings, if such hearings are held, EPA will issue a Final Permit decision, forward a copy of the final decision to the applicant, and provide a copy or notice of availability of the final decision to each person who submitted written comments or requested notice. Within 30 days after EPA serves notice of the issuance of the Final Permit decision, an appeal of the federal NPDES permit may be commenced by filing a petition for review of the permit with the Clerk of EPA's Environmental Appeals Board in accordance with the procedures at 40 CFR § 124.19.

If for any reason, comments on the Draft Permit and/or a request for a public hearing cannot be emailed to the permit writer specified above, please contact them at the telephone number below.

13. CONTACTS

Additional information concerning this permitting action may be obtained from and written comments should be directed to:

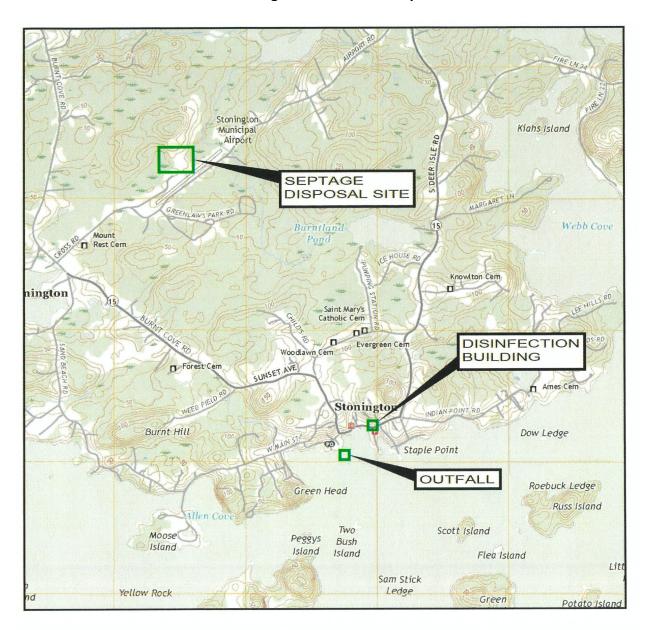
Gregg Wood
Department of Environmental Protection
Bureau of Land & Water Quality
Division of Water Quality Management
State House Station #17

Augusta, ME. 04333-0017 Phone: 207-287-7693

Email: gregg.wood@maine.gov

George Papadopoulos

U.S. Environmental Protection Agency

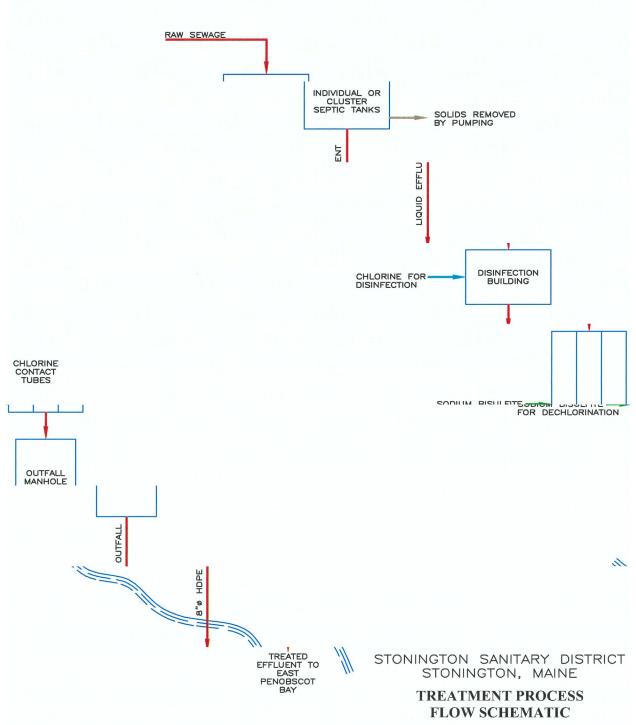

Mail Code – OEP06-4

5 Post Office Square – Suite 100

Boston, MA 02109-3912 Phone: 617-918-1579

Email: papadopoulos.george@epa.gov

Figure 1 – Location Map



STONINGTON SANITARY DISTRICT STONINGTON, MAINE

USGS LOCATION MAP

Figure 2 – Flow Schematic

Outfall 001

Parameter	Flow	Flow	BOD5	BOD5	BOD5	BOD5	BOD5	TSS
		,	Monthly Ave Min	Monthly Ave		Daily Max	Daily Max	Monthly Ave Min
Units	GPD	GPD	%	lb/d	mg/L	lb/d	mg/L	%
Effluent Limit	Report	Report	30	217	245	Report	Report	50
Minimum	27643	16219	63	18		13		
Maximum	43404	89090	77	34		262	262	
Median	33672	35919	68	26				
No. of Violations	N/A	N/A	0	0	0	N/A	N/A	0
7/31/2019			NODI: 9	23		61		NODI: 9
8/31/2019			NODI: 9	25		54		NODI: 9
9/30/2019			NODI: 9	27	107	44		NODI: 9
10/31/2019			NODI: 9	28		48		NODI: 9
11/30/2019			NODI: 9	28		41		NODI: 9
12/31/2019			NODI: 9	28		91		NODI: 9
1/31/2020			NODI: 9	29	110	21		NODI: 9
2/29/2020			NODI: 9	28		13		NODI: 9
3/31/2020			NODI: 9	27	107	14		NODI: 9
4/30/2020			NODI: 9	27	110	35		NODI: 9
5/31/2020			NODI: 9	26		13		NODI: 9
6/30/2020		18797	69	25	107	20	122	90
7/31/2020	36694	26374	71	23		28		
8/31/2020	35238	24303	74	21	90	27	140	
9/30/2020	33496		76	19		24		89
10/31/2020	32394	26462	77	18		22	118	
11/30/2020	31604		76	19		68	162	89
12/31/2020			76				105	
1/31/2021	31425		75	18		14		
2/28/2021	30432		73	18			155	
3/31/2021	29367	26556	72	19		29		89
4/30/2021	29169		71	18		16		
5/31/2021	27643		69	20	109	90	239	
6/30/2021	27704		66	22	119	43		
7/31/2021	28499	35919	64	24		59		89
8/31/2021	29785		63	27	128	144	244	
9/30/2021	33376			27	126	28		
10/31/2021	33667	29958	64	28		23		
11/30/2021	33756		65	26		31	92	
12/31/2021	31526		65	26		27	126	
1/31/2022	31101	20136	64	27	125	24	192	89

Flow	Flow	2025					
	÷	BOD5	BOD5	BOD5	BOD5	BOD5	TSS
	•			•		Daily Max	Monthly Ave Min
_	_						%
Report	Report	30	217	245	Report	Report	50
20440	44044	0.5	07	404	40	20	20
							89
							90
							90
							90
							90
							90
							89
							90 90
							90 91
							91
							91
							91
							91
							92
							92
							91
							90
(•	Annual Ave GPD GPD GPD Report	Annual Ave Monthly Ave Min GPD	Annual Ave Monthly Ave Min Monthly Ave BPD GPD W Ib/d	Annual Ave Monthly Ave Min Monthly Ave Monthly Ave GPD 9% lb/d mg/L 32416 44244 65 27 124 33639 41242 67 27 117 33786 36634 66 28 120 33703 17544 66 27 120 33678 19213 67 27 116 32783 25186 67 26 117 31790 27812 68 23 112 29952 41108 67 23 114 30908 41422 67 23 114 31296 34934 66 25 118 32994 46452 67 25 115 36315 59991 68 25 111 34422 38791 68 24 111 33837 29610 69 23 107	Annual Ave Monthly Ave Min Monthly Ave Monthly Ave Daily Max Monthly Ave Monthly Ave Monthly Ave Daily Max Monthly Ave Monthly Ave Monthly Ave Daily Max Monthly Ave Monthly Ave Daily Max Monthly Ave Monthly Ave Daily Max Monthly Ave Monthly Ave Monthly Ave Daily Max Monthly Ave Monthly Ave	Monthly Ave Monthly Ave

Outfall 001

							1	
Parameter	TSS	TSS	TSS	TSS	pН	рН	Enterococci	Enterococci
		Monthly Ave		Daily Max	Minimum	Maximum	Monthly Geometric Mean	Daily Max
Units	lb/d	mg/L	lb/d	mg/L	SU	SU	MPN/100mL	MPN/100mL
Effluent Limit	144		Report	Report	6	9	8	54
Lindent Linnt	177	103	ιτεροιτ	Report	J	3		34
Minimum	6.6	26	3.8	13	6	6.9	0	0
Maximum	12	38	101	84	6.8	8.1	6	27
Median	8.5		12	42	6.5		_	6
No. of Violations	0.0			N/A	0	0	0	0
The state of the s							<u> </u>	
7/31/2019	8.3	29	12	46	6.8	7.2	NODI: 9	NODI: 9
8/31/2019	8.4	30	11	48	6.8		NODI: 9	NODI: 9
9/30/2019	8.4	30	7.6	48			NODI: 9	NODI: 9
10/31/2019	8.7	31	25	49	6.8		NODI: 9	NODI: 9
11/30/2019	9	32	19	40	6.4	7.3		-
12/31/2019	9.4	32	37	41	6.1	7.3		
1/31/2020	9.5	31	37	41	6.2	7.3		
2/29/2020	8.9	31	6.2	42	6.2	7.5		
3/31/2020	8.5	31	6.5	34	6.2	7.4		
4/30/2020	7.9	31	11	28	6.2	7.2	NODI: 9	NODI: 9
5/31/2020	7.7	31	6.9	36	6.3	7.2	NODI: 9	NODI: 9
6/30/2020	7.9	33	14	68	6.2	7.4	1	< 1
7/31/2020	7.9	34	17	80	6.7	7.2	6	21
8/31/2020	7.8	34	10	55	6.6	7.2	1.6	3.1
9/30/2020	7.9	35	12	76	6.6	7	3	8
10/31/2020	7.5	35	8	45	6.5	7.3	4	27
11/30/2020	7.5		16	46	6.5	7.3		
12/31/2020	7.3	35	18	27	6			
1/31/2021	7.2	36	6.2	44	6.5	7.5		
2/28/2021	7.1	36		43	6.1	7.3		
3/31/2021	7.3	36	16	34	6.4	7.3		
4/30/2021	7.2	37	5.2	38			< 2	7.5
5/31/2021	7.6		30	52	6.2	7.4		<1
6/30/2021	7.6		10	50	6.2	7.4		6
7/31/2021	7.7	37	14	58		7.2		5
8/31/2021	8.6		58	61	6.4	7.4		2
9/30/2021	8.7	35		39			< 1	6
10/31/2021	8.8			44	6.5	7.3		6
11/30/2021	8.5		8.4	31	6	7.3		
12/31/2021	8.3			42	6.5			
1/31/2022	8.4	36	17	67	6.4	7.3		

Parameter	TSS	TSS	TSS	TSS	pН	pН	Enterococci	Enterococci
							Monthly	
							Geometric	
		Monthly Ave		Daily Max	Minimum	Maximum	Mean	Daily Max
Units	lb/d	mg/L	lb/d	mg/L	SU	SU	MPN/100mL	MPN/100mL
Effluent Limit	144	163	Report	Report	6	9	8	54
2/28/2022	8.2	35	3.8	25	6.6	7.2		
3/31/2022	11	34	13	31	6.5	7.2		
4/30/2022	11	33	9.9	23	6.4	7	2.3	
5/31/2022	10	33	6.5	46	6.3	7.3	1.3	
6/30/2022	10		11	58	6.5	7.1	2.8	
7/31/2022	10	33	15	64	6.6	7.2	4.7	14
8/31/2022	9.4	33	12	60	6.7	7.1	3	19
9/30/2022	10	34	17	60	6.4	7	2.7	9
10/31/2022	9.3			32	6.6	7.2	1.4	4.2
11/30/2022	9.4	33	21	26	6.4	6.9		
12/31/2022	9.3	32	6.3	13	6.8	7.1		
1/31/2023	8.9	29	7.5	17	6.6	7.1		
2/28/2023	6.9	30	4.2	34	6.8	7.2		
3/31/2023	6.7	30	6.9	24	6.6	7		
4/30/2023	6.6	31	6.4	35	6.7	7.2	2.7	19
5/31/2023	7.6		63	30	6.5	7.8	4.1	19
6/30/2023	7.9	28	21	36	6.5	7.2	4.5	
7/31/2023	8.6	28	35	57	6.7		< 1.4	4.2
8/31/2023	8.5	27	12	43	6.8	7.4	< 2	8.7
9/30/2023	8.5	26	16	34	6.7	7.2	2.8	
10/31/2023	9.3		35	44	6.5	7.2	3	19.2
11/30/2023	8.8	28	12	40	6.5	7.2		
12/31/2023		29			6.7	7.2		
1/31/2024	11	31	12	39	6.7	7.1		
2/29/2024	11	31	4.5	34	6.8	7.5		
3/31/2024	12	31	12	16	6.5	7.1		
4/30/2024	12	31	30	84	6.4		< 1	< 1
5/31/2024		31	5.2	42	6.5		<1	<1
6/30/2024	11	33	21	52	6.6	7.1	< 1	< 1

		Fecal	Fecal	Solids,	
Parameter	TRC	coliform	coliform	settleable	
	Daily Max	Monthly Ave	Daily Max	Daily Max	
Units	mg/L	#/100mL	#/100mL	mL/L	
Effluent Limit	1	14	31	Report	
Minimum	0	0	0	0	
Maximum	0.91	8.1	201	0.1	
Median	0.42	0.5	4.2	Non-Detect	
No. of Violations	0	0	2	N/A	
7/31/2019				< .1	
8/31/2019		6	200	0.1	
9/30/2019	0.7	1	3	< .1	
10/31/2019		NODI: 9	NODI: 9	< .1	
11/30/2019		NODI: 9	NODI: 9	< .1	
12/31/2019		NODI: 9	NODI: 9	< .1	
1/31/2020		NODI: 9	NODI: 9	< .1	
2/29/2020		NODI: 9	NODI: 9	< .1	
3/31/2020		NODI: 9	NODI: 9	< .1	
4/30/2020		NODI: 9	NODI: 9	< .1	
5/31/2020	0.86	1	2	< .1	
6/30/2020	0.05	1	< 1	0.1	
7/31/2020	0.91	7	27	0.1	
8/31/2020	0.44	3.7	19	0.1	
9/30/2020	0.81	< 1	3	< .1	
10/31/2020		< 2	9	< .1	
11/30/2020		< 1	< 1	< .1	
12/31/2020		< 2	3	< .1	
1/31/2021		< 2	2	< .1	
2/28/2021		< 2		< .1	
3/31/2021		< 1	< 1	< .1	
4/30/2021		< 2	8.7	< .01	
5/31/2021	0.71	< 1	< 1	0.1	
6/30/2021	0.42	2	9		
7/31/2021	< .05	2	22	< .1	
8/31/2021	0.73			< .1	
9/30/2021	0.77	2		< .1	
10/31/2021		1		< .1	
11/30/2021		< 1	< 1	< .1	
12/31/2021		1.3	4.2	< .1	
1/31/2022		2.1		< .1	

