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NAMs Work Plan Identified Objectives, Strategies 
and Deliverables for Applying NAMs

• Five objectives for reducing animal testing and research while ensuring 
that Agency decisions remain fully protective of human health and the 
environment

• Updated NAM Work Plan released in December 2021
o Expansion of the species covered in the work plan to include all vertebrate animals 

to be consistent with TSCA.
o Modified deliverable timelines that reflect the expansion of covered species and 

incorporate feedback received over the preceding years.
o New case studies for building confidence and demonstrating application of NAMs.
o A pilot study to develop NAMs training courses and materials.

Develop Baselines 
and Metrics

Evaluate 
Regulatory 
Flexibility

Establish Scientific 
Confidence and 

Demonstrate 
Application

Develop NAMs to 
Address 

Information Gaps

Engage and 
Communicate with 

Stakeholders
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Status of NAMs Work Plan Deliverables

2

Milestones/Deliverables Projected Dates
Evaluate Regulatory Flexibility for Accommodating the Use of NAMs

EPA report on a review of existing statutes, programmatic regulations, 
policies, and guidance that relate to vertebrate animal testing and the 
implementation and use of appropriate NAMs for regulatory purposes.

2022

Develop Baselines and Metrics for Assessing Progress
Progress and summary metrics on reducing vertebrate animal testing 
requests and use.

Annually starting in 
Q4 2022
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Status of NAMs Work Plan Deliverables

Milestones/Deliverables Projected Dates

Establish Scientific Confidence in NAMs and Demonstrate Application to Regulatory Decisions

U.S. National Academies of Sciences, Engineering, and Medicine study that 
evaluates the variability and relevance of existing mammalian toxicity tests 
and reviews frameworks for validation and establishing scientific confidence 
in testing methods. 

2023

A scientific confidence framework to evaluate the quality, reliability, and 
relevance of NAMs.

Q4 2024

An initial set of reporting templates which may be used by EPA and 
stakeholders that capture the range of specific NAMs used for Agency 
decisions.

Q4 2024

Case studies for evaluating application to risk assessment and 
demonstrating protection of human health and the environment.

Ongoing
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Status of NAMs Work Plan Deliverables

Milestones/Deliverables Projected Dates

Develop NAMs to Address Scientific Challenges and Fill Important Information Gaps
EPA Strategic Research Action Plans outlining research products to develop 
and apply NAMs.

Q1 2023

Encourage development of NAMs through mechanisms such as the STAR 
program and facilitate partnerships with organizations focused on establishing 
scientific confidence in alternative methods.

Ongoing

Engage and Communicate with Stakeholders

EPA website to house information about NAM efforts and progress being upon 
release of the work plan.

2020

Public webinars and, where appropriate, peer-review on deliverables from this 
work plan.

Ongoing

Complete NAMs pilot training program in the fourth quarter (Q4) of 2023 and 
provide regular scientific exchanges and progress updates through Agency 
sponsored and partner organized events.

Q4 2023 and 
Ongoing
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FY19 – FY23 Animal Use Metrics for ORD

Fiscal Year

• The numbers in FY19 – 23 include those 
mammals used in contract research 
activities. 

• Baseline numbers (FY16 – 18) do not include 
mammals used in contract research activities 
due to a lack of tracking at that time.

• The numbers in FY19 – 21 are likely reduced 
due to impacts of the ORD reorganization/lab 
remodeling and pandemic (FY20 – 21).

• A system for estimating vertebrate animal 
use in research (includes fish and 
amphibians in addition to mammals) has 
been established. 

• A baseline for vertebrate animal use will be 
established after data has been collected 
over multiple years. 

Milestone/Deliverable: Progress and summary metrics on reducing vertebrate animal testing requests and use. (FY22+).

Develop 
Baselines and 

Metrics
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FY19 – FY23 Animal Reduction Metrics for OPP

Fiscal Year

• The reduction in the number of animals were 
due to Hazard and Science Policy Council 
(HASPOC), Chemistry and Acute Toxicology 
Science Advisory Council (CATSAC), and Acute 
Dermal waivers granted under the updated 
waiver policies (2016/2020).

• Beginning in 2023, OPP expanded tracking of 
data waivers granted for the acute “6-pack”.

• The total number waivers granted from FY19 – 
23 were:

• HASPOC - 235
• CATSAC - 62
• Acute Dermal - 229

• The number of NAM-related endpoint data 
submissions from FY19 – 23 were:

• Eye Irritation - 81
• Skin Irritation - 57
• Skin Sensitization - 25

Milestone/Deliverable: Progress and summary metrics on reducing vertebrate animal testing requests and use. (FY22+).

Develop 
Baselines and 

Metrics
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Review of Statutes and Regulations for
Flexibility in Incorporating NAMs

https://www.epa.gov/system/files/docume
nts/2024-09/epa-regulatory-review-
report_final_508_0.pdf

• Topics covered in report:

• Overview of main environmental statutes and language on testing 
requirements.

• Regulatory requirements for vertebrate animal testing
• Research to support regulatory use of NAMs
• Current use of NAMs in decision making
• Barriers to implementation and use of NAMs

• Statutes are written broadly in most cases and do not generally preclude 
the use of scientific information or data from NAMs. 

• Some regulations require a minimum set of vertebrate animal testing for 
decision-making. 

• Program offices will need to identify the regulations that require revisions 
to incorporate data from NAMs when feasible and scientifically justified.

Milestone/Deliverable: EPA report on a review of existing statutes, programmatic regulations, policies, and 
guidance that relate to vertebrate animal testing and the implementation and use of appropriate NAMs for 
regulatory purposes.

Evaluate 
Regulatory 
Flexibility
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EPA STAR Grants

https://www.epa.gov/research-grants/star

• EPA STAR grants on Advancing Actionable Alternatives to Vertebrate 
Animal Testing for Chemical Safety Testing (2019-22/25)

• Awarded ~$4.2 million to 5 universities
• Vanderbilt University, University of California Riverside, Louisiana 

State University, Oregon State University, Johns Hopkins 
University 

• EPA STAR grants on Advancing Toxicokinetics for Efficient and Robust 
Chemical Evaluations (2020 – 2023/2025)

• Awarded ~$4 million to 5 institutions
• Purdue University, Woods Hole Oceanographic Institution, 

Vanderbilt University, Texas A&M, and University of Nevada Reno
• EPA STAR grants on Development of Innovative Approaches to Assess 

the Toxicity of Chemical Mixtures (2022-25) 
• Awarded ~ $7.7 to 11 institutions
• www.epa.gov/research-grants/development-innovative-

approaches-assess-toxicity-chemical-mixtures-research-grants
• EPA STAR grants on Advancing Sustainable Chemistry. (Awardees 

Coming Soon)

Milestone/Deliverable: Encourage development of NAMs through mechanisms such as the STAR program and facilitate 
partnerships with organizations focused on establishing scientific confidence in alternative methods. (Ongoing).

Develop NAMs to 
Address 

Information Gaps

http://www.epa.gov/research-grants/development-innovative-approaches-assess-toxicity-chemical-mixtures-research-grants
http://www.epa.gov/research-grants/development-innovative-approaches-assess-toxicity-chemical-mixtures-research-grants
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Partnerships with External Organizations 
Focused on Scientific Confidence

• Partnering with 4 external organizations on an inter-
laboratory prevalidation study of a human thyroid 
microtissue assay.

• Partnering with 5 external organizations on the 
development and validation of 17 assays for 
developmental neurotoxicity.

• Co-leading OECD activity to update Guidance 
Document 34.

• Collaborating with NICEATM to catalog characteristics 
of OECD Test Guideline validation studies.

• Participating in the NIH Complement-ARIE program.

• Co-authored ICCVAM report on the validation, 
qualification, and regulatory acceptance on NAMs in 
2024.

Milestone/Deliverable: Encourage development of NAMs through mechanisms such as the STAR program and facilitate 
partnerships with organizations focused on establishing scientific confidence in alternative methods. (Ongoing).

Develop NAMs to 
Address 

Information Gaps
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Case Studies Evaluating Application of NAMs

• Co-leading APCRA case study on using bioactivity for screening 
level risk assessment.

• Leading APCRA case study on application of in vitro toxicokinetics 
to regulatory decisions.

• Co-leading APCRA case study on incorporating NAMs into 
species sensitivity distributions for ecological risk assessment.

• Leading international APCRA case study on developing 
quantitative structure use relationship models for predicting 
chemical functional use.

• Leading international APCRA case study on evaluating 
quantitative concordance between human and rodent toxicity data.

• Participating in OECD case study on systemic toxicity.

Milestone/Deliverable: Case studies for evaluating application to risk assessment and demonstrating protection of human 
health and the environment (Ongoing).

Establish Scientific 
Confidence and 

Demonstrate 
Application
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EPA NAM Pilot Training Program and Regular 
Scientific Exchanges and Progress Updates

Deliverables: Completed training pilot and used lessons learned for trainings going forward. Provide 
regular scientific exchanges and progress updates through Agency sponsored and partner organized 
events (ongoing – 2026). TSCA New Chemicals Outreach due 2026.