		Fecal	Fecal	Solids,	
Parameter	TRC	coliform	coliform	settleable	
	Daily Max	Monthly Ave	Daily Max	Daily Max	
Units	mg/L	#/100mL	#/100mL	mL/L	
Effluent Limit	1	14	31	Report	
2/28/2022		< 2	25	< .1	
3/31/2022		1.3	4.2	0.1	
4/30/2022		3.3	14	< .1	
5/31/2022	0.61	1	< 1	< .1	
6/30/2022	< .05	2.8	14	< .1	
7/31/2022	< .05	8.1	25	< .1	
8/31/2022	< .05	3	14	< .1	
9/30/2022	< .05	2.2	14	0.1	
10/31/2022		< 1	< 1	< .1	
11/30/2022		2	4.2	< .1	
12/31/2022		1.5	8.7	< .1	
1/31/2023		< 1	< 1	< .1	
2/28/2023		< 1	< 1	< .1	
3/31/2023		< 1	< 1	< .1	
4/30/2023		3	19	< .1	
5/31/2023	0.47	2.2	14	< .1	
6/30/2023	0.3	2.2	25	< .1	
7/31/2023	0.38	< 1.4	4.2	< .1	
8/31/2023	< .05	< 1.3	4.2	< .1	
9/30/2023	0.89	< 2.4	8.7	< 1	
10/31/2023		1.4	4.2	< .1	
11/30/2023		2		< .1	
12/31/2023		1.9	13.7	< .1	
1/31/2024		< 1	< 1	< .1	
2/29/2024		1.1	2	< .1	
3/31/2024		< 1	< 1	< .1	
4/30/2024		1.4	4.2	< 1	
5/31/2024	0.16	< 1	< 1	< .1	
6/30/2024	0.8	< 1	< 1	< 1	

Outfall - Monitoring Location - Limit Set: 001 - R - A

Parameter	Flow
	Annual
	Rolling Ave
Units	gal/d
Effluent Limit	106000
Minimum	0
Maximum	100000
Median	33392.5
No. of Violations	0
7/31/2019	100000
8/31/2019	100000
9/30/2019	100000
10/31/2019	< 100000
11/30/2019	< 100000
12/31/2019	< 100000
1/31/2020	< 100000
2/29/2020	< 100000
3/31/2020	NODI: 9
4/30/2020	NODI: 9
5/31/2020	NODI: 9
6/30/2020	33643
7/31/2020	33260
8/31/2020	32453
9/30/2020	32259
10/31/2020	31751
11/30/2020	30061
12/31/2020	30130
1/31/2021	29032
2/28/2021	28535
3/31/2021	28397
4/30/2021	27935
5/31/2021	27310
6/30/2021	27370
7/31/2021	28166
8/31/2021	29785
9/30/2021	33376
10/31/2021	33667
11/30/2021	33756
12/31/2021	31526
1/31/2022	31824
2/28/2022	33409
3/31/2022	34473

Outfall - Monitoring Location - Limit Set: 001 - R - A

Parameter	Flow
	Annual
	Rolling Ave
Units	gal/d
Effluent Limit	106000
4/30/2022	34620
5/31/2022	34537
6/30/2022	34511
7/31/2022	33616
8/31/2022	32623
9/30/2022	30786
10/31/2022	31741
11/30/2022	32129
12/31/2022	33827
1/31/2023	36315
2/28/2023	34626
3/31/2023	34422
4/30/2023	33116
5/31/2023	34476
6/30/2023	35868
7/31/2023	37408
8/31/2023	38073
9/30/2023	38047
10/31/2023	38529
11/30/2023	37981
12/31/2023	38053
1/31/2024	36871
2/29/2024	36224
3/31/2024	40416
4/30/2024	42811
5/31/2024	41517
6/30/2024	40348

Outfall - Monitoring Location - Limit Set: 01T - 1 - 2

1	1	1	1	ı		T	1	
Parameter	Flow	BOD5	BOD5	BOD5	BOD5	TSS	TSS	TSS
						Manthha		
	Monthly Ave	Monthly Ave	Monthly Ave	Daily May	Daily Max	Monthly Ave Min	Monthly Ave	 Monthly Ave
Units	MGD	lb/d	mg/L	lb/d	mg/L	%	lb/d	mg/L
Effluent Limit	Report	358		Report	Report	50		
	- Coponi			- Copon	i topoit	†		
Minimum	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Maximum	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
Median	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data
No. of Violations	N/A	No Data	No Data	N/A	N/A	No Data	No Data	No Data
					1	1		
7/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
12/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/29/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
12/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/28/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2021			NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9

Outfall - Monitoring Location - Limit Set: 01T - 1 - 2

	I			1	ı		I	I
Parameter	Flow	BOD5	BOD5	BOD5	BOD5	TSS	TSS	TSS
	Monthly Ava	Monthly Ave	Monthly Ava	Doily May	Daily Max	Monthly Ave Min	Monthly Ava	Monthly Ava
Units	MGD	lb/d	_	lb/d	-	Willi	Monthly Ave	mg/L
Effluent Limit	Report	358	mg/L	Report	mg/L Report	50		
Emuent Limit	кероп	330	243	Report	Report	30	230	103
12/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/28/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
12/31/2022		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/28/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2023		NODI: 9		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2023				NODI: 9	NODI: 9		NODI: 9	NODI: 9
9/30/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2023		NODI: 9		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2023		NODI: 9		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
12/31/2023		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/29/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9

Outfall - Monitoring Location - Limit Set: 01T - 1 - 2

	T		1	1	1		ı	 	
Parameter	TSS	TSS	рН	рН	Enterococci	Enterococci	TRC	Solids, settleable	
					Monthly				
					Geometric				
	Daily Max	Daily Max	Minimum	Maximum	Mean	Daily Max	Daily Max	Monthly Ave	
Units	lb/d	mg/L	SU	SU	MPN/100mL	MPN/100mL	mg/L	mL/L	
Effluent Limit	Report	Report		6 9	9 8	54		1 Report	
Minimum	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	
Maximum	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	
Median	No Data	No Data	No Data	No Data	No Data	No Data	No Data	No Data	
No. of Violations	N/A	N/A	No Data	No Data	No Data	No Data	No Data	N/A	
7/31/2019		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
8/31/2019		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
9/30/2019		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
10/31/2019		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9	
11/30/2019		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
12/31/2019		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
1/31/2020		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
2/29/2020		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
3/31/2020		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
4/30/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9	
5/31/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
6/30/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
7/31/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
8/31/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
9/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
10/31/2020		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9	
11/30/2020		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
12/31/2020		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
1/31/2021		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
2/28/2021		NODI: 9	NODI: 9	NODI: 9				NODI: 9	
3/31/2021		NODI: 9	NODI: 9	NODI: 9	<u> </u>			NODI: 9	
4/30/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9	
5/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
6/30/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
7/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
8/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
9/30/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	
10/31/2021		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9	
11/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9	

Outfall - Monitoring Location - Limit Set: 01T - 1 - 2

		1		ı		I	I	ı
Parameter	TSS	TSS	рН	рН	Enterococci	Enterococci	TRC	Solids, settleable
					Monthly Geometric			
	Daily Max	Daily Max	Minimum	Maximum	Mean	Daily Max	Daily Max	Monthly Ave
Units	lb/d	mg/L	SU	SU	MPN/100mL	MPN/100mL	mg/L	mL/L
Effluent Limit	Report	Report	6	9	8	54		Report
		†						
12/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
1/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
2/28/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
3/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
4/30/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9
5/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9
11/30/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
12/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
1/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
2/28/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
3/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
4/30/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9
5/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9
11/30/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
12/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
1/31/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
2/29/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
3/31/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9				NODI: 9
4/30/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9		NODI: 9
5/31/2024		NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9	NODI: 9

Outfall - Monitoring Location - Limit Set: 01T - 1 - 2

	BOD,	Fecal	Fecal	
	percent	coliform,	coliform,	
	removal	MPN, EC	MPN, EC	Solids,
Parameter	(total)	med, 44.5 C	med, 44.5 C	settleable
	(cc carry	Monthly		
	Monthly Ave	Geometric		
	Min	Mean	Daily Max	Daily Max
Units	%	#/100mL	#/100mL	mL/L
Effluent Limit	30	14	31	Report
Minimum	No Data	No Data	No Data	No Data
Maximum	No Data	No Data	No Data	No Data
Median	No Data	No Data	No Data	No Data
No. of Violations	No Data	No Data	No Data	N/A
7/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9
12/31/2019	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/29/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
12/31/2020	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/28/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9

Outfall - Monitoring Location - Limit Set: 01T - 1 - 2

	BOD,	Fecal	Fecal	
	percent	coliform,	coliform,	
	removal	MPN, EC	MPN, EC	Solids,
Parameter	(total)	med, 44.5 C	med, 44.5 C	settleable
	, ,	Monthly		
	Monthly Ave	Geometric		
	Min	Mean	Daily Max	Daily Max
Units	%	#/100mL	#/100mL	mL/L
Effluent Limit	30	14	31	Report
12/31/2021	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/28/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2022		NODI: 9	NODI: 9	NODI: 9
5/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
7/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
8/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
11/30/2022		NODI: 9	NODI: 9	NODI: 9
12/31/2022	NODI: 9	NODI: 9	NODI: 9	NODI: 9
1/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/28/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9
4/30/2023		NODI: 9	NODI: 9	NODI: 9
5/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9
6/30/2023		NODI: 9	NODI: 9	NODI: 9
7/31/2023		NODI: 9	NODI: 9	NODI: 9
8/31/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9
9/30/2023	NODI: 9	NODI: 9	NODI: 9	NODI: 9
10/31/2023		NODI: 9	NODI: 9	NODI: 9
11/30/2023		NODI: 9	NODI: 9	NODI: 9
12/31/2023		NODI: 9	NODI: 9	NODI: 9
1/31/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9
2/29/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9
3/31/2024		NODI: 9	NODI: 9	NODI: 9
4/30/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9
5/31/2024		NODI: 9	NODI: 9	NODI: 9
6/30/2024	NODI: 9	NODI: 9	NODI: 9	NODI: 9

Outfall - Monitoring Location - Limit Set: 01T - R - 2

Parameter	Flow
	Annual
	Rolling Ave
Units	gal/d
Effluent Limit	175000
Minimum	No Data
Maximum	No Data
Median	No Data
No. of Violations	No Data
7/31/2019	
8/31/2019	
9/30/2019	
10/31/2019	
11/30/2019	NODI: 9
12/31/2019	
1/31/2020	NODI: 9
2/29/2020	
3/31/2020	
4/30/2020	NODI: 9
5/31/2020	NODI: 9
6/30/2020	NODI: 9
7/31/2020	
8/31/2020	NODI: 9
9/30/2020	NODI: 9
10/31/2020	
11/30/2020	NODI: 9
12/31/2020	
1/31/2021	
2/28/2021	NODI: 9
3/31/2021	NODI: 9
5/31/2021	
6/30/2021	NODI: 9
7/31/2021	NODI: 9
8/31/2021	
9/30/2021	NODI: 9
10/31/2021	
11/30/2021	NODI: 9
12/31/2021	NODI: 9
1/31/2022	
2/28/2022	NODI: 9
3/31/2022	NODI: 9

Outfall - Monitoring Location - Limit Set: 01T - R - 2

Parameter	Flow
	Annual
	Rolling Ave
Units	gal/d
Effluent Limit	175000
4/30/2022	NODI: 9
5/31/2022	
6/30/2022	
7/31/2022	NODI: 9
8/31/2022	NODI: 9
9/30/2022	
10/31/2022	
11/30/2022	NODI: 9
12/31/2022	NODI: 9
1/31/2023	
2/28/2023	
3/31/2023	
4/30/2023	
5/31/2023	NODI: 9
6/30/2023	
7/31/2023	
8/31/2023	
9/30/2023	NODI: 9
10/31/2023	
11/30/2023	
12/31/2023	
1/31/2024	
2/29/2024	
3/31/2024	
4/30/2024	
5/31/2024	
6/30/2024	NODI: 9

APPENDIX B

I. Rationale on the Appropriateness of, and the Authority for, the Inclusion of the Wastewater Treatment System and Sewer System Adaptation Plan Requirements

The adaptation planning requirements proposed in the Draft Permit are new requirements that build on existing operation and maintenance practices. EPA provides this appendix to further explain the basis for and importance of these provisions.

In Section A below, EPA discusses the necessity for requiring the development of Adaptation Plans at wastewater treatment systems ("WWTS") and sewer systems¹ and provides some examples of how major storm and flood events can impact facility operations. In Section B below, EPA discusses the various components and proper scope of an Adaptation Plan. In Section C below, EPA sets forth the legal basis for its decision to require wastewater treatment systems and sewer systems to develop an Adaptation Plan.

A. Necessity for Wastewater Treatment System and Sewer System Adaptation Planning

Wastewater treatment systems and sewer systems are crucial in helping protect human health and the environment and providing critical services to the communities that they serve. Many wastewater treatment facilities and associated sewer system pump stations are located at low elevations (to maximize flow via gravity) within riverine or coastal floodplains and are at risk of increased flooding and other impacts from major storm events. As noted in a 2016 report by the New England Interstate Water Pollution Control Commission² wastewater systems are already facing severe effects due to major storm and flood events and need to better adapt to this new reality:

In the Northeast and throughout the world, extreme storm events are growing in frequency and force. Hurricanes and blizzards threaten the operation of wastewater infrastructure and in some cases the infrastructure itself. Consequently, wastewater facilities should be made more resilient though preparedness planning and physical upgrades.

¹ The Clean Water Act authorizes EPA, as permit issuer, to issue permits for "publicly owned treatment works" (POTWs). CWA § 402. POTWs comprise wastewater treatment systems and sewer systems. 40 C.F.R. §§ 122.2, 403.3(q); *In re Charles River Pollution Control District*, 16 EAD 623, 635 (EAB 2015) ("POTW treatment plants, like the satellite sewage collection systems that convey wastewater to the plants, are components of a POTW.") To more precisely and accurately describe the permit requirements, the Permit and this Response to Comments refer to "wastewater treatment system(s)" and "sewer system(s)" or, in some instances, both.

[&]quot;Wastewater Treatment System" or "WWTS" means any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage or industrial wastes of a liquid nature. It does not include sewers, pipes and other conveyances to the wastewater treatment facility.

² "Preparing for Extreme Weather at Wastewater Utilities: Strategies and Tips, New England Interstate Water Pollution Control Commission" (September 2016) pg. 2, https://www.neiwpcc.org/neiwpcc docs/9-20-2016%20NEIWPCC%20Extreme%20Weather%20Guide%20for%20web.pdf

In the Northeast in the last five years Hurricanes Irene (2011) and Sandy (2012), and winter blizzards such as the February 2013 northeaster, produced widespread economic harm. Sandy caused nearly 11 billion gallons of sewage to be released into coastal waters, rivers, and other bodies of water as power outages and storm surge overwhelmed wastewater-treatment plants. 94% of these releases were a result of flooding and storm surge as waters overwhelmed sewage-treatment plants.

As a result, addressing the ongoing challenges and the increasing risks faced by wastewater infrastructure systems nationwide - reduction or failure of system services resulting in discharges of untreated or partially treated sewage, flooding, physical damage to assets, impacts to personnel, to name just some of the possible outcomes - are a priority for EPA and a host of federal and state agencies, as well as regional and local governmental bodies. Addressing these challenges is also a priority for many wastewater treatment managers across the country. As noted in a 2019 study, which surveyed wastewater treatment systems in Connecticut, 78% of wastewater managers had made adaptive changes that ranged from low-cost temporary adaptive changes to a few who described major changes that addressed redesign or the rebuilding of WWTPs; of those who had made changes, half "did so to improve resiliency to withstand the worst storm experienced by the wastewater system to date." 4

Flooding and other major storm events can lead to a variety of, and more frequent, WWTS and sewer system failures. One recent analysis suggests that one-third of 5,500 wastewater treatment plants analyzed from around the country would be at risk of flooding in the event of a major storm.⁵ System failures, such as backups of untreated wastewater into the collection system and potentially into buildings and connections, bypasses of pollution treatment, and/or discharges of raw sewage into the environment are some of the potential impacts that may become more frequent.⁶

³ "Kirchhoff, C.J. and P.L. Watson. 2019. "Are Wastewater Systems Adapting to Climate Change?" *Journal of the American Water Resources Association*, 1-12. pg.1. https://doi.org/10.1111/1752-1688.12748. (Citations omitted in quote).

⁴ <u>Id.</u> at pgs. 5, 8.

⁵"Rising Flood Risks Threaten Many Water and Sewage Treatment Plants Across the U.S."(August 10, 2023), https://apnews.com/article/climate-change-flood-risks-infrastructure-vermont-7bd953f513035468ee74f8f7c619bb8e

⁶ See EPA's <u>Resilient Strategies Guide</u> (noting that "[u]tilities are increasingly recognizing that future extreme weather events, energy prices and ecological conditions may not be predictable based on historical observations. These shifts may require utilities to change how they operate and manage their resources.") https://www.epa.gov/crwu/resilient-strategies-guide-water-utilities#/resources/646; EPA Memorandum, "Re-Instatement of Federal Flood Risk Management Standard for State Revolving Fund Programs," Thompkins, Anita Maria and Stein, Raffael to Water Division Directors (April, 2022) https://www.epa.gov/dwsrf/federal-flood-risk-management-standard-srf-programs (noting that "[f]looding is one of the most common hazards in the United Stated accounting for roughly \$17 billion in damage annually between 2010-1018 according to [FEMA], and it will continue to be an ongoing challenge for water infrastructure" with impacts that "can include physical damage to assets, soil and streambank erosion and contamination of water sources, loss of power and communication, loss of access to facilities, saltwater intrusion, and dangerous conditions for personnel."). See also, National Association of Clean Water Agencies ("NACWA"), "NACWA")

In New England, as well as elsewhere throughout the country, ⁷ storms and flooding have caused damage to, and in some cases total failure of, wastewater treatment systems and sewer systems. Implementing adaptive measures so that a wastewater treatment plant's wastewater infrastructure may withstand increasingly frequent heavy precipitation and major storm and flood events is, therefore, a critical step in a system's maintenance. Additionally, EPA notes that sometimes, mitigation measures based on adaptation/mitigation plans that were at one point sufficient and that were based on historic, local major storm and flood predictions, may now be insufficient given actual experience with major storms and flooding, the emergence of new data that was not previously available, and more recent projections. And while EPA also acknowledges that it may not always be possible to anticipate all future events (i.e., speed or direction of the wind, temperature fluctuations, the uprooting of trees, etc.) that can exacerbate, or alleviate, the outcomes of major storm and flood events, as illustrated in the examples below, it is important to ensure that existing adaptation plans reflect, as best as possible, all relevant data.

Many New England WWTSs have been negatively impacted by major storm and flood events in recent years. In one notable example from Rhode Island in 2010, historically high flood waters (known as "the Great Flood of 2010") severely impacted several wastewater treatment facilities, including the Warwick Rhode Island Wastewater Treatment Facility. After repetitive flood damages to the WWTS, the City of Warwick had constructed a protective berm, or levee, in the mid-1980s to protect the WWTS from future damages. The levee, originally designed for the 100-year flood at that time, plus three feet of freeboard, was breached by repeated heavy rain events in March 2010. The flooding caused catastrophic impacts to the WWTS which led to the "unthinkable" - the decision to evacuate the plant as the Pawtuxet River crested at 20.79 feet. The impact to the treatment plant was extreme:

While the flood waters caused no structural damages to the facility's tanks or buildings, anything electrical and everything that was not metal or concrete was ruined. It was at least two days before the river had subsided to the point where staff could begin to access the facility. 10

With a tremendous amount of work and rebuilding, the facility was dewatered, and primary and then secondary treatment were restored. The facility was unable to achieve full compliance

Principles on Climate Adaptation and Resiliency" (noting that "[f]or many clean water agencies, changing weather patterns have become a management reality and responsibility.") https://www.nacwa.org/docs/default-source/conferences-events/2018-ulc/nacwa-statement-of-principles-on-climate.pdf?sfvrsn=2

⁷ National Association of Clean Water Agencies ("NACWA") Fact Sheet: "10 Extreme Rain and Flood Events in the US – All in 2022" (listing the "top 10 flood events of 2022" and their effects on water infrastructure from across the country, including the devastating impacts that include loss of life, estimated damages in the range of millions to billions of dollars, and extreme impacts to system services.)

⁸ Holbrook, Nicolas Q., <u>The Flood Crews of 2010: A History of Rhode Island's 2010 Floods as Told By The State's Wastewater Collection and Treatment Operators</u>, Rhode Island DEM, Office of Water Resources (2017) https://dem.ri.gov/sites/g/files/xkgbur861/files/programs/benviron/water/pdfs/floodcrews2010.pdf
⁹ Id. at 13.

¹⁰ ld.

with its permit limits for a period of about 80 days. ¹¹ Due to this flooding, the facility updated their flood protection plans based on local storm and flooding data and implemented improvements for the WWTS, including raising the levee to protect the WWTS from inundation caused by a 500-year flood event. ¹²

Figure 1: The flooded Warwick wastewater facility on Wednesday, March 31, 2010. (State of Rhode Island)

More recently, in July 2023, Vermont experienced a major storm and flooding event characterized by the National Weather Service as "catastrophic flash flooding and river flooding" with upwards of three to nine inches of rain falling in 48 hours, an amount that in some places of Vermont, amounted to the "greatest calendar day rainfall "since records began in 1948.¹³ According to local reporting, operations at 33 wastewater treatment systems were disrupted, and several facilities, like those in the towns of Ludlow and Johnson, were rendered

¹¹ Burke, Janine L., Executive Director, Warwick Sewer Authority, "The Great Flood of 2010: A Municipal Response," pg. 237 Journal NEWEA (September 2012)

 $[\]frac{https://www.warwicksewerauthority.com/pdfs/floodmitgation/NEWWA\%20Journal\%20Article\%20on\%20WSA\%20}{Flood\%20Response.pdf}$

¹² Preliminary Design Report, Wastewater Treatment Facility Flood Protection and Mitigation Design, Warwick, Rhode Island (Prepared by AECOM for Warwick Sewer Authority, July 12, 2012)

https://www.warwicksewerauthority.com/pdfs/floodmitgation/Warwick%20Flood%20Mitigation%20PDR%207-24-12%20with%20Appendices.pdf,; Warwick Wastewater Treatment Facility – Climate Vulnerability Summary https://dem.ri.gov/sites/g/files/xkgbur861/files/programs/benviron/water/pdfs/cvswarwick.pdf

¹³ Banacos, Peter, "The Great Vermont Flood of 10-11 July 2023: Preliminary Meteorological Summary" National Oceanic and Atmospheric Administration, National Weather Service, pg. 2 (August 5, 2023) https://www.weather.gov/btv/The-Great-Vermont-Flood-of-10-11-July-2023-Preliminary-Meteorological-Summary (noting that damage "rivaled and in some areas exceeded – Tropical Storm Irene in 2011")

inoperable and will need significant reconstruction. ¹⁴ As one news outlet reported about the conditions in Ludlow:

[t]he facility that keeps the village's drinking water safe was built at elevation and survived. But its sewage plant fared less well. Flooding tore through it, uprooting chunks of road, damaging buildings and sweeping sewage from treatment tanks into the river. Even [over three weeks after the storm event] the plant can only handle half its normal load.¹⁵

Figure 2: Ludlow Wastewater Treatment Plant (photo August 2, 2023, taken after July storm event) 16

¹⁴ Robinson, Shaun, "Total Destruction:' Flooding Knocks Out Johnson's Wastewater Plant, Disrupts Operations Elsewhere" (July 18, 2023); https://vtdigger.org/2023/07/18/total-destruction-flooding-knocks-out-johnsons-wastewater-plant-disrupts-operations-elsewhere/ ("Across Vermont, 33 wastewater treatment facilities were impacted by the flooding ...according to Michelle Kolb, a supervisor in the state Department of Environmental Conservation's wastewater program.")

¹⁵ Naishadham, Suman, Peterson, Brittany, Fassett, Carnille, "Rising Flood Risks Threaten Many Water and Sewage Treatment Plants Across the US," Vermont Public, https://www.vermontpublic.org/local-news/2023-08-10/ludlow-vermont-rising-flood-risks-threaten-many-water-and-sewage-treatment-plants-across-the-us

¹⁶ https://apnews.com/article/climate-change-flood-risks-infrastructure-vermont-

<u>7bd953f513035468ee74f8f7c619bb8e</u>] (picture captions: Joe Gaudiana, the Ludlow, VT. Chief Water and Sewer Operator, left, surveys damage with Elijah Lemieux, of the Vermont Rural Water Association, at the wastewater treatment plant following July flooding, Wednesday, Aug. 2, 2023, in Ludlow. (AP Photo/Charles Krpa))

The wastewater treatment plant in Johnson, Vermont was similarly devastated with the Assistant Plant Manager reporting to a local news outlet, "Total destruction. The only thing we have left is the shell of a building." ¹⁷

According to officials from Vermont DEC, both the Ludlow and Johnson WWTSs had some flood protections in place prior to this event: Ludlow built a new influent pump station designed to withstand a 500-year flood event in 2020-21. While its plant was rendered inoperable immediately after the early July flood, it came back on-line in late July. For the Johnson Wastewater Treatment Plant, this was the 6th flooding event at the plant since it was built in 1995. In the assessment that occurred by state and federal officials after the most recent flood, long-term recommendations ranged from more minor fixes (i.e., replacing the gravity line with a pump station and force main) to undertaking an assessment that would compare the cost of moving the facility against the already-significant cost of just repair and construction, estimated to be at least \$2 million. As the officials emphasized, short of relocating, or finding significant additional resources, for some of Vermont's impacted facilities, there are no easy fixes and future adaptations might mean preparing "to-go bags," and installing "redundant pipes," submersible pumps, waterproof electrical boxes or, in some cases, possibly building a second story on an existing plant.

Even more recently, in September 2023 the City of Leominster in central Massachusetts experienced a flash flooding event. ²⁰ Previously, the city had identified a riverbank section of the North Nashua River, near the WWTS, that had eroded and was continuing to be eroded and was heading towards a buried sewer main. As detailed in the summary of work report, ²¹ "[I]eft unabated, the stream would likely carve a new path into the sewer line, potentially causing a break." To mitigate this potential problem, the city completed a riverbank stabilization project under FEMA's Hazard Mitigation Grant Program to protect the main sewer line that was identified as vulnerable to flooding and failure. That line was unimpacted by the recent flash flooding in September and the stabilization work is still intact while other infrastructure in the area suffered significant flood damages. In addition to illustrating the potential impacts of a recent flooding event on a WWTF, this example - of identifying a risk to increased flooding and consequent mitigation measure - exemplifies the process that EPA envisions for the Adaptation Plan.

EPA acknowledges and appreciates that many WWTSs and sewer systems are currently designed with some flood protections to combat the increasing frequency of major storm and

¹⁷Robinson, Shaun, "Total Destruction: "Flooding Knocks Out Johnson's Wastewater Plant, Disrupts Operations Elsewhere" (July 18, 2023); https://vtdigger.org/2023/07/18/total-destruction-flooding-knocks-out-johnsons-wastewater-plant-disrupts-operations-elsewhere/

¹⁸ Telephone conversation with Vermont Department of Conservation officials, Heather Collins and Michelle Kolb (September 25, 2023).

¹⁹ Johnson Village Wastewater Post July 2023 Flood Treatment Plant Assessment Lamoille County, Vermont, NPDES Permit Number Vermont 0100901 (August 9, 2023)

²⁰ Derrick Bryson Taylor and Johnny Diaz, "Massachusetts Cities Declare Emergency After 'Catastrophic' Flash Flooding" https://www.nytimes.com/2023/09/12/us/leominster-massachusetts-flash-flooding.html

²¹ <u>City of Leominster, North Nashua River Riverbank Stabilization Project: Summary of Work (prepared by GZA GeoEnvironmental, Inc.)</u> (February 2023)

flood events and the resulting impacts to wastewater treatment systems and sewer systems. To address the current and future risks associated with these more frequent and intense storms occuring in the region, EPA finds that the development of an Adaptation Plan is necessary in order to ensure the proper operation and maintenance of WWTSs and sewer systems.

B. Requirement to Develop an Adaptation Plan

To support the Permittee's²² development of an Adaptation Plan, EPA Region 1 has developed a companion document: *Recommended Procedures and Resources for the Development of Adaptation Plans* ("Recommended Procedures")²³ to assist owners and operators of wastewater treatment systems and/or sewer systems to develop adaptation plans that meet the requirements included in Region 1 NPDES permits. The document provides recommendations and procedures for the use of a free EPA tool developed specifically for water utilities. Permittees may use the recommended tool and the associated procedures, or they may use other approaches providing comparable analyses, as discussed in more detail below, to satisfy permit requirements.

In the permit, the three components of the Adaptation Plan include the following (additional detail, including definitions of certain terms, is included in the permit):

- Component #1: Requires the Permittee to develop and sign, within 24 months of the
 effective date of the permit, an identification of critical assets and related operations
 within the WWTS and/or sewer system which they own and/or operate that are most
 vulnerable to major storm and flood events under baseline and future conditions and to
 assess the ability of each to function properly in the event of major storm and flood
 events in terms of effluent flow, sewer flow, and discharges of pollutants;
- Component #2: Requires the Permittee to develop and sign, within 36 months of the
 effective date of the permit, an assessment of adaptive measures, and/or, if
 appropriate, the combination of adaptative measures that minimize the impact of
 future conditions on the critical assets and related operations of the WWTS and/or
 sewer system(s); and
- Component #3: Requires the Permittee to submit a summary of the work completed in Components #1 and #2 with a proposed schedule for implementation and maintenance of adaptive measures within 48 months of the effective date of the permit.

The rationale for specific revisions and definitions is provided in more detail below.

• The permit requires the Permittee to develop an implementation schedule rather than specify a particular schedule for implementation. EPA notes that the permit also

²² For brevity, this document refers to "Permittee" throughout; however, this reference also includes all "Co-Permittee(s)" subject to the applicable permit requirements.