• Public NAMs training website serves as a resource for EPA NAMs training 
materials and recordings

• Available Resource Hubs & Tool User Guides (comptox.epa.gov): ChemExpo 
Knowledgebase, Cheminformatics Modules, CompTox Chemicals Dashboard, 
Generalized Read-Across, ECOTOX Knowledgebase, Sequence Alignment to 
Predict Across-Species Susceptibility

• Available Tool Tips Videos: CompTox Chemicals Dashboard (6), ECOTOX (6)

• NAMs Update email bulletin to share progress and updates, email 
NAM@epa.gov to join! 

https://www.epa.gov/chemic
al-research/new-approach-

methods-nams-training

Pr
og

re
ss

Engage and 
Communicate 

with Stakeholders

mailto:NAM@epa.gov
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NAMs Tools Trainings

12

Upcoming: 
o March 2025: CompTox Tools 

training at Society of Toxicology 
conference in a Satellite Meeting

o April 2025: Interactive training 
on Sequence Alignment to 
Predict Across-Species 
Susceptibility (SeqAPASS) tool

o Late 2025: In-person high-
throughput toxicokinetics 

Engage and 
Communicate 

with Stakeholders



Office of Research and Development

13

NAM Conference Topic Survey

• More than 40 submissions from 30 individuals/ 
organizations

• Many submissions included multiple topics
•  All of the topics on the agenda are from YOU!!!

• Validation

• Exposure

• Toxicokinetics/IVIVE

• Omics

• Thank you for your input!
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Overview of Day 1

Validation Update 
1:30 – 2:00 pm ICCVAM Validation Report and NICETAM Activities Nicole Kleinstreuer (NICEATM)

2:00 – 2:30 pm Building Confidence in NAMs via Validation Standard Setting in a 
Revised OECD GD 34 

Alison Harrill (EPA)

Exposure NAMs
2:30 – 3:00 pm Development and Application of Exposure NAMs in EPA’s 

ExpoCast Project 
Kristin Isaacs (EPA)

3:00 – 3:30 pm Break

3:30 – 4:00 pm Integrating Geospatial Exposure Models with NAMs to Evaluate 
Health Risks from Environmental Chemicals 

Kyle Messier (NIEHS)

4:00 – 4:30 pm Leveraging Non-Targeted High-Resolution Mass Spectrometry to 
Reveal the Complete PFAS Fingerprint in Maryland

Sin Urban (Maryland 
Department of Health)

4:30 – 5:00 pm Human and Environmental Exposure Framework for Biosolids Carsten Prasse (Johns Hopkins 
University)

5:00 – 5:10 pm Session Wrap Up Annette Guiseppi-Elie (EPA)
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ICCVAM Validation Report 
and NICEATM Activities

Nicole C. Kleinstreuer, PhD
Director, NTP Interagency Center for the Evaluation of Alternative 

Toxicological Methods

Executive Director, Interagency Coordinating Committee for the 
Validation of Alternative Methods

EPA NAMs Conference
5th November, 2024



Biomedical 
Research 

Validation/ 
Qualification

Adoption & 
Implementation

The NAMs Confidence Continuum: 
from Biomedical Research to 
Validation/Qualification to 

Adoption & Implementation  

etc.



Purpose:  To catalyze the development, standardization, 
validation and use of human-based new approach 
methodologies (NAMs) that will transform the way we do 
basic, translational, and clinical sciences

Goals:
1. Better model and understand human health and disease 

outcomes across diverse populations.
2. Develop NAMs that provide insight into specific biological 

processes or disease states.
3. Validate mature NAMs to support regulatory use and 

standardization.
4. Complement traditional models and make biomedical 

research more efficient and effective.

Complement-ARIE: Complement Animal 
Research in Experimentation 

https://commonfund.nih.gov/complementarie 

https://commonfund.nih.gov/complementarie


• Comprehensive centers will require embedded 
projects on in vitro, in chemico, and in silico 
approaches plus combinatorial approaches.

• Cores will include administrative, validation, 
resources, and training components.

• Phased milestone-driven projects that pilot 
some of the truly innovative approaches can 
also be transitioned for integration with the 
centers.

Complement-ARIE: Comprehensive center model

Key partners for validation networks 
include: ICCVAM, FDA, EPA, 
ICATM members, OECD, etc.



Interagency Coordinating Committee on the Validation of Alternative Methods

"To establish, wherever feasible, guidelines, recommendations, and 
regulations that promote the regulatory acceptance of new or revised 
scientifically valid toxicological tests that protect human and animal health 
and the environment while reducing, refining, or replacing animal tests and 
ensuring human safety and product effectiveness." 

PUBLIC LAW 106–545 (42 U.S.C. 285l-3)

• Consumer Product Safety Commission
• Department of Agriculture
• Department of the Interior
• Department of Transportation
• Environmental Protection Agency
• Food and Drug Administration 
• Occupational Safety and Health Administration
• National Institute for Occupational Safety and Health
• Agency for Toxic Substances and Disease Registry
• National Cancer Institute

• National Inst of Environmental  Health Sciences
• National Library of Medicine
• National Institutes of Health
• Department of Defense
• Department of Energy
• National Institute of Standards and Technology (since 2017)
• Dept of Veterans Affairs Office of Research and Development

(since 2020)
• National Center for Advancing Translational Sciences (since 2024)

Suzy Fitzpatrick
FDA/CFSAN

Natalia Vinas
DoD

ICCVAM Co-chairs

More information:  https://ntp.niehs.nih.gov/go/iccvam

Nicole Kleinstreuer
Executive Director, ICCVAM

Director, NICEATM

U.S. Validation Body: 
ICCVAM Authorization Act of 2000 

https://ntp.niehs.nih.gov/go/iccvam


• NTP Interagency Center for the Evaluation of 
Alternative Toxicological Methods (NICEATM)

• Office within the Division of Translational Toxicology 
(DTT), National Institute of Environmental Health 
Sciences (NIEHS)

• Provides scientific leadership and operational support 
for ICCVAM and ICCVAM workgroup activities
– NAMs development, evaluation, validation, and implementation
– Data compilation and review
– Computational tools development
– ICCVAM meeting and teleconference support

• Advised by Scientific Advisory Committee on 
Alternative Toxicological Methods (SACATM) 

More information: https://ntp.niehs.nih.gov/go/niceatm 

What is NICEATM?

https://ntp.niehs.nih.gov/go/niceatm


Interagency Coordinating Committee on the Validation of Alternative Methods

Existing ICCVAM Workgroups and Expert Groups
• Acute Toxicity

• Consideration of Alternative 
Methods

• Ecotoxicology

• In Vitro to In Vivo Extrapolation

• PFAS NAMs

• Read Across

• Validation 

• Developmental and Reproductive 
Toxicology

• Developmental Immunotoxicity

• FAIR Data standards

• Metrics 

• Microphysiological Systems

• Nanomaterials

• Ocular and Dermal Irritation

• Skin Sensitization 



Interagency Coordinating Committee on the Validation of Alternative Methods

Ensure adoption and 
use of new methods 
by both regulators 
and industry

Establish new 
validation approaches 
that are more flexible 
and efficient 

Connect end users 
with the developers 
of alternative 
methods

https://ntp.niehs.nih.gov/go/natl-strategy  https://ntp.niehs.nih.gov/go/ICCVAM-submit 

https://ntp.niehs.nih.gov/go/natl-strategy
https://ntp.niehs.nih.gov/go/ICCVAM-submit


Interagency Coordinating Committee on the Validation of Alternative Methods

Method Developers Forum (MDF)
• A proactive effort to highlight and implement the recommendations detailed within the VWG 

report and provide an opportunity for NAMs developers to interact with stakeholders around 
regulatory issues.

• Anticipate holding approximately 2-3 MDFs per year.
• Each iteration will focus on a specific endpoint/toxicity.

– First MDF focused on carcinogenicity (August 21-22, 2024).
– ICCVAM agencies and industry stakeholders summarize their 

information needs for carcinogenicity and potential contexts of use for NAMs.
– Developers demonstrate how their methods address the topic of interest and 

consider the key concepts from the VWG report in a webinar. 
– 10 submissions were reviewed and approved for presentation

• Future topics include cardiovascular toxicity, developmental toxicity, reproductive toxicity, 
neurotoxicity, systemic toxicity, specific target organ toxicity (e.g., liver).

https://ntp.niehs.nih.gov/go/developers-forums 

https://ntp.niehs.nih.gov/go/developers-forums
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MDF Process

https://ntp.niehs.nih.gov/go/developers-forums 

https://ntp.niehs.nih.gov/go/developers-forums


Ongoing NICEATM and ICCVAM Projects

Subscribe toNICEATMNews
https://ntp.niehs.nih.gov/go/niceatm

• Integrated Chemical Environment
• OPERA (QSAR/QSPR)
• Computational Chemistry
• Quantitative IVIVE
• Reference data curation
• Variability of in vivo data
• Acute Systemic Toxicity
• Dermal absorption
• Eye and skin irritation
• Skin sensitization
• Ecotoxicology
• Carcinogenesis
• Cardiovascular Toxicity
• Developmental Toxicity
• DNT Testing Battery
• Zebrafish models 
• Animal-free affinity reagents
• Microphysiological Systems
• Evolving Process of Validation

https://ntp.niehs.nih.gov/go/niceatm


Area of Focus: NAMs to Address PopVarS

https://ntp.niehs.nih.gov/go/popvar

Using New Approach Methodologies to Address Variability and Susceptibility 
Across Populations

Workshop report in prep to be 
submitted to Human Genomics 

shortly

Human Genomics Call for Papers
New Approach Methodologies to Address Population Variability and Susceptibility in Human Risk Assessment
Guest Editors: Helena Hogberg, PhD; Nicole Kleinstreuer, PhD; Kim To, PhD
Submission Status: Open  |  Submission Deadline: September 1 2024 Read more about the collection

https://www.biomedcentral.com/collections/NAMAPVS

https://ntp.niehs.nih.gov/go/popvar


OPERA v2.9 Models

https://github.com/NIEHS/OPERA 

https://github.com/NIEHS/OPERA


• Comparative analysis of 177 
pesticides with LD50 data 
between CaTMOS and EPA 
database