²³ Available at: https://www.epa.gov/npdes-permits/npdes-water-permit-program-new-england

requires that the Permittee report annually on "any progress made toward implementation of adaptive measures." This leaves the Permittee free to evaluate other considerations when determining when and how to implement adaptive measures. EPA encourages Permittees to move forward with implementation actions that address the vulnerabilities identified as part of its Adaptation Plan in as timely a manner as possible and to prioritize addressing the most impactful vulnerabilities.²⁴

- Permittees who wish to comply with this permit requirement through prior assessments
 must explain how its prior assessments specifically meet the requirements of the
 permit. The permit allows such assessments that were undertaken in the last 5 years to
 be used, as long as they meet certain conditions specified in the permit.
- EPA uses certain minimum standards (e.g., use of FEMA Flood Standards) and other terminology that is defined in and consistent with the federal flood standards, to ensure eligibility for federal funding as well as SRF funding.²⁵ The permit requires that the Permittee evaluate asset vulnerability using "baseline conditions" and "future conditions." The permit defines baseline conditions as the 100-year flood based on historical records and future conditions as projected flood elevations using one of two approaches consistent with the federal flood standards.

This clearly defines what minimum conditions must be used to assess vulnerability under the Adaptation Plan, and EPA has provided tools and data references a Permittee may use to evaluate these conditions and meet the permit requirements. The flood elevations specified account for many of the storm and flood conditions; however, EPA notes that these data may not account for all potential instances of extreme precipitation. Currently, data sets or mapping tools that model changes to flood elevations in response to varying storm sizes are not readily available or simple to use. Therefore, EPA is not requiring facilities to identify or use such data in their analysis. However, EPA notes that there may be site-specific data available for use in a given municipality, and EPA encourages facilities to consider impacts from site-specific events for planning purposes if possible. One or more of the resources provided in the Recommended Procedures document, referenced above, may also account for impacts of extreme precipitation to an extent that is useful to facilities.

²⁴ EPA notes that there are many aspects involved in addressing adaptation planning and associated implementation measures, including regional considerations and that region-wide planning is appropriate. Permittees are encouraged to engage in regional planning and EPA understands this may impact proposed schedules for implementation measures. EPA expects, however, that for most Permittees there will be many implementation measures that do not require regional planning or collaboration. To the extent this is not the case, the Permittee may document its analysis supporting such a conclusion and base its implementation schedule accordingly.

²⁵ "Re-Instatement of Federal Flood Risk Management Standard for State Revolving Fund Programs," Thompkins, Anita Maria and Stein, Raffael to Water Division Directors (April, 2022) https://www.epa.gov/dwsrf/federal-flood-risk-management-standard-srf-programs

- The permit requires evaluating the vulnerability of assets once during the permit term (during the development of the Adaptation Plan). Additional revisions of the Adaptation Plan during the permit term would only be required during the permit term if there has been a significant change to the infrastructure of the system to update the description of the assets removed or updated, to incorporate any new assets into the documentation, and describe any effects these changes have on the asset and/or system vulnerability.
- In light of security concerns posed by the public release of information regarding vulnerabilities to wastewater infrastructure, Permittees are not required to submit Component 1 and 2 and instead must keep that documentation on file and available for inspection or review by EPA upon request. In all other submittals (Component 3 and future annual reports), the Permittee shall provide information only at a level of generality that indicates the overall nature of the vulnerability but omitting specific information regarding such vulnerability that could pose a security risk.
- Regarding timing, EPA considers that the permit allows adequate time to initiate the
 necessary funding and procurement processes (which EPA understands must line-up
 with local requirements which can take place over many months or even years) in order
 to develop the plans (either in-house or through professional engineering services)
 without significantly impacting other ongoing municipal projects.
- Regarding annual reporting, the first report is due on March 31 following the
 completion of Component 1 of the Adaptation Plan. As described above, flood and
 major storm events are a significant threat to water quality. An annual reporting
 requirement is therefore appropriate to facilitate Adaptation Planning and, ideally, the
 implementation of an Adaptation Plan occurring as promptly and as efficiently as
 possible.
- Regarding the cost of developing the Adaptation Plan, there are costs and other resources that Permittees must allocate to comply with all permit requirements. EPA considers proper operation and maintenance of the WWTS as well as the collection system to include addressing major storm and flood events that would impair operation of the system. EPA acknowledges that the Permittee will incur costs and other potential resource expenditures to develop a plan related to these events but considers these expenditures to be necessary in order to prevent impacts during such events (e.g., bypass, upset or failure of the WWTS, overflow, or increased inflow and infiltration in the sewer system, and discharges of pollutants that exceed effluent limits), which would adversely affect human health or the environment.

However, EPA appreciates the regulated community's concerns regarding costs as described below.

- 1. In order to minimize costs and provide additional clarity to Permittees, EPA has developed a companion document, *Recommended Procedures and Resources for the Development of Adaptation Plans for Wastewater Treatment Systems and/or Sewer Systems*, ("Recommended Procedures"), which a Permittee could elect to use to guide it through development of the Adaptation Plan. The document instructs Permittees on the use of EPA's CREAT tool, which is free to use by Permittees and will help Permittees navigate through much of the analysis needed to develop an Adaptation Plan. It is EPA's intention that a Permittee could use these tools to develop an Adaptation Plan in an effort to reduce costs and possibly to eliminate or reduce the need to hire external contractors.
- 2. As mentioned above, the permit that allows credit for prior work to eliminate potentially costly duplication of efforts.
- 3. It is EPA's intention to provide Permittees with technical assistance for the development of the Adaptation Plan. EPA has many on-line training tools, ²⁶ some of which have been utilized by New England WWTSs²⁷ and EPA offered a New England-based virtual workshop training series for WWTS operators and others on the use of the CREAT tool. The training took place in March 2024 and was recorded to maximize its utility for those who may want to access the information at a later date. ²⁸ EPA also plans to offer ongoing technical assistance on the use of the CREAT tool. In recommending Permittees use this tool and by providing procedures for using it, EPA hopes to both enable Permittees to develop robust Adaptation Plans themselves, but also to reduce the costs, including the costs associated with outside contractors.
- 4. Additionally, EPA notes that there may be federal, state or local funding sources available to assist entities with adaptation planning.²⁹
- With regards to the cost of implementing adaptation measures, the selection and deadlines for implementing specific adaptation measures are not included as requirements in the permit since those will only be known after the completion of the Adaptation Plan. EPA expects that the Permittee will begin implementation of those measures in the coming years. However, since the Permittee will be setting the prioritizations and scheduling for implementing the measures based on their own risks

²⁶ https://www.epa.gov/crwu/training-and-engagement-center; see also, the Resources Section in the Recommended Procedures for additional resources that Permittees might find useful.

²⁷ See https://toolkit.climate.gov/sites/default/files/Manchester-by-the-Sea_March_2016.pdf;]; see also, the Resources Section of the Recommended Procedures document for more New England case studies and other useful resources.

²⁸ The training recordings will soon be available on EPA's website at: https://www.epa.gov/npdes-permits/npdes-water-permit-program-new-england.

²⁹ See EPA's website for <u>Federal Funding for Water and Wastewater Utilities in National Disasters (Fed FUNDS)</u>. <u>https://www.epa.gov/fedfunds</u>. Potential resources may also be available through the State.

and vulnerabilities to major storm and flood events, they may incorporate affordability and funding availability into their considerations.

EPA notes, that in developing the Adaptation Plan, the Permittee may, as part of the process, be comparing the potential economic costs of the baseline condition, or "no action alternative," with those of possible adaptation measures, under current and predicted risks of major storm and flood events. This option is available in the use of the adaptation planning approach as outlined in the companion document to this permit entitled *Recommended Procedures and Resources for the Development of Adaptation Plans for Wastewater Treatment Systems and/or Sewer Systems.* ³⁰ Depending on site-specific circumstances, the Permittee may find that the cost of <u>not</u> implementing adaptation measures is greater than the cost of implementing them.

C. Legal Authority

The Adaptation Plan permit conditions are necessary to further the overarching goal of the CWA³¹ "to restore and maintain the chemical, physical, and biological integrity of the Nation's waters" and derive from the same authorities as all other standard operation and maintenance requirements. CWA § 101(a), 40 C.F.R. §§ 122.41(d), (e), (n). The Adaptation Plan requirements are an iterative update to EPA's standard O&M permit provisions and intend to address serious and increasingly prevalent threats to Permittees' compliance with permit effluent limitations. As illustrated by the recent examples detailed in Section A, major storm and flood events can gravely impact discharges from WWTSs and thus water quality. That is, plant and/or sewer system failure due to storms, increased precipitation/floods, storm surge, and sea level rise can and do lead to bypasses, upsets, and violations of some or all of the permit limits, including water quality-based limits and limits based on secondary treatment standards. The Adaptation Plan is designed to reduce and/or eliminate noncompliant discharges that result from impacts of major storm or flood events through advanced planning and adaptation measures and is authorized by both EPA regulations and the CWA.

EPA recognizes that larger scale planning may be necessary to address some issues and that requiring the same would be beyond the scope of this NPDES permit. This NPDES permit does not intend to address all issues caused by major storm and flood events. To the contrary, the Adaptation Plan O&M requirements intend to address one specific issue that EPA has witnessed in New England, as described in Section A: the operability of the WWTS and/or sewer system during and after major storm and flood events. This issue is appropriate for an NPDES permit

³⁰ Available at: https://www.epa.gov/npdes-permits/npdes-water-permit-program-new-england

³¹ Congress has recently expressly affirmed that natural hazard adaptation measures for POTWs appropriately fall within the scope of the CWA: Congress added section 223 to the CWA via the Infrastructure Investment and Jobs Act, creating a grant program to support, *inter alia*, "the modification or relocation of an existing publicly owned treatment works, conveyance, or discharge system component that is at risk of being significantly impaired or damaged by a natural hazard[]." Pub. L. 117-58, 135 Stat. 1162 (codified at 33 U.S.C. § 1302a(c)(4))(2021).

because it is central to the Permittee's compliance with the Permit's effluent limitations and other Permit conditions, and thus central to EPA's obligation to issue permits that assure compliance with Water Quality Standards and other applicable laws. For the reasons described in this Section, EPA is well within its CWA-based authority to impose the Adaptation Plan requirements.

EPA's O&M regulations authorize EPA to impose the Adaptation Plan requirement. 40 C.F.R. § 122.41(e) ("Proper operation and maintenance. The Permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Permittee to achieve compliance with the conditions of this permit.") Proper operation and maintenance of the permitted facilities and systems inherently includes adaptation planning. As illustrated in the examples in Section A, if a WWTS is unable to operate properly as designed due to impacts from a major storm or flood event, the discharge of pollutants in violation of both its permit and applicable water quality standards is highly likely to occur and with increasing frequency. In other words, the Permittee cannot satisfy its obligation to operate properly "at all times" if it cannot do so during and after major storms or flooding events. The new Adaptation Plan requirements are an iterative extension of the previous permit's requirements that "The permittee will maintain an ongoing preventative maintenance program to prevent overflows and bypasses caused by malfunctions or failures of the sewer system infrastructure." Major storm and flood events represent an increasing cause of WWTS malfunctions and failures and thus EPA added the Adaptation Plan requirements to the O&M requirements to more specifically address this issue.

EPA is well within its CWA-based authority to include these permit conditions which are necessary to reduce the frequency or likelihood of bypass or upset and otherwise achieve compliance with the permit's effluent limits, and thus also assure compliance with water quality standards and other CWA requirements. CWA § 402(a)(2) ("[EPA] shall prescribe conditions for [NPDES] permits to assure compliance with the [applicable CWA] requirements...as he deems appropriate."); CWA §§ 301(b)(1)(C), 401(a)(1)-(2); see also 40 C.F.R. § 122.4(d) ("No permit may be issued... When the imposition of conditions cannot ensure compliance with the applicable water quality requirements of all affected States"); See also 40 C.F.R. § 122.44(d)(1). The provisions are reasonable measures rooted in the permitting requirements to properly operate and maintain all facilities and the duty to take all reasonable steps to minimize or prevent any discharge in violation of the permit. 40 C.F.R. § 122.41(d), (e).

The Agency relied on the same CWA-based authority when it promulgated the O&M regulations:

Many commenters expressed doubt whether EPA is legally authorized to require proper operation and maintenance of facilities. This requirement is clearly authorized for NPDES permittees by section 402(a)(2) of CWA which requires the Administrator to prescribe permit conditions which will assure compliance with the requirements of CWA section 402(a)(1).

45 Fed. Reg. 33290, 33303-04 (May 19, 1980). In 1980 and now, the proper operation and maintenance of a facility – including the Adaptation Plan requirements – effectuates the permit

limits on all addressed pollutants and protects all applicable water quality standards, as they assure that such limits will be met, even in times of major storms or during flood events. CWA § 402(a)(2). It is well-established that EPA may include specific permit conditions that ensure the preconditions or assumptions underlying EPA's pollutant effluent flow calculations remain constant, thus ensuring the permit, as a whole, assures compliance with WQS and other applicable CWA requirements. See In re: City of Lowell, 2020 WL 3629979 at *35,18 E.A.D. 115, 156 (EAB 2020) (affirming effluent flow limit as a proper exercise of the Agency's 40 C.F.R. § 122.41(e) authority in part on the basis that the permit's pollutant effluent limits were calculated based on a presumed maximum wastewater effluent discharge from the facility, and thus "If flow limits exceed the assumed maximum flow, ... then the Region may have erroneously concluded that a pollutant did not have a reasonable potential to cause or contribute to an exceedance of water quality standards or that the permit's pollutant effluent limits assure compliance with Massachusetts' water quality standards.") Likewise, the Adaptive Plan O&M requirements ensure the basic, necessary preconditions (i.e., the plant's operability) to compliance with the permit's effluent limits and other requirements of the CWA. Given the importance of WWTS and sewer system operability to compliance with this NPDES permit, it is not unreasonable for EPA to impose the Adaptation Plan O&M requirements. C.f. In re Avon Custom Mixing Services, Inc., 17 E.A.D. 700, 709 (EAB 2002) ("Given the importance of monitoring to the integrity of NPDES permits, and the broad authority the CWA confers on the Region to impose monitoring requirements in NPDES permits, it does not strike us as unreasonable that the Region has decided to include new monitoring requirements in the reissued permit.")

The EAB has affirmed the Agency's authority to require the preparation and submission of a plan as part of the Operation & Maintenance requirements of an NPDES permit. *In Re City of Moscow, Idaho*, 10 E.A.D. 135, 169-172 (EAB 2001) (affirming O&M permit provision that required development and submission of a quality assurance project plan,"[t]he primary purpose of [which] shall be to assist in planning for the collection and analysis of samples in support of the permit..." under the O&M regulations, stating "it seems plain that the CWA and its implementing regulations authorize the Region to include permit requirements like the QAPP here in conjunction with the ultimate goal of assuring compliance with the CWA."). Like the O&M planning requirement in *Moscow*, the primary purpose of the Adaptation Plan in this permit is to assist in planning for compliance with the permit – in this instance, by ensuring the facility remains operable even during flooding or other major storm events – and the ultimate goal of the requirement is to assure compliance with the CWA.

40 C.F.R. § 122.41(d) also authorizes EPA to impose the Adaptation Plan requirement. ("Duty to mitigate. The Permittee shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.") It is a reasonable step for EPA to require a Permittee to create an Adaptation Plan to minimize facility disruptions during major storm and flood events. For example, if a Permittee identifies that an asset critical to its WWTS is

³² NPDES Permit issued to City of Moscow, Idaho, Part I.E (March 12, 1999) (available at: https://www2.deq.idaho.gov/admin/LEIA/api/document/download/15509)

extremely vulnerable to a major storm and that loss of the asset would result in the inoperability of the WWTS and thus discharges in violation of permit limits, then mitigating those risks reasonably minimizes or prevents harmful discharges in violation of the permit.