Bishop et al., Reg. Tox. Pharm., 2024   https://doi.org/10.1016/j.yrtph.2024.105614  

Case Study with EPA Environmental Fate and Effects Division

Application of CaTMOS: Pesticide Risk Assessment

https://doi.org/10.1016/j.yrtph.2024.105614


Report and
download

Important fragments

GPT 3.5

Automatic feature 
importance 

summarization

Chemical Grouping Workflow

Molecular 
Descriptors

Configuration 
File

Results 
Summary

Selected 
Options

Results

ImagesMoreira-Filho J.T., et al. (2024). J. Cheminformatics. 
https://github.com/NIEHS/Chemical-grouping-workflow 

https://github.com/NIEHS/Chemical-grouping-workflow


Application – DTT HTS initiative

Chemical space Cluster compoundsChemical database

Subset selection
Experimental testing
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https://www.niehs.nih.gov/news
/events/pastmtg/2022/nams20
22/index.cfm

Clustering and Classification Workshop
Convened international experts to discuss methods, their 
applications to guide toxicology research and inform hazard 
and risk assessment.​

Accomplishments:
•Defined the concept similarity for supervised and 
unsupervised approaches
•Introduced different approaches, corrected some 
misconceptions​
•Involved both NAM developers and users
•Established a consortium​ and a community for increasing 
communication and collaboration across sectors
•Ongoing and future: develop and share new 
ideas/concepts (best practices & innovation)

Mansouri K., et al. (2024). Env Health Persp 



Machine Automating Study Data Curation

Table location detection

Age Weight Mean Arterial Pressure
Experimental Group N (days) (g) …
Saline control 15 55 +-4 236 +- 4 …
0.1 mg 5 TiO2 5 50 +- 1 275 +- 9 …
…

Experimental group N Age (days) …

Saline control 15 55 +- 4 …

0.1 mg TiO2 5 50 +- 1 …

0.1 mg ROFA 4 52 +- 1

… 3 …

Caption: Table 1. Profiles of experimental …

Notes: N, number of rats. Values are mean …

Postprocessing

CNN
(DeepPDF)

Table structure prediction

Text extractionOLPR, ODS, ORNL

Identification   Extraction   Annotation

• Important for leveraging high-quality studies in the published literature
• Applications in systematic review of chemical effects
• Establishing reference datasets for validating new methods

Foster et al. 2024 Env Health Persp



Extraction workflow



Validation - precision

• Title
• Animal
• Age at treatment
• Body weight at treatment 
• Number of animals per treatment group
• Route of administration
• Dose
• Daily dosing 
• Dose day
• Animal checks during treatment 
• Body weights during treatment 
• Food consumption during treatment 
• Sacrifice
• Maternal body weight at sacrifice
• Fetal body weight at sacrifice, individual

• Fetal body weight at sacrifice, combined 
• Uterine weight
• Organ weights 
• Pregnancy status
• Number of Live fetuses
• Number of Dead fetuses 
• Fetal sex
• Number of Implantation sites 
• Number of Corpora lutea
• Number of Resorptions
• Placental evaluation
• Fetal exam, any type
• Fetal external examination
• Fetal visceral examination
• Fetal skeletal examination

 Extracted if the following variables are present (Y/N), the entity, and the 
source text:



https://ice.ntp.niehs.nih.gov/ 

ICE: The Integrated Chemical Environment

Bell et al. 2017 EHP 
 Bell et al. 2020 Tox In Vitro
Abedini et al. 2021 Comp Tox
Daniel et al. 2022 Front Toxicol 

https://ice.ntp.niehs.nih.gov/


HTS Data Exploration

22

Chemical Similarity

ICE Tools: Examples

Predicting Chemical Exposure: 
Body Tissues, Consumer Products



Risk Characterization of Triazole Fungicides using 
Human Biomonitoring and Mechanistic Data

Biomarkers

Cytome assay – 
Genotoxicity 

Oxidative Stress Markers 

Plasma Bile Acids 

Liver Enzymes 

Steroid Hormones

Urinary Triazoles 

Internal Dose Indicator

Marciano, et al. Regul Toxicol Pharm. 2024

Costa, et al. Chem Biol Interact. 2023

HQ Calculation at the 
highest quantified value:

EDI = 6.31 μg/kg-bw/day

HQ = 2.1
Farmers

EDI = 8.77 μg/kg-bw/day

HQ = 2.9
Rural Women Residents

Risk Calculations



v.4.0.2Concentration-Response Curves
• cHTS data from Tox21/ToxCast In Vitro to In Vivo Extrapolation

• Calculate equivalent doses from cHTS data
• Comparison with human exposure

Solve_oral_pbtk modelMechanistic Targets from ‘Active' in vitro assays

Association of in vitro molecular targets and 
human biomarker alterations

Marciano et al. 2024 STOTEN



Integrated Approach to Testing and Assessment 
(IATA) DNT Case Study for Prioritization

Guidance document to inform on the 
DNT IVB, its usage and interpretation 

IATA case studies to exemplify different 
regulatory needs 

Updated IATA case study for prioritization

Kreutz A et al. (2024)
Toxics 12(6):437



Advisory Committee to the NIH Director:
NAMS WORKING GROUP CHARGE

Catalyze the Development and Use of NAMs
• Identify the types of alternative methods and assess their general 

strengths and weaknesses for studying human biology, circuits, systems, 
and disease states

• Characterize the types of research, condition, or disease for which NAMs 
are most applicable or beneficial

• Articulate high-priority areas for NIH investment in the use and 
development with human applicability to:
o Advance progress into understanding specific biological processes or 

states
o Augment the tools and capabilities for biomedical research to 

complement and/or potentially replace traditional models



Implementing the ACD NAMs WG recommendations



New interactive database of validated/qualified NAMs

Collection of Alternative Methods for Regulatory Application
(CAMeRA)



Acknowledgments
The NICEATM Group

Subscribe toNICEATM
Newsemail list

Now Available: 
2022 – 2023 ICCVAM 

Biennial Report
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Building Confidence in NAMs via Validation 
Standard Setting in a Revised OECD GD 34
Alison Harrill, PhD
Associate Director for Toxicology, Center for Computational Toxicology and Exposure

Center for Computational Toxicology and Exposure

The views expressed in this presentation are those of the presenter and do not represent the views or policies of the U.S. EPA
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OECD Guidance Document 34
• Expert group 

working to update
• Pre-dates 

development of 
many in vitro NAM 
and in silico 
approaches

• Pre-dates the 
institution of the 
Defined Approach

• Best practices have 
changed somewhat
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Definitions and Recommendations from Existing 
GD34 Guidance

• OECD definition of “validation” as a  “process based on scientifically sound principles (5)(6) by 
which the reliability and relevance of a particular test, approach, method, or process are 
established for a specific purpose.”

• Reliability is defined as “the extent of reproducibility of results from a test within and among 
laboratories over time, when performed using the same standardised protocol.” 

• The relevance of a test method describes “the relationship between the test and the effect in the 
target species and whether the test method is meaningful and useful for a defined purpose, with 
the limitations identified.”

• Other recommendations… 
• “the validation process should be flexible and adaptable”, 
• performance must be “demonstrated using a series of reference chemicals”, and 
• “evaluated in relation to existing relevant toxicity data.” Mutual Acceptance of Data (MAD) system dictates data to 

be accepted from OECD TGs by all participating countries.

The foundation of the MAD system is the approximately 
150 OECD Test Guidelines (methods).
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Building international scientific support for a new 
method

Sub-working groups of the GD 34 revision 
project:
• Establishing readiness criteria
• Modernizing approaches to transferability 

studies (reliability)
• Special considerations for Defined 

Approaches
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Envisioning a more streamlined GD 34 process

A modernized GD 34 might look 
something like this, where there is 
more up-front work on technical 
characterization that streamlines 
flow to transferability studies and 
independent review. 
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What do validation efforts typically entail for OECD 
Test Guidelines?

• Transferability studies are typically performed across multiple labs to assess the variability 
of point estimates of the readout across labs (how reproducible is the result?)

• While all of the OECD Test Guidelines have been standardized into a formal method, a 
subset of these have been formally ‘validated’ using between-lab transferability studies

• To assess assay reliability in a validation study, performance is frequently assessed in both 
quantitative terms (variability around a point estimate) AND qualitative terms (how well 
the assay predicts the endpoint)

• To validate an assay, lists of reference chemicals with association (or lack thereof) to the 
measured effect are used to assess assay performance and reproducibility (reliability)
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Numbers of labs involved in transferability and 
validation studies that led to OECD TGs

• Not all OECD records of 
transferability studies had accessible 
data on the numbers of 
participating labs

• Participating lab numbers were 
based on the particular phase of 
validation that had greatest number 
of participating labs

Collaboration with NICEATM: Emily Reinke, Nicole Kleinstreuer



Office of Research and Development

Not all OECD TGs have undergone transferability 
studies to assess method reliability

Collaboration with NICEATM: Emily Reinke, Nicole Kleinstreuer
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Expectations for the size of reference chemical sets 
for NAMs exceeds those of in vivo TGs

• Data were extracted from 125 TGs covering vertebrate and invertebrate species and associated in vitro 
alternatives

• In vitro methods for both human health and biotic systems had a larger proportion of TGs that had been 
formally validated (81 and 83%) and had larger numbers of chemicals associated with the validation studies 
overall

• 55% of validated in vitro human health TGs > 61 chemicals, 34% had greater than 100 chemicals
• 16% of human health in vivo studies with >60 chemicals, only 8% had greater than 100 chemicals
• Majority of all biotic systems validation studies had 20 or fewer chemicals (1 in vitro with 61-100 

chemicals)

• In vitro test methods overall have larger chemicals sets for transferability and greater numbers of 
validation studies, although in vivo human health appeared to have larger numbers of 
participating labs

• One reason for the increase in numbers of test chemicals being used is that assessing reliability 
and relevance may be challenging, and doing so requires appropriate benchmarks.

Data are preliminary and analysis is ongoing

Collaboration with NICEATM: Emily Reinke, Nicole Kleinstreuer
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EPA efforts may inform scientific support elements 
that relate to reliability and relevance

• In what contexts do we need to require inter-laboratory validation 
versus ensuring the method is standardized? 

• How does the human relevance of the new approach compare to the 
“gold standard” or traditional test (if a comparator assay exists)? 

• Is the assay result reliable when compared to repeated studies using 
traditional approaches? 

• How do we contextualize a result from a new method, particularly if 
the result has more uncertainty than the traditional approach?
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Relevance: Cross-species concordance

Some expect that a human cell-
based NAM will be more predictive 
of human responses than an 
animal-based NAM due to species 
differences. 

If prediction is highly concordant, 
then the point estimate of the 
effect should overlap the human 
in-life point estimate.
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Relevance: Cross-species concordance
However, because NAMs are often 
MOA-based, the sensitivity may be 
greater, which means that the 
dose-effect linkage is less 
concordant with human, but 
potentially may be more protective 
of human responses.

Most frameworks for confidence 
building require predictions to be 
“as good or better” than current 
models.

A good starting place would be to 
assess concordance between doses 
and adverse effects that occur in 
both humans and animal models 
for the same chemicals.
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Benchmarks for assessing relevance in validation 
studies

• We can leverage pharmaceutical data to 
assess benchmarks for 

• Quantitative concordance – dose matching 
across species

• Qualitative concordance – hazard 
matching across species

• Pharmaceutical data have the benefit of 
providing both human (clinical) and 
rodent (non-clinical) dose-effect linkage 
data

Collaboration with APCRA: led by Chelsea Weitekamp
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Benchmarks for human relevance – dose 
concordance in pharmaceuticals

• Data derived from extracting relevant information from 
new drug applications (NDA) to the FDA

• Rodent doses adjusted to human equivalent dose

• Multiple studies submitted on single compounds – 5th 
percentile of the distribution of POD values for each 
species used as a conservative lower bound estimate

• Human administered dose associated with adverse event 
(AE) is not strongly concordant with mouse or rat, with 
mouse potentially more protective than rat

Collaboration with APCRA: led by Chelsea WeitekampQuantitative relevance
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Benchmarks for human relevance – dose 
concordance in pharmaceuticals

• Data derived from extracting relevant information from 
new drug applications (NDA) to the FDA

• Rodent doses adjusted to human equivalent dose

• Multiple studies submitted on single compounds – 5th 
percentile of the distribution of POD values for each 
species used as a conservative lower bound estimate

• Human administered dose associated with adverse event 
(AE) is not strongly concordant with mouse or rat, with 
mouse potentially more protective than rat

•  For drugs where we have internal dose (PK) information – 
internal dose for human associated with AE is more 
concordant with rodent 

Collaboration with APCRA: led by Chelsea Weitekamp
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Benchmarks for human relevance – dose 
concordance in pharmaceuticals

• Rat tends to be more concordant with mouse than either 
rodent species is with human

• ToxCast assay-> human is similar to human->rodent

• Provides a starting point for assessing where dose 
concordance should fall for NAM->human concordance

Collaboration with APCRA: led by Chelsea Weitekamp
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Benchmarks for human relevance – qualitative 
concordance for particular adverse events

• Nonclinical and clinical trial data have been analyzed from the 
perspective of qualitative concordance (presence/absence of 
effects)

• Monticello et al. 2016
• Low PPV (~30%) but high NPV (~86%)

Bar labels = # of 
drug compounds in 
analysis

There is a low concordance between rodent and 
human both when the effects are matched (hepatic-
hepatic) and when the effects are unmatched (hepatic-
any other adverse effect).

We can use these concordance estimates as potential 
benchmarks when assessing expectations for in vitro 
systems to predict effects in the human population.
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Reliability: What is an acceptable amount of 
variability around the assay estimate across studies?

For environmental chemicals, we 
typically do not have repeated 
studies on chemicals in human 
populations.
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We may be able to estimate 
variability around point estimates 
from repeat rodent studies as an 
appropriate benchmark for NAMs.

These benchmarks would inform 
reliability estimates from derived 
from between-lab reproducibility 
studies.

Reliability: Benchmarks for the amount of variability 
around the assay estimate
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Reliability: Benchmarks for the amount of variability 
around the assay estimate

What is an expected level of 
variance around a point estimate?

A potential benchmark is to 
examine variability around a POD 
using estimates from multiple 
animal studies on a chemical as a 
measure of reliability.

To do this, we can leverage 
ToxValDB, EPA’s largest repository 
of published in-life study data.



Office of Research and Development

28 different statistical models to approximate total variance, 
unexplained variance, and the spread of the residuals from 

statistical models of study-level points-of-departure in adult animals. 

Ly Pham et al. Comput Toxicol 2020

Reliability: Benchmarks for variability around the 
POD in repeated studies

The variance, as approximated by RMSE, is 0.45-0.56 
log10-mg/kg-bw/day. This helps us estimate a minimum 
prediction interval for a new estimation of study-level 

point-of-departure and to set a benchmark for NAMs to 
predict these values.
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Reproducibility of organ-level effects in repeat dose 
animal studies

• Data for 538 chemicals across 
2284 studies

• Study replicates considered at 
the chemical level

• Liver and kidney were associated 
with the greatest number of 
studies with positive reporting, 
yet had the lowest concordance 
of findings

• Can be used as potential 
benchmark for qualitative 
concordance of endpoint effects

Paul-Friedman et al. Comput Toxicol. 2023 Nov;28:1–17

Qualitative reproducibility of organ-level effect observations 
in repeat dose studies of adult animals
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Reliability: Contextualizing Variability of a New 
Method

If reproducibility in the new 
method is within the limits of 
historical in vivo data, but the 
variability of the new method is 
still greater than a comparator test, 
is there value in using the new 
approach?

Value of Information (VOI) can be 
used as a decision-making 
framework to contextualize trade-
offs in uncertainty around the POD, 
costs, and time to decision 
between a choice of methods than 
can lead to informing a decision.
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Value of Information: EPA-developed framework

Utilize the EPA-developed VOI framework that is ground-
breaking because it explicitly considers the impact of 
delay in decision-making.
The framework takes into account:

• Amount of uncertainty reduced
• Cost of additional toxicity testing
• Delay in obtaining and evaluating toxicity testing data

24
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25

Case Study: Value of Information associated with ETAP

25

The VOI analysis in this study aimed to answer the following question: given 
that additional toxicity testing data may be beneficial, which toxicity 
testing methodology and assessment process provides the most value? 

Case study compared chronic 2-year rodent toxicity test & assessment to 
shorter-duration transcriptomic study (ETAP)

Variability around the POD for ETAP was within estimates from Pham et al. 
2020.

Chemical 
Candidate

Short-Term In Vivo
Transcriptomic 

Study

Gene Activity
Dose Response 

Modeling

Reference Value 
Calculation

No

EPA Databases
and Literature

HH Toxicity 
Data?

Not Suitable for 
ETAP

Yes

Release 
Assessment

Transcriptomics Study and 
Human Health 

Assessment

Traditional Toxicity Testing 
and Human Health 

Assessment

Time Required <1 year 8 years

Quantitative uncertainty Modestly greater Modestly less

Costs ~$200,000 ~$4 million
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VOI considers socieoeconomic factors and public 
health benefit to assess return on investment

• Not testing a chemical may have a cost borne by the public in terms of 
healthcare costs arising from exposure to a chemical

• Economists think in terms of annualized health costs for a variety of outcomes, in 
terms of healthcare costs, lost productivity, and direct non-medical costs such as 
education or transportation

• Annual economic values for a variety of conditions have been estimated
• Ex: autism spectrum disorder ($69,530/year), asthma ($36,500/yr), pervasive developmental 

disorders ($10,538/yr), EPA economic guidance estimates fatality at $110,000/yr, considering 
a value of statistical life (VSL) of $8.8 mil and an 80-year life span

• Delay has a cost – Annualized healthcare costs accumulate over time if the 
exposure is not mitigated and are multiplicative based on the size of the 
affected population

• 100,000 people exposed for 5 years prior to mitigation with a $10k annual healthcare 
cost (total health cost is $5 billion)

• Mitigating exposure after 2 years saves the public $3 billion
• For VOI, we consider a time horizon over which benefits of a particular testing 

strategy may be realized, economists typically use a 20-year time horizon
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Additional socioeconomic cost to consider
• Another cost to be considered once a regulatory action is finalized – 

cost of control
• Variety of actions that can be taken – ex. reducing emissions, incorporating 

water treatment/purification modalities, excavating and moving soil, 
substituting one chemical in a product formulation for an alternative

• Under REACH (2021), annualized control costs had a mean of $50.6M and a 
median of $5.7M
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Two idealized decision makers in case study
• Benefit-Risk Decision Maker (BRDM): Chooses to regulate a chemical 

if the reduction in health cost (or increased health benefit) outweighs 
the associated cost of control