EPA also has broad authority for data and information collection, reporting, and "such other requirements as [the delegated permit authority] deems appropriate" to carry out the objectives of the Act." CWA § 402(a)(2). See also In re Moscow, 10 E.A.D. at 171. Components 1 and 2 of the Adaptation Plan require the Permittee to collect and report to EPA data and information that are appropriate to carry out the objectives of the CWA. This information and data will allow the Permittee to identify assets which are vulnerable to flooding and adaptive measures appropriate to address those vulnerabilities. As described elsewhere in this Appendix, facility vulnerabilities threaten compliance with permit requirements and thus CWA objectives. Conversely, information about appropriate adaptive measures will facilitate compliance with both.

EPA notes that although the CWA limits the terms of NPDES permits to five years, CWA § 402(b)(1)(B), such a limitation does not logically constrain the permitting authority from requiring the Permittee to consider future conditions beyond the five-year term. EPA expects Permittees to fully comply with the Adaptation Plan provision within the five-year term of the permit, meaning it does not impose any obligations on the Permittee beyond the five-year permit term. One directly relevant example for WWTSs are Combined Sewer Overflow Long-Term Control Plans (LTCPs). The CSO Policy, 59 Fed. Reg. 18688 (April 19, 1994), which Congress expressly incorporated directly into the CWA at § 402(q), requires the development of LTCPs to ultimately come into compliance with the Act, recognizing that such schedules will (and have) in many instances span multiple permit terms. That Congress directly amended the CWA to require compliance with the CSO Policy, including its long-term permitting approaches, demonstrates that the Act does not constrain permitting authorities from considering timeframes outside of the five-year permit term. Another example of permissible permit timeframes that extend beyond the five-year permit term are compliance schedules, which may go beyond the expiration date of the permit if consistent with applicable state law. See In Re Moscow, 10 E.A.D. at 153 ("...a Region's authority to provide for compliance schedules in EPAissued permits is limited to those circumstances in which the State's water quality standards or its implementing regulations 'can be fairly construed as authorizing a schedule of compliance.") (citations omitted). The WWTS Adaptation Plan reasonably also requires consideration of long-term horizons as the planning and actions needed to address increasing major storms and flood events will be in many instances long-term as well.

Further, EPA does not consider the expected life or design life the appropriate recurrence interval to evaluate future risks. Namely, while a particular facility can be designed initially for an expected period of operation and the design storm at a given point in time, material changes often occur over time to operate and maintain a facility, thus extending its design life, and with the impacts of increased severity and frequency of major storm and flood events, the original design storm may no longer represent likely discharge conditions. EPA asserts that a forward-looking evaluation of the risks to a facility relative to its current operational state is important

to selection and implementation of the control measures necessary to minimize discharges that result from impacts of major storm and flood events.

EPA acknowledges that there are many possible approaches and that there are other programs that require resiliency planning. However, because adaptation planning is a critical step in complying with the permit's effluent limitations, EPA has determined that it is appropriate to include the Adaptation Plan requirements in the permit itself even if similar requirements also derive from other obligations. Major storm and flood events are of urgent concern, and EPA does not believe it would be sufficient to rely entirely on non-Permit obligations to address these threats to the proper operation and maintenance of WWTSs and/or sewer systems, especially because not all Permittees may otherwise be obligated to engage in adaptation planning, or may not be required to do so at this time. EPA has determined that planning for major storm and flood events must be done by all facilities now to avoid negative impacts. In recognition of the fact that Permittees may complete similar assessments to satisfy other obligations, the permit allows the Permittee to use qualifying assessments done for other programs or obligations to satisfy some or all of the components of the Adaptation Plan requirements. EPA considers its approach to be appropriate and reasonable to ensure consistent operation and maintenance of permitted facilities. Therefore, EPA will require Adaptation Plans be developed under NPDES permits for all wastewater treatment plants in Massachusetts and New Hampshire as well as those issued by EPA in Maine.

STONINGTON SANITARY DISTRICT)	
STONINGTON, MAINE)	TENTATIVE DECISION
PUBLICLY OWNED TREATMENT WORKS,)	OF THE REGIONAL
APPLICATION FOR SECTION 301(h))	ADMINISTRATOR PURSUANT TO
VARIANCE FROM THE SECONDARY)	40 CFR PART 125, SUBPART G
TREATMENT REQUIREMENTS OF THE)	
CLEAN WATER ACT)	

The Stonington Sanitary District (SSD/District/permittee) operates a publicly owned treatment works located in the Town of Stonington, Maine. The Town has submitted a waiver application pursuant to Section 301(h) of the Clean Water Act, as amended by the Water Quality Act of 1987 (the Act). The U.S. Environmental Protection Agency (EPA hereinafter) has reviewed the merits of this application for the waiver request. Based on this review, it is my tentative decision that SSD should receive a 301(h) waiver from secondary treatment standards in accordance with the terms, conditions, and limitations proposed in the modified 301(h) National Pollutant Discharge Elimination System (NPDES) permit.

SSD's application is seeking approval for the discharge of up to a 12-month rolling average flow of 175,000 gallons per day of primary treated wastewater generated by residential homes & commercial entities within the District's boundaries. The SSD is seeking renewal of its variance from the secondary treatment requirements of the Clean Water Act, as amended by the Act pursuant to Section 301(h) that was originally granted by the EPA on August 25, 1988, and last renewed on March 22, 2019. It is my tentative decision that the SSD be granted a renewal of the variance in accordance with the terms, conditions, and limitations of the attached evaluation. This determination is subject to concurrence by the State of Maine as required by Section 301(h) of the Act. Region I has prepared a draft NPDES permit in accordance with this decision.

Because my decision is based on available evidence specific to this particular discharge, it is not intended to assess the need for secondary treatment by other publicly owned treatment works discharging to the marine environment. This decision and the NPDES permit implementing this decision are subject to revision on the basis of subsequently acquired information relating to the impacts of the less-than-secondary treated effluent on the marine environment.

Pursuant to the procedures of the NPDES Permit Regulations, 40 CFR Part 124, a public notice will be issued which describes the comment procedures that are available to interested persons regarding this decision and the accompanying draft NPDES permit.

Date:	
,	David Cash
	Regional Administrator
	Environmental Protection Agency
	Region I

TENTATIVE DECISION DOCUMENT

ANALYSIS OF THE APPLICATION FOR A SECTION 301(h)

SECONDARY TREATMENT VARIANCE

FOR

THE STONINGTON SANITARY DISTRICT

WASTEWATER TREATMENT PLANT

ENVIRONMENTAL PROTECTION AGENCY REGION I

October 2024

Table of Contents

LIST	OF ABBREVIATIONS	6
I. S	SUMMARY	7
II. I	NTRODUCTION	7
III. I	DESCRIPTION OF TREATMENT FACILITY	8
IV. I	DESCRIPTION OF RECEIVING WATER	9
V. I	PHYSICAL CHARACTERISTICS OF THE DISCHARGE	10
VI.	APPLICATION OF STATUTORY AND REGULATORY CRITERIA	11
A.	Primary or Equivalent Treatment Requirements	11
В.	Existence of and Compliance with Applicable Water Quality Standards [40 CFR	
	5.61]	
_	ecific Maine water quality criteria related to DO, TSS and pH	
	1. Dissolved Oxygen (DO) [40 CFR Section 125.61(a)(1)]	
	2. Suspended Solids [40 CFR Section 125.61(a)(2)]	
3	3. pH [40 CFR Section 125.61(a)(3)]	
	Attainment or maintenance of water quality which assures protection of public was pplies; assures the protection and propagation of a balanced indigenous population of ellfish, fish, and wildlife; and allows recreational activities. [40 CFR Section 125.62]	
1. CF	Physical Characteristics of Discharge – Attainment of Water Quality Standards [4 R 125.62(a)(i-iii)]	
a	a. Fecal Coliform	14
ŀ	o. Enterococci	15
C	c. Total Residual Chlorine	15
2. I	Impact of the Discharge on Public Water Supplies [40 CFR 125.62(b)]	16
3.	Biological Impact of Discharge [40 CFR 125.62(c)]	
4.	Impact of Discharge on Recreational Activities (40 CFR 125.62(d)	16
5. CF	Additional requirements for applications based on improved or altered discharges R 125.62(e)].	
6.	Stressed Waters [40 CFR 125.62(f)]	17
7.	Establishment of Monitoring Programs [40 CFR 125.63]	17
a	a. Ambient Biological Monitoring	18
	o. Effluent Monitoring	
D.	Effect of Modified Discharge on Other Point and Nonpoint Sources [40 CFR 125 18	
E.	Toxics Control Program [40 CFR 125.66]	19
]	1. Chemical Analysis [40 CFR 125.66(a)(1-2)]	19

2. Identification of Sources and Industrial Pretreatment Requirements [40 CFR 125.66(a)(2), 40 CFR 125.66(b), and 40 CFR 125.66(c)]	9
3. Nonindustrial Source Control Program [40 CFR 125.66(d)]	9
F. Increase in Effluent Volume or Amount of Pollutants Discharged [40 CFR 125.67]	
G. Special conditions for section 301(h) modified permits [40 CFR 125.68]2	0
2. A schedule or schedules of compliance for (40 CFR 125.68(b)):	0
a. 40 CFR 125.68(b)(1), Pretreatment program development required by section 125.66(c)	0
b. 40 CFR 125.68(b)(2), Nonindustrial toxics control program required by section 125.66(d)	0
c. 40 CFR 125.68(b)(3), Control of combined sewer overflows required by section 125.67	0
3. Monitoring Program requirements (40 C.F.R. §125.68(c) that include:	0
a. Biological monitoring requirements of section 125.63(b). [40 CFR 125.68(c)(1)] 2	0
b. Water quality requirements of section 125.63(c). [40 CFR 125.68(c)(2)]2	1
c. Effluent monitoring requirements of sections 125.60(b), 125.62(c) and (d), and 125.63(d). 40 CFR 125.68(c)(3)	1
4. Reporting requirements that include the results of the monitoring programs required by paragraph (c) of this section at such frequency as prescribed in the approved monitoring program (40 CFR 125.68(d))	
VII. COMPLIANCE WITH PROVISIONS OF OTHER STATE, LOCAL OR FEDERAL LAWS	
A. State Coastal Zone Management Program2	1
B. Endangered or Threatened Species	1
Terrestrial and Avian Species (US Fish and Wildlife Service)	2
Marine and Anadromous Species (National Marine Fisheries Service)	3
C. Marine Protection, Research and Sanctuaries Act	4
D. Essential Fish Habitat (EFH)	4
VIII.STATE CONCURRENCE IN VARIANCE	7
IX. CONCLUSION	7
X. TENTATIVE DECISION	7
XI. PUBLIC COMMENTS	7

LIST OF ABBREVIATIONS

BIP	.Balanced Indigenous Population
BOD	.Biological Oxygen Demand
CWA	.Clean Water Act
CZM	.Coastal Zone Management
DMR	.Discharge Monitoring Report
DO	.Dissolved Oxygen
EPA	.Environmental Protection Agency
GPD	.gallons per day
MEDEP	.Maine Department of Environmental Protection
MGD	.million gallons per day
WQS	.Surface Water Quality Standards
NPDES	.National Pollution Discharge Elimination System
SSD	Stonington Sanitary District
TSD	.Amended 301(h) Technical Support Document (1994)
TSS	.Total Suspended Solids
WET	.Whole Effluent Toxicity
WQA	.Water Quality Act
WQS	.Water Quality Standards
ZID	.Zone of Initial Dilution

I. SUMMARY

The applicant, the Stonington Sanitary District (SSD), is seeking a variance from secondary treatment requirements for the discharge of a 12-month rolling average flow of up to 175,000 gallons per day (gpd) from its wastewater treatment plant. The treatment plant is located in Stonington, Maine and discharges its effluent to the Deer Island Thorofare, a Class SB waterway as classified by 38 Maine Revised Statutes Annotated (M.R.S.A.) §469.

EPA followed the guidance provided in EPA's <u>Amended Section 301(h) Technical Support Document</u> (1994) for evaluating the improved discharge for a small applicant (average dry weather flows below 5.0 MGD). The Region relied on information in a document entitled "301(h) Facilities in Maine, Report of 1995 Monitoring Activities," prepared by the State of Maine's Department of Environmental Protection ("MEDEP" or "Department") and submitted to EPA in July 1996, as well as monthly compliance data generated by SSD in accordance with the terms and conditions of NPDES Permit/Maine Discharge License for the period from July 2019 through June 2024.

The applicant's receipt of a Section 301(h) variance from secondary treatment is contingent upon the following conditions:

- 1. The treatment system's ability to maintain a 12-month rolling average of 30 percent (%) removal rate of five-day biochemical oxygen demanding (BOD₅) and 50% removal for total suspended solids (TSS) (State of Maine Section 401 Water Quality Certification Condition), and;
- 2. The discharge's ability to meet all water quality standards at the edge of the zone of initial dilution, and;
- 3. State Certification under 401 of the Act regarding compliance with State law and State Water Quality Standards, including a basis for the conclusion reached.

II. INTRODUCTION

SSD has requested a renewal of its five-year variance from the secondary treatment requirements for its publicly owned treatment works (POTW) pursuant to Section 301(h) of the Clean Water Act, as amended by the Water Quality Act of 1987. This tentative decision document summarizes the findings, conclusions, and recommendations of the Environmental Protection Agency (EPA), Region 1 regarding SSD's 301(h) waiver request. The conclusions and recommendations in this document are based on the application of the requirements set forth in 40 CFR Part 125, Subpart G to SSD's discharge.

The applicant's most recent combined EPA Permit and Maine State License expired on May 31, 2024. SSD submitted an updated application for a Section 301(h) variance on November 8, 2023. The expired permit remains in effect under the provisions of 40 CFR 122.6.

EPA applied the criteria established in 40 CFR Part 125, Subpart G, "Criteria for Modifying the Secondary Treatment Requirements under Section 301(h) of the Clean Water Act," in acting on this request.

III. DESCRIPTION OF TREATMENT FACILITY

Sanitary wastewaters received at the treatment facility are generated by residential and commercial entities within the area served by the SSD. The facility does not receive any flows from industrial sources but does receive backwash waters from a local public drinking water facility. The collection system is a separated system.

The facility currently provides a primary level of treatment for flows from 285 on-site septic tanks located on individually and publicly owned lots. The collection system network conveys the septic tank effluent from each lot to a common disinfection tank with seasonal chlorination and dechlorination capabilities prior to discharge to Deer Island Thorofare. The outfall consists of a ductile iron/PVC discharge pipe measuring 8 inches in diameter that extends out into the receiving waters approximately 600 feet. The outfall discharges 20.0 feet below mean low tide elevation according to a plan prepared by Wright-Pierce Engineers, entitled, Stonington Sanitary District, Stonington, Maine, Wastewater Facilities, Wastewater Collection, Outfall Sewer & Treatment Facilities, Ocean Outfall, dated July 11, 1991, and revised May 22, 1995.