• Target-Risk Decision Maker (TRDM): Chooses to regulate a chemical if 
the (lower quantile of) risk exceeds the pre-specified target risk level

TRDM would need additional 
evidence to make a decision

Target risk level is greater than 
the uncertainty distribution, no 

regulatory action required

Target risk level is below the 5th 
percentile of uncertainty 

distribution, regulatory action is 
required

TRL: Prespecified Target Risk Level
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29

Contextualizing reliability of two assays with VOI analysis

29

360 Data Driven Scenarios Examined 
Comparing ETAP vs Traditional HHA ProcessDiverse Range of 

Chemicals
• SHEDS-HT exposure tertiles
• Population sizes (US)

• 33, 165, 330 million (10, 50, 100%)

• Time horizons
• 20, 40, 75 years

• Testing costs
• THHA $1M or $4M   (M=million)
• ETAP $200K or $250K   (K=thousand)

• Time from testing start to assessment 
finish

• THHA 6, 8, 14 years
• ETAP 0.5, 1, 2 years

• Control costs
• $50M or $23.1B for 25% reduction 

• Annualized health costs
• $1K, $10K, $110K

• Discount rate: 3, 5, 7% 

• Uncertainty around the point-of-departure
• SD about the mean for each assay from 

empirical measurements

• Additional uncertainty added to ETAP

Bold: Baseline scenarios; Not bold: sensitivity analysesTHHA: traditional human health assessment process
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New approach was preferred over the traditional 
approach in most scenarios, despite greater uncertainty 

in estimates derived from repeated studies
• The VOI Case study evaluated 360 scenarios 

• For each decision context, 9 baseline and 171 sensitivity scenarios

• Benefit-Risk Decision Maker (180 scenarios)
• In 82% of scenarios, ETAP was preferred with favorable ROI & ENBS
• 18% - no testing preferred
• Average benefit was $44 billion for BRDM

• Target-Risk Decision Maker (180 scenarios)
• ETAP was preferred in 89% of scenarios (ENBS) and 99% of scenarios (ROI)
• 7.2% - no testing preferred
• Average benefit was $81 billion for TRDM

30EPA Transcriptomic Assessment Product (ETAP) and Value of Information (VOI) Case Study | US EPA

https://www.epa.gov/chemical-research/epa-transcriptomic-assessment-product-etap-and-value-information-voi-case-study


Office of Research and Development

Conclusions

• Understanding the validation efforts to date may help inform 
optimization of the numbers of participating labs and reference 
chemicals required for building confidence in a method’s reliability

• Retrospective analysis of available in vivo datasets allows for 
understanding of appropriate qualitative and quantitative 
benchmarks for assessing relevance and reliability of NAMs

• Value of Information frameworks can assist with contextualizing 
relative value in socioeconomics terms of using a more uncertain 
versus less uncertain assay or method

• These efforts inform updates to confidence building frameworks, 
including the GD 34 revision
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Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or 
policies of the U.S. EPA.
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NASEM (2017)

NAMs and Chemical Risk

“Recent advances in high throughput 
toxicity assessment, notably the 
ToxCast and Tox21 programs… and 
in high throughput computational 
exposure assessment [ExpoCast] 
have enabled first-tier risk-based 
rankings of chemicals on the basis of 
margins of exposure”

Material from John WambaughOffice of Research and Development3



NASEM (2017)

New approach methodologies (NAMs) enable risk assessors to 
more rapidly address public health challenges and chemical regulation

“Recent advances in high throughput 
toxicity assessment, notably the 
ToxCast and Tox21 programs… and 
in high throughput computational 
exposure assessment [ExpoCast] 
have enabled first-tier risk-based 
rankings of chemicals on the basis of 
margins of exposure”

Material from John WambaughOffice of Research and Development4

NAMs and Chemical Risk



Exposure Pathways from Source to Receptor

Office of Research and Development5



Critical Exposure-Relevant Domains

 Chemical use and emission. 
Provides critical information for 
identifying chemical sources, 
exposure pathways, and relevant 
models for a given chemical.

 Media occurrence, environmental 
surveillance, and biomonitoring. 
Provides exposure data for 
evaluating predictive models.

 Toxicokinetics. Provides real-world 
exposure context to in vitro high-
throughput screening data and 
biological receptor monitoring 
information.

Office of Research and Development6

Exposure Pathways from Source to Receptor



Traditional Exposure Data are Scarce

Percent of Commercial Sector 
with Traditional Monitoring Data

Percent of Commercial Sector 
with Exposure Estimates

Office of Research and Development7

 Examined combined list 
of 38,715 chemicals from 
government regulatory 
inventories

Available Use and Emission 
Data

Isaacs et al., J Exp. Sci. Env. Epidem. (2022)



Traditional Exposure Data are Scarce

The ExpoCast project and its collaborators are working to fill gaps in exposure data for 1000s 
of chemicals using high-throughput new approach methods (NAMs) for exposure

Percent of Commercial Sector 
with Traditional Monitoring Data

Percent of Commercial Sector 
with Exposure Estimates

Office of Research and Development8

 Examined combined list 
of 38,715 chemicals from 
government regulatory 
inventories

Available Use and Emission 
Data

Isaacs et al., J Exp. Sci. Env. Epidem. (2022)



New Approach Methods and Exposure

Defined 7 classes of Exposure NAMs 
oriented toward high-throughput 
application: suitable for dealing with
the thousands of chemicals in commerce 
with limited sources of chemical 
exposure information

Office of Research and Development9



Exposure NAMs in the ExpoCast Paradigm

Office of Research and Development10



Curation of Chemical Descriptor NAMs

Office of Research and Development11



Curation of Chemical Descriptor NAMs

https://comptox.epa.gov/chemexpo/

https://comptox.epa.gov/dashboard/Office of Research and Development12
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Curation of Chemical Descriptor NAMs

• Other curation efforts have focused on media occurrence of 
chemicals

• 63 million+ chemical records from 20 sources mapped to 
harmonized chemical identifiers and ~30 media categories

• 3271 unique chemicals
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Machine Learning NAMs
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High-throughput Measurement NAMs

 “Targeted” Analysis:
• We know exactly what were looking for
• 10s – 100s of chemicals

 “Non-Targeted” Analysis (NTA):
• We have no preconceived lists
• 1,000s – 10,000s of chemical

 NTA research is being performed both in-house 
by EPA investigators and via contract

 Key focus on developing reproducible and defensible NTA methods and results
 Ultimate goal is to develop tools, databases, and workflows for rapid analysis of 

any sample for chemicals of interest, i.e. exposure forensics

Targeted Analysis NTA

Material from Jon Sobus
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High-throughput Measurement NAMs

Current Focus and Challenge: How can we quantify concentrations of chemicals in media using NTA?



Towards Quantitative NTA (qNTA)

Material from Jon SobusOffice of Research and Development17

Methods are being 
developed for selecting 
appropriate calibration 
surrogates and 
characterizing qNTA 
performance



Towards Quantitative NTA (qNTA)

Material from Jon SobusOffice of Research and Development18



High Throughput Exposure Model NAMs

Mechanistic 
description of the 
built environment 

and exposure 
processes, 

including temporal
variability

Increasing Complexity

Office of Research and Development19

Level of aggregation across sources, 
routes, scenarios, chemicals

Description of 
human behavior 
or population

• All models vary in complexity
and data needed to describe
chemical exposure

• High throughput exposure 
(HTE) models can handle 
many chemicals with 
minimal descriptive 
information

• HTE models can provide 
rough but quantitative 
estimates of exposure



High Throughput Exposure Model NAMs

Isaacs et al., Env. Sci. Tech. (2014)Consumer

Ambient

Ecological Barber et al., (2017)
Biryol et al., (2017)

Meyer et al., ACS Sustain Chem Eng. (2019)

Dietary

Occupational
Minucci et al., Env. Int. (2023)
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Evaluation Framework NAMs and Consensus 
Models

Office of Research and Development21



Evaluation Framework NAMs and Consensus 
Models

Office of Research and Development22



Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian methods to 
incorporate multiple models into 
consensus forecasts for 1000s of 
chemicals within the Systematic 
Empirical Evaluation of Models 
(SEEM) (Wambaugh et al., 
2013,2014)

Wambaugh et al., Cur. Opin. Toxicol. 2019Office of Research and Development23
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 We use Bayesian methods to 
incorporate multiple models into 
consensus forecasts for 1000s of 
chemicals within the Systematic 
Empirical Evaluation of Models 
(SEEM) (Wambaugh et al., 
2013,2014)

 We currently use biomonitoring 
data from the National Health 
and Nutrition Examination 
Survey (NHANES)

 We infer parent chemical 
exposures from NHANES
urine and serum metabolite 
measurements

Evaluating Exposure Models with 
the SEEM Framework



 We use Bayesian methods to 
incorporate multiple models into 
consensus forecasts for 1000s of 
chemicals within the Systematic 
Empirical Evaluation of Models 
(SEEM) (Wambaugh et al., 
2013,2014)

 We currently use biomonitoring 
data from the National Health 
and Nutrition Examination 
Survey (NHANES)

 We infer parent chemical 
exposures from NHANES
urine and serum metabolite 
measurements

Evaluating Exposure Models with 
the SEEM Framework

Wambaugh et al., Cur. Opin. Toxicol. 2019Office of Research and Development25



Apply calibration and estimated uncertainty to other chemicals

 We use Bayesian methods to 
incorporate multiple models into 
consensus forecasts for 1000s of 
chemicals within the Systematic 
Empirical Evaluation of Models 
(SEEM) (Wambaugh et al., 
2013,2014)

 We currently use biomonitoring 
data from the National Health 
and Nutrition Examination 
Survey (NHANES)

 We infer parent chemical 
exposures from NHANES
urine and serum metabolite 
measurements

 We apply the SEEM regression 
to thousands of other chemicals 
with predictors

Evaluating Exposure Models with 
the SEEM Framework

Wambaugh et al., Cur. Opin. Toxicol. 2019Office of Research and Development26



SEEM3 Collaboration

 Third generation SEEM model incorporates 
12 exposure predictors, including high-
throughput exposure models from 
ExpoCast and its collaborators

 SEEM3 first predicts relevance of four 
exposure pathways from chemical 
structure using machine learning

 Predictors are weighted according to their 
ability to explain NHANES data

Office of Research and Development27 Ring et al., Env. Sci. Tech. 2019



SEEM3 Collaboration

 Third generation SEEM model incorporates 
12 exposure predictors, including high-
throughput exposure models from 
ExpoCast and its collaborators

 SEEM3 first predicts relevance of four 
exposure pathways from chemical 
structure using machine learning

 Predictors are weighted according to their 
ability to explain NHANES data

 SEEM3 consensus model provides 
estimates of human median intake rate 
(mg/kg/day) for nearly 500,000 chemicals 
via the CompTox Chemicals Dashboard 
(http://comptox.epa.gov/dashboard)

Office of Research and Development28 Ring et al., Env. Sci. Tech. 2019

http://comptox.epa.gov/dashboard


SEEM3 Collaboration

 Third generation SEEM model incorporates 
12 exposure predictors, including high-
throughput exposure models from 
ExpoCast and its collaborators

 SEEM3 first predicts relevance of four 
exposure pathways from chemical 
structure using machine learning

 Predictors are weighted according to their 
ability to explain NHANES data

 SEEM3 consensus model provides 
estimates of human median intake rate 
(mg/kg/day) for nearly 500,000 chemicals 
via the CompTox Chemicals Dashboard 
(http://comptox.epa.gov/dashboard)

 SEEM4: Considering cohort in evaluation 
data (including new NHANES data for 
children) and HT model predictions

Office of Research and Development29 Ring et al., Env. Sci. Tech. 2019

http://comptox.epa.gov/dashboard
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Toxicokinetics NAMs

Wetmore et al. (2012) +204 chemicals
Wetmore et al. (2015) +163 chemicals 
Wambaugh et al. (2019) + ~300 chemicals

In vitro Measurements

Material from John Wambaugh
Machine Learning Models

• Chemical-specific data for 
toxicokinetics (TK) are as sparse as 
they are for exposure

• High-throughput TK measurements
have provided data for nearly 1000
chemicals over the past decade

Rotroff et al. (2010) 35 chemicals

• However, thousands of chemical still 
have no data – therefore we employ 
machine learning and QSAR 
approaches

• Data and models incorporated into 
open source R package, httk:
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High throughput in vitro 
screening + toxicokinetics NAMs 
can estimate intake exposures 
needed to cause bioactivity

Consensus exposure rates 
with uncertainty
(e.g., SEEM3)

Prioritization NAMs: Risk-Based Evaluation in Practice

Estimates of bioactivity, TK, and exposure are available for thousands of chemicals from:
https://comptox.epa.gov/dashboard/

https://comptox.epa.gov/dashboard/


 Informing an international 
government-to-government 
initiative advancing risk evaluation

 Evaluating chemicals in 
state regulatory programs

 Screening candidates for chemical 
prioritization under TSCA

Office of Research and Development32

Prioritization NAMs: Risk-Based Evaluation in Practice



In Review…
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Summary
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 Exposure and toxicokinetic data are required as critical input to risk-based prioritization and screening of chemicals.

 The ExpoCast project seeks to develop the data, tools, and evaluation approaches required to generate rapid and 
scientifically-defensible:

• Exposure predictions for the full universe of existing and proposed commercial chemicals.

• The toxicokinetic data required to relate bioactive concentrations identified in high-throughput screening to 
predicted real-world doses (i.e. in vitro-in vivo extrapolation).

 We are developing and applying computational and analytical new approach methods for exposure science and 
toxicokinetics that are appropriate for application to 1000s of chemicals.

 Rapid prediction of chemical exposure and bioactive doses allows prioritization based upon risk.

 We aim to expand our current approaches to individual cohorts and populations.
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Overview

Exposome

Geospatial Exposomics via integration of spatial exposure and hazard NAMs

GeoTox Software

Best-Practices in Software to Address Complex Challenges



Exposomics

Observed

Phenome

Exogenous

Exposome

Endogenous 

Genome Transcriptome Proteome Epigenome Microbiome Metabolome



Internal Exposomics

Non-Targeted 
Analysis

Novel Exposure 
Discovery

High Chemical 
Throughput

Individual Biological 
Samples

-Omic measurements

Low Sample Size Throughput

Expensive

Batch/Lab Effects

[Geo] Space/Time Resolution 

[Geo] Space/Time Variability

Endogenous/Exogenous Specificity

Strengths Limitations



Geospatial Exposomics

Source-to-Outcome Cascade: 
Sequential and necessary steps to 
result in an individual or population 
health outcome



1. Teeguarden JG, Tan YM, Edwards SW, Leonard JA, Anderson KA, Corley RA, Kile ML, 
Simonich SM, Stone D, Tanguay RL, Waters KM. Completing the link between exposure 
science and toxicology for improved environmental health decision making: the aggregate 
exposure pathway framework.

2. http://aop.wiki.org; Society for the Advancement of Adverse Outcome Pathways 

Aggregate Exposure 
Pathway1

Adverse Outcome
Pathway2
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http://aop.wiki.org/
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AEP is a comprehensive 
external analysis of source, 
media, and transformations

AOPs provide a linkage 
specific biological target, 
pathway or process by a 
stressor and an adverse 
outcome(s) considered 

relevant to risk assessment

AEP + AOP = GeoTox



Source-to-Outcome Workflow

Data Object

Method



Introducing the GeoTox R package

• Open Source
• Test Driven
• Documented
• Extensible

Computational Best Practices

• Object Oriented
• Tidyverse, pipe-able, |> 
• Tracks exposure, population 

characteristics, dose-response, spatial 
boundaries, etc.

Methodology



GeoTox Object



Geospatial Risk Mapping of Chemical Mixtures

Example 1
• 7 chemicals in air 
• 1 Assay: H2AX Histone 

Modification
• Generalized Concentration 

Addition
• Mapped risk as quantified by 

assay response



Multi-Assay Risk Mapping of Chemical Mixtures

Example 2
• 40+ chemicals in air 
• 200+ Assays Based on Key 

Characteristics of Carcinogens 
(KCC)

• GCA, IA, Hazard Quotient
• “p-th total quantile of the q 

assay-level quantiles”

- N chemicals
- M assays

q-th mixture 
response (e.g. 

GCA quantile, HQ) 
of each assays

p-th total quantile 
of assay 

summaries



Multi-Assay Risk Mapping of Chemical Mixtures



Multi-Assay Risk Mapping of Chemical Mixtures

Assay-level response

Quantile of Assay-Level



Limitations + Future Directions



Software and Computational Best-Practices

Test Driven Development

Continuous Integration

Build Checks

Style / Linting

Workflows / Pipelines

22



Best Practices are Needed for Complex Environmental Health Pipelines

Geospatial modeling and GeoTox offer a 
tractable approach for quantifying the 
exposome health impacts 

Need best practices to build towards a 
very complex analysis and understanding

(1) In-Situ Monitoring Data (2) Atmospheric 
/ Geophysical Data (3) Census Data (4) In-
Vitro Screening Data (5) Concentration-
Response Modeling (6) Probabilistic 
Models (7) … 

29
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 solid byproduct of sewage treatment processes 

mwrd.org

What are biosolids?



Land application (51%)
(25% for Agriculture)

Incineration (16%)

Other Management Practices (10%)

Surface Disposal (1%)

Landfilling (22%)

EPA, 2021

4.75 million dry metric tons of biosolids are
   generated each year  



Land application of biosolids

Biosolid land application can be beneficial:
 Improves soil qualities
 Supplies nutrients
 Diverts from landfilling & incineration

Current federal regulation (40 CFR Part 503) of biosolid quality 
includes:
 Limits on 10 heavy metals
 Requirements for pathogen & vector attraction reduction

 Currently, no organic contaminants are regulated in biosolids



Example of organic contaminants in biosolids: PFAS 



< 5% of compounds are known 
         (highlighted in yellow; based on
          EPA biosolids list)

Biosolids contain a large number of unknown organic compounds
(e.g. pharmaceuticals, industrial chemicals, pesticides, naturally occurring compounds, …)  

High-resolution mass spectrometry
system available in Prasse lab.



< 5% of compounds are known 
         (highlighted in yellow; based on
          EPA biosolids list)

Biosolids contain a large number of unknown organic compounds
(e.g. pharmaceuticals, industrial chemicals, pesticides, naturally occurring compounds, …)  

High-resolution mass spectrometry
system available in Prasse lab.