The permittee is required to maintain the septic tanks according to a regular maintenance schedule. The tanks are periodically inspected to determine malfunctions and the amount of accumulated solids retained in the tanks. Through inspections, an appropriate pump-out frequency is established for each septic tank. The permittee is required to keep on-site a record of septic tank inspections and maintenance documenting the amount of solids removed from each tank.

Uranium is a naturally occurring element in groundwater. The Stonington Sanitary District receives 1,000 gallons annually (150 gallons & 350 gallons, twice per year) of uranium brine backwash water from the Stonington Water Co, the local public drinking water supplier. The concentration of uranium at the point of discharge from SSD will be less than the naturally occurring sea water concentration of 3 μ g/L. See the following calculation.

500 gallons of filter backwash (2 per year) Concentration of Ur in backwash brine, 15 μ g/l Mixed with >20,000 gpd actual plant flow.

The internal dilution = $\frac{20,000 \text{ gallons}}{500 \text{ gallons}} = 40:1$

 $\frac{15 \mu g/L}{40} = 0.375 \mu g/L$

There are no surface water marine criteria for uranium and the calculated effluent concentration is < 0.4 μ g/l at the point of discharge, well below the 3 μ g/l naturally occurring uranium concentration in seawater. The low discharge concentration and lack of criteria mean that there is no reasonable potential for the discharged of uranium from SSD to cause or contribute to an exceedance of a state water quality standard.

The 2019 permit established two tiers for effluent flow and corresponding BOD_5 and TSS limits. The effluent design flow is equivalent to the total capacity (volume) of the in ground septic systems. The first tier of up to 106,000 gallons per day (GPD) reflects the as-built capacity at the time of permitting. The second tier flow level of up to 175,000 GPD is the potential wastewater generation rate estimated for the entire sewer service area under fully developed future design year conditions. It is also consistent with the in-place capacity of the treatment system and its chlorine contact tank. This recognizes that new connections to the SSD system have been few and the tankage capacity has been relatively stable over the past decade.

The Draft Permit carries forward the 2 flow tiers which reflect the current capacity and contractually obligated future capacity.

IV. DESCRIPTION OF RECEIVING WATER

The Deer Island Thorofare, East Penobscot Bay is marine water subject to tidal action with a difference in tides (mean high to mean low) of up to 15 feet with very strong currents. Maine law, 38 M.R.S.A., §469 classifies the receiving waters at the point of discharge as Class SB waters. Maine law, 38 M.R.S.A., Section 465-B(2) contains the classification standards for Class SB waters. See Section VI(B) of this document for a description of the designated uses as well as numeric and narrative water quality standards for Class SB waters.

SSD's wastewater treatment facility discharges to a shellfish harvesting area that the Maine Department of Marine Resources (DMR) has designated as shellfish Area 38, Deer Island, Stonington and Merchants Row. See page 9 of the Fact Sheet of the permit for a map delineating Area 38.

V. PHYSICAL CHARACTERISTICS OF THE DISCHARGE

A. Dilution Factors

Pursuant to 40 CFR 125.62(a), the outfall and diffuser must be located and designed to provide adequate initial dilution, dispersion, and transport of wastewater to meet all applicable water quality standards at and beyond the boundary of the zone of initial dilution (ZID) during periods of maximum stratification and during other periods when more critical situations may exist.

The effluent from the SSD wastewater treatment facility is conveyed to the Deer Island Thorofare. The outfall pipe extends out into the receiving water approximately 600 feet with approximately twenty (20) feet of water over the crown of the pipe at mean low water. MEDEP Rule 06-096 CMR, Chapter 530, <u>Surface Water Toxics Control Program</u>, §4(a)(2) states:

- (1) For estuaries where tidal flow is dominant and marine discharges, dilution factors are calculated as follows. These methods may be supplemented with additional information such as current studies or dye studies.
 - (a) For discharges to the ocean, dilution must be calculated as near-field or initial dilution, or that dilution available as the effluent plume rises from the point of discharge to its trapping level, at mean low water level and slack tide for the acute exposure analysis, and at mean tide for the chronic exposure analysis using appropriate models determined by the Department such as MERGE, CORMIX or another predictive model.
 - (b) For discharges to estuaries, dilution must be calculated using a method such as MERGE, CORMIX or another predictive model determined by the Department to be appropriate for the site conditions.
 - (c) In the case of discharges to estuaries where tidal flow is dominant and marine waters, the human health criteria must be analyzed using a dilution equal to three times the chronic dilution factor.

With the current outfall location, the Department determined through CORMIX modeling, the dilution factors associated with the facility at the permitted flow of 175,000 gpd were as follows.

Acute: $\geq 1,000:1$ Chronic: $\geq 1,000:1$ Harmonic mean: $\geq 3,000:1$

Pursuant to Department Rule Chapter 530, "Surface Water Toxics Control Program", §4(2)(c), the harmonic mean dilution factor is approximated by multiplying the chronic dilution factor by a factor of three (3).

VI. APPLICATION OF STATUTORY AND REGULATORY CRITERIA

A. Primary or Equivalent Treatment Requirements

[Section 301(h) of the Clean Water Act, 40 CFR 125.57, 40 CFR 125.58(r) and 40 CFR 125.60]

Section 301(h) of the Clean Water Act requires that an applicant for a 301(h) waiver of secondary treatment must demonstrate, among other things, that that the discharger will be discharging effluent that has received at least primary or equivalent treatment.

Section 301(h)(9) defines primary or equivalent treatment as "screening, sedimentation and skimming adequate to remove at least 30 percent of the biological oxygen demanding material and of the suspended solids in the treatment works influent, and disinfection, where appropriate." (See also 40 CFR 125.57, 125.58(r) and 122.60). It is noted that MEDEP's definition of primary treatment differs from the federal definition, in that it requires 50% removal of total suspended solids (TSS).

The permit has flow limits, concentration, mass, and percent removal limitations for BOD₅ and TSS, as well as limits for fecal coliform, enterococci bacteria, pH, and total residual chlorine. See the Fact Sheet for an explanation of the limits derivation. See Fact Sheet Attachment A for a summary of Discharge Monitoring Report data for the period July 2019 through June 2024. There were two reported exceedances for the daily maximum fecal coliform limit and no reported exceedances of the limits for flow, BOD₅, TSS, enterococci bacteria, pH, or total residual chlorine.

B. Existence of and Compliance with Applicable Water Quality Standards [40 CFR 125.61]

40 CFR 125.61(a) specifies that there must be a water quality standard applicable to each pollutant for which a modification is requested, specifically biochemical oxygen demand (or dissolved oxygen), total suspended solids, and pH. The applicant must: (1) demonstrate that the modified discharge will comply with such water quality standards (40 CFR 125.61(b)(1)), and; (2) provide a determination, signed by the "certifying authority" (i.e., the MEDEP), that the proposed modified discharge will comply with applicable provisions of State law, including water quality standards (40 CFR 125.61(b)(2)).

The State of Maine has adopted water quality standards including water use classifications. The Deer Island Thorofare is classified as Class SB pursuant to Maine law, 38 M.R.S.A., §469. Maine law 39 M.R.S.A §465-B(2) contains the following standards for Class SB waters:

Class SB waters generally must be of such quality that they are suitable for the designated uses of recreation in and on the water, fishing, aquaculture, propagation and harvesting of shellfish, industrial process and cooling water supply, hydroelectric power generation, navigation and as habitat for fish and other estuarine and marine life. The habitat must be characterized as unimpaired.

Specific Maine water quality criteria related to DO, TSS and pH are discussed below:

1. Dissolved Oxygen (DO) [40 CFR Section 125.61(a)(1)]

Maine law, 38 MRSA, §465-B(2)(A) specifies that Class SB waters shall have a dissolved oxygen content of at least 85% of saturation.

A study of 40 marine outfalls published in the Marine Pollution Bulletin found that the main physical processes that govern the mixing and evolution of wastewater in the ocean are turbulent dispersion, transport (advection and diffusion) and resuspension. In high energy environments all constituents will be broadly dispersed with a minor chance of concentrating. The study demonstrated where significant currents and wave action were present, there was almost no degradation to the marine environment from small municipal dischargers. The ability of treated effluent to depress ambient DO levels is not immediate. H. W. Streeter and Earle B. Phelps developed the DO sag equation, which demonstrates that the effects of effluent biochemical oxygen demand occur over time. The rapid dilution ensures that oxygen demanding effluent is thoroughly dispersed well before it has time to depress ambient DO. EPA has no evidence of any deficiencies in dissolved oxygen in proximity to Stonington.

2. Suspended Solids [40 CFR Section 125.61(a)(2)]

The Maine water quality standards do not include numeric criteria for suspended solids, but narrative criteria are included in Title 38 of Maine Law at:

MSRA §464.4. A(4), which states that: ...the department may not issue a water discharge license for any of the following discharges: ...Discharge of pollutants to waters of the State that imparts color, taste, <u>turbidity</u> (emphasis added) toxicity, radioactivity or other properties that cause those waters to be unsuitable for the designated uses and characteristics ascribed to their class, and,

MSRA §464.4. B, which states that: All surface waters of the State shall be free of settled substances which alter the physical or chemical nature of bottom material and of

¹ <u>Response of benthos to ocean outfall discharges: does a general pattern exist?</u>, A. Puente,R.J. Diaz, Marine Pollution Bulletin, Elsevier, 15 December 2015

floating substances, except as naturally occur, which impair the characteristics and designated uses ascribed to their class.

As discussed in Section VII.C.7.a, a SCUBA diving survey of the benthic environment revealed that the discharge was not having a significant impact in the vicinity of the outfall. The proposed permit requires effluent monitoring of suspended solids to determine compliance with technology-based requirements. Such monitoring will provide additional confirmation that this discharge is consistent with water quality.

3. pH [40 CFR Section 125.61(a)(3)]

Maine law 38 M.R.S.A. $\S464(4)(A)(5)$ specifies that no discharge shall cause the pH of marine water to fall outside the range of 7.0-8.5 standard units. The current NPDES permit established a technology-based pH range limit of 6.0-9.0 standard units pursuant to Department rule, Chapter 525(3)(III)(c), along with a monitoring frequency of 1/Day for the period of May 15 through September 30 and 3/Week for the period of October 1 through May 14.

- C. Attainment or maintenance of water quality which assures protection of public water supplies; assures the protection and propagation of a balanced indigenous population of shellfish, fish, and wildlife; and allows recreational activities. [40 CFR Section 125.62]
 - 1. Physical Characteristics of Discharge Attainment of Water Quality Standards [40 CFR 125.62(a)(i-iii)]

The State of Maine has applicable State water quality standards that directly correspond to the CWA Section 304(a)(1) water quality criterion. With the current configuration of the outfall pipe, modeling performed indicates that it will provide adequate dilution, dispersion, and transport of wastewater such that the discharge will not exceed, at or beyond the zone of initial dilution, any applicable water-quality standards. See Section VI.A. of this document for the dilution factors calculated with the outfall.

In order to ensure attainment of water quality standards, the permit includes water quality-based limits on fecal coliform, enterococci bacteria, and total residual chlorine.

The applicable Maine Water Quality Standards for these pollutants (see Maine law 39 M.R.S.A §465-B(2)) are:

Between May 15th and September 30th, the numbers of enterococcus bacteria of human and domestic animal origin in these waters may not exceed a geometric mean of 8 per 100 milliliters or an instantaneous level of 54 per 100 milliliters. In determining human and domestic animal origin, the department shall assess licensed and unlicensed

sources using available diagnostic procedures. The number of total coliform bacteria or other specified indicator organisms in samples representative of the waters in shellfish harvesting areas may not exceed the criteria recommended under the National Shellfish Sanitation Program, United States Food and Drug Administration.

Discharges to Class SB waters may not cause adverse impact to estuarine and marine life in that the receiving waters must be of sufficient quality to support all estuarine and marine species indigenous to the receiving water without detrimental changes in the resident biological community².

There shall be no new discharge to Class SB waters which would cause closure of open shellfish areas by the Department of Marine Resources.

Maine law 38 M.R.S.A., Section 420 and Department rule 06-096 CMR Chapter 530, Surface Water Toxics Control Program, require the regulation of toxic substances not to exceed levels set forth in Department rule 06-096 CMR Chapter 584, Surface Water Quality Criteria for Toxic Pollutants, and that ensure safe levels for the discharge of toxic pollutants such that existing and designated uses of surface waters are maintained and protected. Total residual chlorine is the only known toxic constituent in the effluent. It is regulated to insure there is no discharge of toxic pollutants in toxic amounts.

EPA also reviewed available information and determined that there are no other pollutants in the discharge that would cause, have the reasonable potential to cause, or contribute to exceedances of state water quality standards pursuant to 40 CFR Part 122.44(d),

a. Fecal Coliform

Maine law 38 M.R.S.A. §465-B(2)(C) specifies that the numbers of total coliform bacteria or other specified indicator organisms in samples representative of the waters in shellfish harvesting areas may not exceed the criteria recommended under the National Shellfish Sanitation Program.

The current permit established monthly average (geometric mean) and daily maximum limits of 14 colonies/100 ml and 31 colonies/100 ml respectively that are consistent with limitations in the National Shellfish Sanitation Program and will be carried forward in the Draft Permit.

This permitting action is establishing May 15th – September 30th as the season in which the limitations are in effect, to be consistent with other like permits issued by the Department and consistent with Maine law found at 38 M.R.S.A., Section 465-B(2)(B). The monitoring frequency is 1/week.

² Maine Revised Statutes, Title 38, Chapter 3, §465-B.2.C.

As discussed in detail in Section V.C.(6), the waters surrounding Stonington Island are closed to shellfishing by order of the Maine Department of Marine Resources (DMR). SSD's reported compliance with its bacteria limits, and small plant flow support the conclusion that the treatment plant's discharge does not cause or contribute to a violation of water quality standards.

b. Enterococci

Maine water quality standards use enterococci as indicator organisms for protection of estuarine and marine recreational waters (38 MRSA Ch. 3 §465-B). Because contact recreation occurs largely in the summer months, the enterococci criteria are applied seasonally as follows:

Between May 15th and September 30th, the numbers of enterococcus bacteria of human and domestic animal origin in these waters may not exceed a geometric mean of 8 per 100 milliliters or an instantaneous level of 54 per 100 milliliters.³

The current permit included these limits and they are carried forward in the Draft Permit with a weekly monitoring frequency.

c. Total Residual Chlorine

Maine law 38 M.R.S.A. § 420 prohibits dischargers from discharging toxic pollutants in toxic amounts. MEDEP rule 06-096 CMR, Chapter 584 establishes numeric ambient water quality criteria for pollutants known to be toxic to aquatic life or harmful to humans. There are no pollutants discharged from the SSD facility in toxic amounts.

The March 14, 2003 NPDES permit established a technology-based daily maximum limitation of 1.0 mg/L for total residual chlorine (TRC).

Limits on TRC are specified to ensure attainment of the in-stream water quality criteria for chlorine and that best practicable treatment (State BPT) technology is utilized to abate the discharge of chlorine. Permits issued by the EPA impose the more stringent of the calculated water quality-based or technology-based limits.

To meet the water quality-based limits calculated above, the permittee must dechlorinate the effluent prior to discharge.

Municipal wastewater treatment facilities treating only to primary, require stronger disinfection measures because of shading of bacteria in the higher solids content found in

³ 38 MRSA Ch.3 §465-B(2)(B)

such effluent. For this reason, MEDEP does not hold SSD to the limits of 0.3 mg/L and 0.1 mg/L. The Department's BPT limit of 1.0 mg/L is applicable.

End-of-pipe water quality-based concentration thresholds may be calculated as follows, however, as stated above, since the technology-based limit is more stringent the draft permit contains a daily maximum TRC limit of 1.0 mg/L.

Parameter	Acute	Chronic	Acute	Chronic
	Criteria	Criteria	Dilution	Dilution
Chlorine	13 ug/L	7.5 ug/L	1000:1	1000:1

Calculation of Acute Limit – 0.013 mg/L (1000) = 13 mg/L Calculation of Chronic Limit – 0.0075 mg/L (1000) = 7.5 mg/L

2. Impact of the Discharge on Public Water Supplies [40 CFR 125.62(b)]

SSD discharge will not have an impact on public drinking water supplies as the facility discharges to a marine environment and the EPA and MEDEP are not aware of any proposals to construct a desalination plant in the vicinity of the SSD discharge location.

3. Biological Impact of Discharge [40 CFR 125.62(c)]

The discharge must allow for the attainment or maintenance of water quality which assures protection and propagation of a balanced indigenous population (BIP) of fish, shellfish, and wildlife (40 CFR 125.62(c)(1)). A BIP must exist immediately beyond the boundary of the zone of initial dilution (ZID) and in all areas beyond the ZID that are actually or potentially affected by the applicant's discharge (40 CFR 125.62(c)(2)). Conditions within the zone of initial dilution must not contribute to extreme adverse biological impacts, including, but not limited to, the destruction of distinctive habitats of limited distribution, the presence of a disease epicenter, or the stimulation of phytoplankton blooms which have adverse effects beyond the zone if initial dilution. [40 CRF 125.62(c)(3)]

See the discussion in Section D of this document. The area at the point of discharge is indistinguishable from control areas supporting a BIP of fish, shellfish, and wildlife.

4. Impact of Discharge on Recreational Activities (40 CFR 125.62(d)

The discharge must allow for the attainment or maintenance of water quality which allows for recreation activities beyond the zone of initial dilution, including, without limitation, swimming, diving, boating, fishing and picnicking, and sports activities along shorelines and beaches. [40 CFR 125.62(d)]

The Draft Permit has enterococci bacteria limits. Maine water quality standards use enterococci as indicator organisms for protection of estuarine and marine recreational waters (38 MRSA Ch. 3 §465). Because contact recreation occurs largely in the summer months, the enterococci criteria are applied seasonally. Between May 15th and September 30th.

5. Additional requirements for applications based on improved or altered discharges [40 CFR 125.62(e)].

The effluent volume, characteristics, and discharge location are unchanged, so it is not an improved or altered discharge.

6. Stressed Waters [40 CFR 125.62(f)]

The State of Maine 2018/2020/2022 Integrated Water Quality Monitoring and Assessment Report (IWQMA), prepared by the Department pursuant to Sections 303(d) and 305(b) of the Federal Water Pollution Control Act, lists the receiving water as Category 3: Estuarine and Marine Waters with Insufficient Data or Information to Determine if Shellfish Harvesting Designated Use is Attained.⁴

There were 2 reported exceedances of the daily maximum fecal coliform limit of 31/100 ml during the period of July 2019 through June 2024. DMR issued an updated closure notice on August 3, 2014, based on ambient water quality sampling indicating elevated levels of bacteria.

Maine DMR traditionally closes shellfish harvesting areas in the vicinity of outfall pipes when field data on bacteria counts in the immediate area is insufficient, inconclusive or exceeds standards set in the National Shellfish Sanitation Program of the U.S. Department of Health and Human Services. As discussed in Section V.C.(1)(a), compliance with the monthly average and daily maximum limitations for fecal coliform bacteria will ensure the SSD facility will not cause or contribute to the closure of the shellfish harvesting area.

7. Establishment of Monitoring Programs [40 CFR 125.63]

Federal regulation 40 CFR 125.63 requires that the applicant develop a monitoring program designed to evaluate the impact of the modified discharge on the marine biota, demonstrate compliance with applicable water quality standards, and measure toxic substances in the discharge. 40 CFR 125.63(a)(2) allows the Administrator to require revisions to the proposed monitoring program before issuance of a modified permit and during the term of any modified permit.

⁴ MEDEP 2018/2020/2022 IWQMA Appendix V, Page 198.

a. Ambient Biological Monitoring

In the first 301(h) permit issued to SSD, EPA required SCUBA surveys of the benthic community in the vicinity of the discharge from the outfall and at comparison sites outside the zone of initial dilution (ZID) in accordance with 40 CFR§ 125.63 "Establishment of a monitoring program." Maine DEP conducted the required dives in 1995 on behalf of the SSD and for other Maine 301(h) dischargers.

According to the report prepared by the Department following the SCUBA surveys titled "301(h) Facilities in Maine, Report of 1995 Monitoring Activities," dated July 1996 and submitted to EPA, "Water quality, sediment, and photographic information indicates that SSD and these [301(h)-type] discharges are not causing any significant impact to the receiving waters." That document concluded that no further ambient monitoring be conducted, and recommended that effluent monitoring be continued. By letter dated February 17, 1995 from the EPA Regional Administrator, EPA agreed there would be little risk of adverse impacts to the receiving waters from these discharges provided that the permittee perform effluent monitoring as part of the regular permit conditions. In subsequent permit actions, MEDEP and EPA have agreed that further SCUBA inspections were too dangerous as a result of the swift currents generally found in 301(h) discharge receiving waters.

Pursuant to the findings of the July 1996 report described above, EPA does not believe that further ambient monitoring in the vicinity of the discharge is necessary. The discharge has not changed appreciably since the 1995 survey was conducted and so its findings remain valid.

b. Effluent Monitoring

The NPDES permit contains monitoring conditions that will provide data on the quality of the effluent including flow, BOD, TSS, settleable solids, fecal coliform, enterococci bacteria, total residual chlorine, and pH.

D. Effect of Modified Discharge on Other Point and Nonpoint Sources [40 CFR 125.64].

40 CFR 125.64(a) states that no modified discharge may result in any additional pollution control requirements on any other point or nonpoint source, and 40 CFR Part 125.64(b) requires that the applicant obtain a determination from the State or interstate agency having authority to establish waste load allocations indicating whether the applicant's discharge will result in any additional treatment pollution control, or other requirement on any other point or nonpoint source. SSD anticipates receiving said determination from the MEDEP prior to issuance of the final NPDES permit.

E. Toxics Control Program [40 CFR 125.66]

1. Chemical Analysis [40 CFR 125.66(a)(1-2)]

SSD has no industrial connections to the collection system and certifies that there are no known or suspected sources of toxic pollutants or pesticides in their discharge.

2. Identification of Sources and Industrial Pretreatment Requirements [40 CFR 125.66(a)(2), 40 CFR 125.66(b), and 40 CFR 125.66(c)]

Given the nature of the source of the discharge (residential entities) SSD has determined to the best of their knowledge, there are no sources of toxic pollutants being conveyed to the treatment plant. Therefore, an industrial pretreatment program is not required pursuant to 40 CFR 125.66(c).

3. Nonindustrial Source Control Program [40 CFR 125.66(d)].

Under 40 CFR 125.66(d), the applicant must submit a proposed public education program designed to minimize the entrance of nonindustrial toxic pollutants and pesticides into its POTW.

The draft permit includes a requirement in Section I for the permittee to develop and implement a non-industrial source control program pursuant to 40 CFR 125.66(d).

F. Increase in Effluent Volume or Amount of Pollutants Discharged [40 CFR 125.67]

40 CFR 125.67(a) states that the applicant's discharge may not result in any new or substantially increased discharges of the pollutant to which the modification applies above the discharge specified in the Section 301(h) modified permit.

All limits in the draft permit are as or more stringent than those limits in the current NPDES permit, and the application does not indicate any increase in pollutants discharged to the facility.

40 CFR 125.67(b) requires that where pollutants discharges are attributable in part to combined sewer overflows, the applicant minimize existing overflows and prevent increases in the amount of pollutants discharged.

There are no CSOs associated with SSD collection system. Therefore, SSD is in compliance with 40 CFR 125.67(b).

G. Special conditions for section 301(h) modified permits [40 CFR 125.68].

Each section 301(h) modified permit issued shall contain, in addition to all applicable terms and conditions required by 40 CFR part 122, the following:

1. Effluent limits and mass loadings which will assure compliance with the requirements of this subpart (40 CFR 125.68(a)):

The NPDES permit contains such effluent limits and mass loadings.

- 2. A schedule or schedules of compliance for (40 CFR 125.68(b)):
 - a. 40 CFR 125.68(b)(1), Pretreatment program development required by section 125.66(c).

SSD has no industrial discharges to its collection system and so is not required by 40 CFR 125.66(c) to have a pretreatment program. Therefore, the permit does not require the development of such a program.

b. 40 CFR 125.68(b)(2), Nonindustrial toxics control program required by section 125.66(d).

The draft permit includes a schedule requiring implementation of a public education program designed to minimize the entrance of non-industrial toxic pollutants and pesticides into the collection system and wastewater treatment facility.

c. 40 CFR 125.68(b)(3), Control of combined sewer overflows required by section 125.67.

There are no CSOs associated with SSD's collection system. Therefore, no schedule is required.

- 3. Monitoring Program requirements (40 C.F.R. §125.68(c) that include:
 - a. Biological monitoring requirements of section 125.63(b). [40 CFR 125.68(c)(1)]

As described in Section D, monitoring conducted in 1995, in accordance with the first 301(h) permit showed that the discharge was not affecting the biological community in the vicinity of the discharge. Because the discharge has not appreciably changed since the study was conducted, and in recognition of the difficulty in performing ambient monitoring, EPA has not required a biological monitoring program in the Draft Permit.

b. Water quality requirements of section 125.63(c). [40 CFR 125.68(c)(2)].

In recognition of the composition of the wastewater, (comprised of domestic and commercial entities) and the significant dilution provided, EPA believes that receiving water quality monitoring is not necessary.

c. Effluent monitoring requirements of sections 125.60(b), 125.62(c) and (d), and 125.63(d). 40 CFR 125.68(c)(3)

The NPDES permit contains appropriate effluent monitoring and reporting requirements to satisfy the above regulatory requirements.

4. Reporting requirements that include the results of the monitoring programs required by paragraph (c) of this section at such frequency as prescribed in the approved monitoring program (40 CFR 125.68(d)).

The NPDES permit contains monthly reporting of the results of effluent monitoring requirements specified by the permit.

VII. COMPLIANCE WITH PROVISIONS OF OTHER STATE, LOCAL OR FEDERAL LAWS

Pursuant to 40 CFR 125.59(b)(3), a modified NPDES permit may not be issued unless the proposed discharge complies with applicable provisions of state, local, or other federal laws or Executive Orders, including the Coastal Zone Management Act, 16 U.S.C. 1451 et seq., the Endangered Species Act, 16 U.S.C. 1531 et seq., and the Marine Protection, Research, and Sanctuaries Act 16 U.S.C. 1431 et seq. These requirements are discussed below.

A. State Coastal Zone Management Program

A copy of the draft NPDES permit is being sent to the Maine's State Planning Office for a consistency determination. With the expected Section 401 Water Quality Certification from the MEDEP, the EPA anticipates an affirmative consistency determination prior to issuance of the NPDES permit as a final agency action.

B. Endangered or Threatened Species

Section 7(a) of the Endangered Species Act of 1973, as amended (ESA), grants authority to and imposes requirements on Federal agencies regarding species of fish, wildlife, or plants that have been federally listed as endangered or threatened (listed species) and regarding habitat of such species that has been designated as critical (critical habitat).

Section 7(a)(2) of the ESA requires every federal agency, in consultation with and with the assistance of the Secretary of Interior and the Secretary of Commerce, to ensure that any action it authorizes, funds or carries out, in the United States or upon the high seas, is not likely to jeopardize the continued existence of any listed species or result in the destruction or adverse modification of critical habitat. The United States Fish and Wildlife Service (USFWS) administers Section 7 consultations for federally protected bird, terrestrial and freshwater species, while the National Oceanic and Atmospheric Administration's National Marine Fisheries Service (NOAA Fisheries) administers Section 7 consultations for listed species of marine organisms (including marine mammals and reptiles), as well as for anadromous fish species.

The federal action being considered in this case is EPA's proposed reissuance of an NPDES permit for the Facility's discharge of pollutants. The Draft Permit is intended to replace the 2019 Permit in authorizing discharges from the Facility. As the federal agency charged with authorizing the Facility's pollutant discharges, EPA assesses potential impacts to federally listed species and critical habitat and initiates consultation to the extent required, under Section 7(a)(2) of the ESA.

EPA has reviewed the federal endangered or threatened species of fish, wildlife, and plants in the expected action area of the outfalls to determine if EPA's proposed NPDES permit could potentially impact any such listed species.

Terrestrial and Avian Species (US Fish and Wildlife Service)

Regarding protected species under the jurisdiction of USFWS, three species may be present in the action area of the Facility's discharge,⁵ the endangered northern long-eared bat (*Myotis septentrionalis*), the endangered roseate tern (*Sterna dougallii dougallii*) and the proposed endangered tricolored bat (*Perimyotis subflavus*).

According to the USFWS, the northern long-eared bat is found in, "winter – mines and caves, summer – wide variety of forested habitats." This species is not considered aquatic. However, because the Facility's projected action area overlaps with the general statewide range of the northern long-eared bat, EPA submitted an evaluation on potential effects of the project to the Information for Planning and Consultation (IPaC) system provided by the USFWS. The USFWS system confirmed by letter that, based on the specific project information submitted, the project would have "no effect" on the northern long-eared bat⁶.

⁵ See https://ecos.fws.gov/ipac/

⁶ USFWS IPaC Project code: 2024-0148407, September 30, 2024.

At this time, no such USFWS IPaC mechanism is in place to evaluate potential impacts to the proposed endangered tricolored bat. Because the habitat of the tricolored bat is generally similar to the NLE bat (overwintering - caves or mines; spring/summer/fall – deciduous live or dead hardwood trees), EPA has determined that the reissuance of this permit would also have "no effect" on the proposed endangered tricolored bat⁷.

Finally, the action area of the facility may overlap with the roseate tern. According to the USFWS:

The roseate tern (Sterna dougallii) is found throughout the world. The North Atlantic subspecies, Sterna dougallii dougallii, is divided into two populations in North America because they breed in two discrete areas and rarely mix. The Northeastern population, federally listed as endangered, breeds on coastal islands from Eastern Canada, in Nova Scotia and Quebec, to New York.

...

Unfortunately, the bird's beauty led to its decline as hunters shot them indiscriminately to decorate hats in the late 1800s. Since the 1930s, the species began to rebound when hunting was banned and many of its breeding colonies were protected. Nevertheless, the two populations remain small and vulnerable to extirpation because many of their breeding colony sites are no longer suitable for nesting. This lack of suitable nesting is due to the combined negative impacts from sea level rise, predation and human development.