We need to develop approaches that aid in the 
identification of toxic compounds in complex mixtures



Characterize the occurrence, fate, transport and risks of
  novel biosolid-associated contaminants (BOCs)



Characterize the occurrence, fate, transport and risks of
  novel biosolid-associated contaminants (BOCs)

Develop and apply 
a health risk-driven 

prioritization 
framework for BOCs

Objective 2



• 16 samples across U.S. and 
Canada:

• U.S.: 13 samples
• Region 2: 2 samples
• Region 3: 3 samples
• Region 5: 2 samples
• Region 7: 2 samples
• Region 9: 4 samples

• Canada: 3 samples

13

Regional and Geographic Offices. 
https://www.epa.gov/aboutepa/regional-and-geographic-
offices. Accessed 2023 Aug 08

Interested in compounds present in > 80% of samples

Biosolid sampling



• Specimens were extracted via 
QuEChERS with dSPE

• Extracts analyzed via LC-HRMS
• Positive: A) 1 mM ammonium fluoride, B) 

0.1% formic acid in methanol
• Negative: A) 1 mM ammonium fluoride, B) 

acetonitrile
• Full Scan/data-dependent MS2 (top 10)

14

Biosolid preparation and analysis
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• Perform Quality Control (QC)-based peak area normalization
• Detection in ≥50% pooled QCs (pooled biosolid samples)

• %RSD before normalization ≤30%

• %RSD after normalization ≤25%

• Detected in all pooled QC replicates
• Peak rating ≥6 

16

LC-HRMS data analysis



Peak rating examples for the same feature in different 
samples (scored on a scale from 0-10)

17



• Perform Quality Control (QC)-based peak area normalization
• Detection in ≥50% pooled QCs (pooled biosolid samples)

• %RSD before normalization ≤30%

• %RSD after normalization ≤25%

• Detected in all pooled QC replicates
• Peak rating ≥6 
• Detected in at least 80% of biosolid samples 

18

LC-HRMS data analysis



19

71,651

792
451

# Features originally detected

# Features remaining after review and 
removing background and low-quality 
peaks, in-source fragments, and isotopes

# Features that fulfilled all QC-based filter 
criteria

Feature counts after different processing steps



Confidence Level assignment (Schymanski criteria)
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• 92 compounds assigned confidence Level 1 & 2
• 58/92 compounds reported for the first time in biosolids

• 77.4% of compounds have an unknown structure (Level 3-5)

Confidence Level assignment (Schymanski criteria)



Source: Harmonized Functional Use data from the Chemicals and Products Database (CPDat) 
              via  EPA′s ChemExpo site (https://comptox.epa.gov/chemexpo/get_data/)

Top 10 use categories of detected compounds



Characterize the occurrence, fate, transport and risks of
  novel biosolid-associated contaminants (BOCs)

Develop and apply 
a health risk-driven 

prioritization 
framework for BOCs

Objective 2



https://www.epa.gov/chemical-research/cheminformatics

EPA Cheminformatics Hazard Comparison
  Module (HCM)



Hazard assessment – Biosolid samples
Categorization based on hazard score Categorization based on data source authority

Chronic endpoints

Acute endpoints



Hazard assessment – Biosolid samples
Categorization based on hazard score Categorization based on data source authority



Hazard assessment – Biosolid samples



𝑨𝑨𝑨𝑨𝑨𝑨.𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 𝒔𝒔𝒔𝒔𝒔𝒔𝒓𝒓𝒓𝒓 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Compound prioritization approach

Hazard score categories: low (1), medium (2), high (3), very high (4)



𝑨𝑨𝑨𝑨𝑨𝑨.𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 𝒔𝒔𝒔𝒔𝒔𝒔𝒓𝒓𝒓𝒓 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑨𝑨𝑨𝑨𝑨𝑨.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Compound prioritization approach

Data quality score categories: QSAR (1), screening (2), authoritative (3)



𝑨𝑨𝑨𝑨𝑨𝑨.𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 𝒔𝒔𝒔𝒔𝒔𝒔𝒓𝒓𝒓𝒓 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑨𝑨𝑨𝑨𝑨𝑨.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐴𝐴𝐴𝐴𝐴𝐴.𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴.𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Compound prioritization approach



𝑨𝑨𝑨𝑨𝑨𝑨.𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 𝒔𝒔𝒔𝒔𝒔𝒔𝒓𝒓𝒓𝒓 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐴𝐴𝐴𝐴𝐴𝐴.𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴.𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Compound prioritization approach

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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Compound prioritization approach - Example



Hazard prioritization results
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Hazard prioritization results



Target list for further in-depth investigations



Characterize the occurrence, fate, transport and risks of
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Develop and apply 
a health risk-driven 

prioritization 
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Objective 2
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Develop and apply 
a health risk-driven 

prioritization 
framework for BOCs

Objective 2



Lab & field experiments – Plant uptake



Characterize the occurrence, fate, transport and risks of
  novel biosolid-associated contaminants (BOCs)



Pilot Study: Characterization of exposure scenarios 
and quantification of exposure factors unique to 
biosolids workers

• Semi-structured in-depth interviews 
(IDI’s) with workers from seven states 
across the US. 

• Land application involves six 
processes:

• hauling, loading, spreading, post-application 
field work, cleaning, and maintenance

• differing levels of exposure to biosolids 
based on the used processes

• Findings were used to develop a 
biosolids exposure questionnaire (BEQ) 
to quantify exposure factors unique to 
biosolids workers.

• We are currently administering the 
questionnaire to biosolids workers.

Hauling

Loading

Spreading

Post Application 
Field Work

Weather

Consistency of 
Biosolids 

Equipment 

Attitudes about 
biosolids

Protective 
Behaviors

Cleaning

Maintenance

Typical-ness

Exposure

Months/Seasons

Take home 
Exposure

Figure: Outline of the BEQ with questions 
that leverage findings from the IDIs
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Conclusions

• Framework based on high-resolution mass spectrometry and 
hazard assessment tools is a promising approach for the 
prioritization of compounds in complex mixtures

• Prioritization can support:
• Selection of analytes for identification using reference standards

• Selection of compounds for in-depth toxicity assessment

• Selection of compounds for risk assessment

• Major challenge is the limited number of compounds in MS 
databases



 

Thank you!

Email: cprasse1@jhu.edu
Lab homepage: www.prasselab.com

http://www.prasselab.com/


Pot-spike Experiments
- Target and non-target approach with LC-HRMS
- Determine uptake and accumulation of priority contaminants from biosolids-amended soil
- Identify in-planta transformation products of priority contaminants

Laboratory experiments – Plant uptake/metabolism



Soil Sampling
• 3 locations per plot
• 2 time points (biosolid 

application and harvest)
Plant Sampling
• 3 sampling events
• 3 plants / sampling event
• Up to 3 different tissue types

Field experiments – Plant uptake



Collaborative Vision for Omics-
Based Chemical Testing

Connie Mitchell
Senior Scientific Program Manager
Health and Environmental Sciences Institute (HESI)



One of first and 
longest standing 
nonprofits to use 
multi-sector, int’l 

model - since 
1989! 



Emerging 
Systems 

Toxicology for 
the Assessment 
of Risk (eSTAR)

Committee Mission
• Develop and deliver innovative systems 

toxicology approaches for risk 
assessment

• Catalyze adoption of new translational 
and predictive tools that guide decision-
making based on mechanistic 
understanding of toxicological response
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eSTAR Participants
Academia
• Broad Institute 
• Cambridge University
• Clemson University 
• Cornell University
• Georgetown University
• Kansas University Medical Center
• Indiana University
• McGill University
• Michigan State University
• MIT
• North Carolina State University
• Newcastle University
• Orebro University
• University of Ottawa
• University of Michigan
• University of North Carolina
• University of Pittsburgh

Government
• BC Cancer Agency 
• BfArM
• Dutch Medicines 

Evaluation Board
• Health Canada
• PMRA
• US Army 
• US EPA
• US FDA
• US NIH NCI
• US NIH NIEHS

 

Industry
• AbbVie
• Amgen
• AstraZeneca 
• Bayer AG
• Boehringer-Ingelheim 
• Corteva
• FMC
• GSK
• Janssen
• Merck & Co., Inc
• Merck KGaA
• Newcells Biotech

• Ono
• Pfizer
• Recursion
• Roche/Genentech
• Sanofi-Aventis
• Servier
• Syngenta
• Taconic Biosciences
• Takeda
• TwinStrand Biosciences
• Vertex                

Non-Profit
• PSCI
• Lhasa



Omics: 
what do I 
mean

Transcriptomics

Genomics 

Proteomics

Metabolomics

Epigenomics 

Phenomics (e.g., Cell Painting) 



Omics: 
what are 
they good 
for?

• Promise of omics at the turn of the 
century

• Improved understanding of 
toxicology mechanisms, species, 
and susceptibility 

• Difficulty to use omics in regulatory 
decision making

• “Hairball diagrams” – pathway 
diagrams, heat maps, long list of 
differentially expressed genes. 

• What do we do with these data?
• Move towards using omics for 

decision making
• Biomarkers for pathways
• Deriving points of departures
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Current eSTAR Working Groups

Molecular POD 
Using transcriptomic point of departure 
for chemical risk assessment.

TGx-DDI
An in vitro transcriptomic biomarker to 
predict probability that an agent is DNA 
damage-inducing (DDI) or non-DDI.

Carcinogenomics
Identifying and evaluating transcriptomic 
biomarkers for rat-liver tumors to reduce 
the need for two-year carcinogenicity 
studies.

miRNA Biomarkers
Investigating and evaluating the use of 
miRNAs as biomarkers for renal injury.

OASIS
Exploring the use of Cell Painting, 
transcriptomics, and proteomics for 
safety assessment. 

Error Correct Sequencing 
Exploring the use of error corrected 
sequencing to detect non-genotoxic 
carcinogens. 



Free, open meeting to learn about all the projects. 

Wednesday 13 November 9 am – 3 pm ET

Register Here
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Current eSTAR Working Groups

Molecular POD 
Using transcriptomic point of departure 
for chemical risk assessment.

TGx-DDI
An in vitro transcriptomic biomarker to 
predict probability that an agent is DNA 
damage-inducing (DDI) or non-DDI.

Carcinogenomics
Identifying and evaluating transcriptomic 
biomarkers for rat-liver tumors to reduce 
the need for two-year carcinogenicity 
studies.

miRNA Biomarkers
Investigating and evaluating the use of 
miRNAs as biomarkers for renal injury.

OASIS
Exploring the use of Cell Painting, 
transcriptomics, and proteomics for 
safety assessment. 

Error Correct Sequencing 
Exploring the use of error corrected 
sequencing to detect non-genotoxic 
carcinogens. 



http :/ / www.b ioch.ox.ac .uk/ aspsite / ind e x.asp?page id
892

Why a TGx-DDI Biomarker?

Need for high-throughput genotoxicity tests that 
provide mechanistic information in human-
relevant cell culture models.

Genotoxicity is a key driver of carcinogenesis

Salk and Kennedy, 2020
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An in vitro transcriptomic biomarker that predicts the 
probability that an agent is DDI (DNA damage-inducing) or 
non-DDI using toxicogenomics (TGx).

• Developed in human TK6 cell cultures
• From exposure to 28 prototype DDI and non-DDI chemicals
• 64 genes identified as being predictive of DDI potential

DDI Non-DDI

Agents

G
en

es
Fit for Purpose Solution: TGx-DDI

Why do we like it?
• High specificity (correctly identifies ‘irrelevant’ chromosome 
damage results)
• Endogenous cellular responses to DNA damage in human cells
 • Biological relevance
• Transferable to other cell types
• Multiplex capacities
• Removes subjectivity of transcriptomic data analysisLi, HH et al. Environ Mol Mutagen (2015); 

PNAS (2017)
Yauk, et al. Environ Mol Mutagen (2016)



Li et al., Development and validation of a high-throughput transcriptomic biomarker to address 21st 
century genetic toxicology needs. PNAS, 2017.

The context of use
1. Drug screening 2. Chemical safety assessment

Regulatory tests that TGx-DDI addresses
1. TGx-DDI can be used in weight of evidence analyses to inform irrelevant in vitro chromosome damage 

results (FDA).
2. TGx-DDI can be used in integrated testing to inform potential hazards and mode of action, and for 

potency assessment.



• TGx-DDI analytical 
pipelines

• TGx-DDI biomarker 
software tool

• BMD modeling
• HepaRG

• Approximately 100 
chemicals tested

• Metabolic activation
• Cross-platform – 

Affymetrix, qPCR, 
NanoString, RNA-seq, 
TempO-seq

• Three case studies 
completed

• FDA Biomarker 
Qualification Plan 

• Part of Health Canada’s 
GeneTox21 platform

• Integrated Approaches to 
Testing and Assessment 
(IATA)

2010 2024

A long ride to date… 18 Papers  published
NIEHS tool
qPCR array
CRO offering as say!



Objectives: To assess the cross-laboratory 
reproducibility of TGx-DDI classification calls 
involving one platform (NanoString)

Resourcing: Funding from FDA 
(1U01FD007473-01) and in-kind effort and 
materials from HESI partner organizations.

Recently Completed: 
Validation Study

Study design reviewed by FDA and Agency feedback 
incorporated on multiple occasions.

 MULTI-SITE STUDY CONTRIBUTIONS 

INSTITUTION 

Study 
coordination 

(meetings, 
logistics, 
supply 

procurement, 
shipping) 

TGx-DDI 
Assay 

(cell 
culture, 

exposure, 
RNA 

isolation) 

NanoString 
(RNA QC & 

Transcriptomics) 

Data 
Analysis, 

Interpretation 
& Reporting 

Data 
Compilation  
Presentatio  
and Cross
Site Data 
Analysis 

 
HESI X    X 

 

Georgetown 
University X X X X  

 

Sanofi 
Laboratories  X  X  

 

Procter & 
Gamble 
Laboratories 

 X  X  

 

Burleson 
Research 
Technologies 

 X X X  

 

Children’s 
National 
Genomics 
Core 

  X   

 

Wistar 
Institute 
Genomics 
Core 

  X   

 

Experimental Plan:
• 4 study sites 
• Sites receive test compound in solution 

(three concentrations and solvent)
• 14 chemicals tested
• TK6 cells, samples in triplicate
• Culture and exposure per the SOP 
• Analysis and classification using public 

software tool

https://public.era.nih.gov/grantfolder/viewCommonsStatus.era?applId=10409881&urlsignature=v1$28695673$1$GgaM6ysuMtlr7siQE886VuveCli-w63scXnZxxLDot4ywLLqXS35Yc1GTpr8vJ-OrNCaGvHDryh2_7jgCbJbZAJvmdE5425be2vIQFALYjzCRGIfDO_NeIMFZ14JkM5KddvuJ-klBQyou9OwKiTBrUWLRTjgswH4XrCX1mZlsXyTr7y3RCTyD8T9lW8zYDoJ5uwR56YzFN2W91ssFKPyxgBqJW1n-adKkmYtqtj1EoNtdN7zxAWCx9_8LLsav3CAdx8xLfcFFvpiDzG0pCZmkAHFW5x1hhv_Q-5KIEuErgjl71Pwqjx-sZkgz33-HRY_n7V0pWta3_-m6UNAv6hEgQ..
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TGx-DDI Ring Trial Experimental Workflow

Concentration range 
selected from 24h 

cytotoxicity

Up to 1 mM or that 
induces 50% cytotoxicity

MTT 
Assay



Collaboration is key
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Current eSTAR Working Groups

Molecular POD 
Using transcriptomic point of departure 
for chemical risk assessment.

TGx-DDI
An in vitro transcriptomic biomarker to 
predict probability that an agent is DNA 
damage-inducing (DDI) or non-DDI.

Carcinogenomics
Identifying and evaluating transcriptomic 
biomarkers for rat-liver tumors to reduce 
the need for two-year carcinogenicity 
studies.

miRNA Biomarkers
Investigating and evaluating the use of 
miRNAs as biomarkers for renal injury.

OASIS
Exploring the use of Cell Painting, 
transcriptomics, and proteomics for 
safety assessment. 

Error Correct Sequencing 
Exploring the use of error corrected 
sequencing to detect non-genotoxic 
carcinogens. 



Progression of Cancer Biology: Opportunities for Earlier Detection
• Detection of early 

tumorigenesis (clonal 
expansion) could allow 
assessment of w/in months, 
prior to gross histopathology

• Combining tools in short-term 
rodent  studies could provide 
a strong weight-of-evidence 
alternative to 2yr 
carcinogenesis studies 
aligned with ICH S1B (R1) 
addendum

Muta t ion Accum ula t ion

Growth Ad va nta g e

*Challenge - understand the 
thresholds from initiation, 
promotion to progression  



19Corton et al 2022



Error Corrected Sequencing (eg. DuplexSeq ) to 
Measure Clonal Expansion of Cancer Driver Genes 

twinstrandbio.com





How do we build confidence? 
1. Ad d it iona l Com p ound s/ Stud ie s :

• Stud ie s with add itional com pounds will he lp  e stab lish se nsitivity/ spe cific ity of the  approach 
as we ll as the  ab ility to d istinguish tum orige nic  from  non-tum orige nic  dose  le ve ls 

2. Ad d it iona l Ge ne s:
• A se nsitive  assay will re quire  b road  cove rage  of pote ntia l d rive r ge ne s across d iffe re nt 

NGT m e chanism s
• Stud ie s with add itional com pounds will he lp  ide ntify gaps in e xisting  pane ls and  WES on 

the se  sam ple s can be  use d  to ide ntify nove l d rive r ge ne s.

3. Esta b lish  Thre shold s :
• Estab lish norm al base line  of e xpande d  c lone s across tim e  points, and  norm alize d  

thre sholds of conce rn to e nab le  e arly risk asse ssm e nt of nove l com pounds

4. Re g u la tory Acce p ta nce :
• Ultim ate  goal is  to use  as part of a  we ight-of-e vide nce  approach for carc inoge nic  risk 

asse ssm e nt and  pote ntia l waive rs of long-te rm  carcinoge ne sis stud ie s



3 Tg-rasH2 Cance r Drive r Ge ne s 
(puta tive )
PRJ00183

Huma n HRAS, Cdh2, 
Tsg101*

20  Hum an Cance r Drive r Ge ne s
Harris  e t a l., Tox Sci (2021), CarcSe q

Pik3ca , Trp53, Stk11, Kra s, Hra s, Bra f, Egfr, Lrp1b, Nfe212, 
Apc, Setbp1, Tert, Rb1, Axin1, Cdkn21, Pten, Acvr2a , Foxl2, 

Kmt2c, Nra s

10  Mouse  Cance r Drive r Ge ne s
Riva e t a l., Nat Ge ne tics (2020)

Ctnnb1, Lrp1b, Cnot3, Egfr, Fgfr2, Kra s, Hra s, Bra f, 
Trp53, Epha 3

4

143

0 6
0

0

Mouse  carc inoge ne sis  pane l v1
Pane l de sign cove rs 27 cance r d rive r ge ne s that we re  ide ntifie d  in Tg-rasH2 
tum ors, Riva e t a l. (Wt-m ouse ), and  CarcSe q  (hum an)

*Not known cance r d rive r ge ne



Pilot Study Design
Goals: (1) Evaluate if DuplexSeq can detect CDMs
 (2) Establish sample prep and sequencing parameters



Mouse  CDM pane l 
(27 cance r d rive r ge