EPA has determined that because the reissuance of this permit will not impact the above factors, this federal action will have no effect on the roseate tern. To support this no effect determination, EPA also completed a USFWS determination key that made the same conclusion. ⁸

This concluded EPA's consultation responsibilities for this NPDES permitting action under ESA section 7(a)(2) with respect to the northern long-eared bat, tricolored bat, and roseate tern. No ESA section 7 consultation is required with USFWS for these species.

Marine and Anadromous Species (National Marine Fisheries Service)

The Facility discharges into the Deer Isle Thorofare. The outfall and action area overlap with coastal waters where several protected marine species are found. Three species of anadromous fish; shortnose sturgeon (*Acipenser brevirostrum*), Atlantic sturgeon (*Acipenser oxyrinchus ox-*

⁷ EPA Supplemental Basis Document – Tricolored Bat; May 14, 2024.

⁸ USFWS IPaC Project code: 2024-0148407, September 24, 2024.

yrinchus), and Atlantic salmon (*Salmo salar*) are potentially present in the vicinity of the discharge. In general, adults and subadults of these species are present in coastal waters.

Also present in the action area are four listed species of sea turtle, including: the leatherback sea turtle (*Dermochelys coriacea*), green sea turtle (*Chelonia mydas*), kemp's ridley sea turtle (*Lepidochelys kempii*), and the loggerhead sea turtle (*Caretta caretta*). According to NOAA Fisheries, adult and juvenile life stages of leatherback, loggerhead, Kemp's ridley and green sea turtles are expected in coastal Maine waters from June 1 through November 30 while migrating and foraging. Also, adult shortnose sturgeon and adult and subadult Atlantic sturgeon are likely present in the action area.

Because these species may be affected by the discharges authorized by the proposed permit, EPA has thoroughly evaluated the potential impacts of the permit action on these anadromous species. Based on that evaluation, EPA's preliminary determination is that this action may affect, but is not likely to adversely affect, the protect species that are expected in the vicinity of the action area of the discharge. Therefore, EPA has judged that a formal consultation pursuant to Section 7 of the ESA is not required. EPA is seeking concurrence from NOAA Fisheries regarding this determination during the Draft Permit's public comment period.

Initiation of consultation is required and shall be requested by EPA or by USFWS/NOAA Fisheries where discretionary federal involvement or control over the action has been retained or is authorized by law and if: 1) new information reveals that the action may affect listed species or critical habitat in a manner or to an extent not previously considered in the analysis; 2) the identified action is subsequently modified in a manner that causes an effect to the listed species or critical habitat that was not considered in the previous analysis; 3) a new species is listed or critical habitat designated that may be affected by the identified action; or 4) there is any incidental taking of a listed species that is not covered by an incidental take statement.

C. Marine Protection, Research and Sanctuaries Act

The discharge is not located near any marine or estuarine sanctuary designated under Title III of the Marine Protection, Research, and Sanctuaries Act of 1972, as amended, or the Coastal Zone Management Act of 1972, as amended.

D. Essential Fish Habitat (EFH)

Under the 1996 Amendments (PL 104-267) to the Magnuson-Stevens Fishery Conservation and Management Act, 16 U.S.C. §§ 1801, et seq., EPA is required to consult with NOAA Fisheries if proposed actions that EPA funds, permits, or undertakes, "may adversely impact any essential fish habitat." See 16 U.S.C. § 1855(b).

The Amendments broadly define "essential fish habitat" (EFH) as: "waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity". See 16 U.S.C. §

1802(10). "Adverse impact" means any impact that reduces the quality and/or quantity of EFH. 50 CFR § 600.910(a). Adverse effects may include direct (e.g., contamination or physical disruption), indirect (e.g., loss of prey, reduction in species' fecundity), site specific or habitatwide impacts, including individual, cumulative, or synergistic consequences of actions.

Essential fish habitat is only designated for species for which federal fisheries management plans exist (16 U.S.C. § 1855(b)(1)(A)). EFH designations for New England were approved by the U.S. Department of Commerce on March 3, 1999. A New England Fishery Management Council's Omnibus Essential Fish Habitat Amendment in 2017 updated the descriptions. The information is included on the NOAA Fisheries website at:

https://www.fisheries.noaa.gov/topic/habitat-conservation. In some cases, a narrative identifies rivers and other waterways that should be considered EFH due to present or historic use by federally managed species.

The Federal action being considered in this case is EPA's proposed NPDES permit for the Eastport Wastewater Treatment Facility, which discharges though Outfall 001 to Deer Isle Thorofare as discussed in Section 4.1 of this document. Based on available EFH information, including the NOAA Fisheries EFH Mapper, EPA has determined that the receiving water in the vicinity of the discharge is designated as EFH for the species shown in Table 1, below.

Table 1. EFH Designated Species

Species/Management Unit	Lifestage(s) Found at Location
Acadian Redfish	Larvae
American Plaice	Adults, Juveniles, Eggs, Larvae
Atlantic Butterfish	Adult, Juvenile
Atlantic Cod	Adult, Eggs, Juvenile, Larvae
Atlantic Herring	Adults, Juvenile, Larvae
Atlantic Mackerel	Adult, Juvenile
Atlantic Sea Scallop	All
Atlantic Wolffish	All
Bluefish	Adult, Juvenile
Little Skate	Adult, Juvenile
Monkfish	Juvenile
Ocean Pout	Adult, Eggs, Juvenile
Pollock	Juvenile
Red Hake	Adult, Eggs/Larvae/Juvenile
Silver Hake	Adult, Eggs/Larvae
Smooth Skate	Juvenile
Thorny Skate	Juvenile
White Hake	Adult, Juvenile, Larvae

⁹ https://www.habitat.noaa.gov/apps/efhmapper/

Windowpane Flounder	Adults, Eggs, Juvenile, Larvae
Winter Flounder	Eggs, Juvenile, Larvae/Adult
Winter Skate	Eggs, Juvenile, Larvae/Adult
Yellowtail Flounder	Adult
Habitat Area of Particular Concern	
Atlantic Salmon	
Inshore 20m Juvenile Cod	

Therefore, consultation with NOAA Fisheries under the Magnuson-Stevens Fishery Conservation and Management Act is required. EPA has determined that actions regulated by the Draft Permit may adversely affect EFH. The Draft Permit has been conditioned in the following ways to minimize any impacts that reduce the quality and/or quantity of EFH for the species listed in Table 1.

- This Draft Permit action does not constitute a new source of pollutants because it is the reissuance of an existing NPDES permit;
- Discharge limitations have been proposed for pH, total suspended solids, settleable solids, fecal coliform bacteria, enterococci bacteria, total residual chlorine, in order to meet technology-based or state water quality standards;
- The effluent limitations and conditions in the Draft Permit were developed to be protective of all aquatic life;
- The proposed Draft Permit requirements minimize any reduction in quality and/or quantity of EFH, either directly or indirectly.

EPA has determined that the conditions and limitations contained in the Draft Permit adequately protect all aquatic life, as well as the essential fish habitat for the species listed above in Deer Isle Thorofare. Further mitigation is not warranted. Should adverse impacts to EFH be detected as a result of this permit action, or if new information is received that changes the basis for EPA's conclusions, NOAA Fisheries Habitat and Ecosystem Services Division will be contacted and an EFH consultation will be re-initiated.

At the beginning of the public comment period, EPA notified NOAA Fisheries Habitat and Ecosystem Services Division that the Draft Permit and this Fact Sheet were available for review and provided a link to the EPA NPDES Permit website to allow direct access to the documents.

In addition to this Fact Sheet and the Draft Permit, information to support EPA's finding was included in a letter under separate cover that will be sent to the NOAA Fisheries Habitat and Ecosystem Services Division during the public comment period.

VIII. STATE CONCURRENCE IN VARIANCE

Permittees may not be granted a Section 301(h) variance, as specified under Section 301(h) of the Act and 40 CFR 125.59(i), until the appropriate State certification/concurrence is granted or waived pursuant to 40 CFR 124.54.

A Section 301(h) waiver may not be granted if the State denies certification/ concurrence pursuant to 40 CFR 124.54. EPA expects that the State of Maine will make such a determination upon review of the proposed draft permit conditions.

IX. CONCLUSION

EPA has determined that SSD treated effluent will receive sufficient initial dilution and mixing such that the discharge will comply with all the requirements of Section 301(h) of the Clean Water Act, as amended by the Water Quality Act of 1987, and 40 CFR Part 125, Subpart G.

X. TENTATIVE DECISION

For the reasons discussed in this tentative decision document, EPA is tentatively approving SSD request to discharge primary effluent to the Deer Island Thorofare. This tentative decision is contingent upon the following conditions:

- 1. SSD treatment system maintaining a 12-month rolling average of 30 % removal of BOD₅ and 50% removal TSS (Maine BPT and Section 401 Water Quality Certification condition), and;
- 2. State certification is granted under Section 401 of the Act, and;
- 3. The discharge will comply with all state water quality standards.

This tentative decision will become final upon issuance of the NPDES permit.

XI. PUBLIC COMMENTS

The public notice will be placed on the EPA Region 1 NPDES website at: https://www.epa.gov/npdes-permits/maine-npdes-permits. All persons, including applicants, who believe any condition of the tentative decision is inappropriate must raise all issues and submit all available arguments and all supporting material for their arguments in full by the close of the public comment period, to the EPA Permit Writer named below.

Prior to the close of the public comment period, any person may submit a written request to EPA for a public hearing to consider the Draft Permit. Such requests shall state the nature of the

issues proposed to be raised in the hearing. A public hearing may be held if the criteria stated in 40 CFR § 124.12 are satisfied. In reaching a final decision on the Draft Permit, EPA will respond to all significant comments in a Response to Comments document attached to the Final Permit and make these responses available to the public on EPA's website.

Following the close of the comment period, and after any public hearings, if such hearings are held, EPA will issue a Final Permit decision, forward a copy of the final decision to the applicant, and provide a copy or notice of availability of the final decision to each person who submitted written comments or requested notice. Within 30 days after EPA serves notice of the issuance of the Final Permit decision, an appeal of the federal NPDES permit may be commenced by filing a petition for review of the permit with the Clerk of EPA's Environmental Appeals Board in accordance with the procedures at 40 CFR § 124.19.

George Papadopoulos U.S. Environmental Protection Agency Mail Code – 06-1 5 Post Office Square – Suite 100 Boston, MA 02109-3912

Phone: 617-918-1579

Email: papadopoulos.george@epa.gov

UNITED STATES ENVIRONMENTAL
PROTECTION AGENCY – REGION 1 (EPA)
WATER DIVISION
5 POST OFFICE SQUARE
BOSTON, MASSACHUSETTS 02109

DEPARTMENT OF
ENVIRONMENTAL PROTECTION (MEDEP)
BUREAU OF WATER QUALITY
STATE HOUSE STATION #17
AUGUSTA, me 04333-0017

JOINT PUBLIC NOTICE OF THE ISSUANCE OF A TENTATIVE CLEAN WATER ACT SECTION 301(H) WAIVER FROM SECONDARY TREATMENT DECISION DOCUMENT, DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT TO DISCHARGE INTO WATERS OF THE UNITED STATES UNDER SECTIONS 301 AND 402 OF THE CLEAN WATER ACT, AS AMENDED, AND CODE OF MAINE RULES (CMR) 06, CHAPTERS 523 AND 524, AND REQUEST FOR STATE CERTIFICATION UNDER SECTION 401 OF THE CLEAN WATER ACT.

PUBLIC NOTICE PERIOD: October 24, 2024 – November 25, 2024

PERMIT NUMBER: ME0101851

PUBLIC NOTICE NUMBER:

NAME AND MAILING ADDRESS OF APPLICANT:

Stonington Sanitary District P.O Box 175 Stonington ME, 04681

NAME AND ADDRESS OF THE FACILITY WHERE DISCHARGE OCCURS:

Stonington Sanitary District Wastewater Treatment Plant P.O Box 175
Stonington ME, 04681

RECEIVING WATER AND CLASSIFICATION:

Deer Isle Thorofare, East Penobscot Bay, Class SB

PREPARATION OF THE DRAFT PERMIT AND EPA REQUEST FOR CWA § 401 CERTIFICATION:

The U.S. Environmental Protection Agency (EPA) and the Maine Department of Environmental Protection (MEDEP) have cooperated in the development of a Draft Permit for the Waste Water Treatment Facility, which discharges primary treated domestic wastewater. EPA is also public noticing its Tentative Clean Water Act Section 301(h) Waiver from Secondary Treatment Decision. The effluent limits and permit conditions imposed have been drafted to assure compliance with the Clean Water Act, 33 U.S.C. Sections 1251 et seq., the CMR 06, Chapters 523 and 524 and the Maine Revised Statutes, Title 38 Chapter 3 Protection and Improvement of Waters, Subchapter 1 Article 4-A § 464 (Maine Water Quality Standards).

EPA has requested that MEDEP certify this Draft Permit with the Waiver from Secondary Treatment,

pursuant to Section 401 of the Clean Water Act and implementing regulations. Under federal regulations governing the NPDES program at 40 Code of Federal Regulations (CFR) § 124.53(e), state certification shall contain conditions that are necessary to assure compliance with the applicable provisions of CWA sections 208(e), 301, 302, 303, 306, and 307 and with appropriate requirements of State law, including any conditions more stringent than those in the Draft Permit that MEDEP finds necessary to meet these requirements. Furthermore, MEDEP may provide a statement of the extent to which each condition of the Draft Permit can be made less stringent without violating the requirements of State law.

INFORMATION ABOUT THE DRAFT PERMIT:

The Draft Permit and explanatory Fact Sheet may be obtained at no cost at https://www.epa.gov/npdes-permits/maine-draft-individual-npdes-permits or by contacting:

George Papadopoulos Telephone: (617) 918-1579

Email: papadopoulos.george@epa.gov

Any electronically available documents that are part of the administrative record can be requested from the EPA contact above.

PUBLIC COMMENT AND REQUESTS FOR PUBLIC HEARINGS:

All persons, including applicants, who believe any condition of this Draft Permit and or Secondary Treatment Waiver Decision, are inappropriate, must raise all issues and submit all available arguments and all supporting material for their arguments in full by November 25, 2024, to the address listed above.

Any person, prior to such date, may submit a request in writing to EPA and MEDEP for a public hearing to consider this Draft Permit and/or the Secondary Treatment Waiver Decision. Such requests shall state the nature of the issues proposed to be raised in the hearing. A public hearing may be held after at least a thirty-day public notice whenever the Regional Administrator finds that the response to this notice indicates significant public interest. In reaching a Final Decision on this Draft Permit and Secondary Treatment Waiver Decision, the Regional Administrator will respond to all significant comments and make the responses available to the public at EPA's Boston Office.

FINAL PERMIT DECISION:

Following the close of the comment period, and after a public hearing, if such hearing is held, the Regional Administrator will issue a Final Permit Decision, including a Final Decision for the Secondary Treatment Waiver and forward a copy of the final decisions to the applicant and each person who has submitted written comments or requested notice. Within thirty (30) days following the notice of the Final Permit Decision, any interested person may submit petition to the Environmental Appeals Board to reconsider or contest the final decision.

KEN MORAFF, DIRECTOR
WATER DIVISION
UNITED STATES ENVIRONMENTAL
PROTECTION AGENCY – REGION 1

MELANIE LOYZIM, COMMISSIONER BUREAU OF WATER QUALITY MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION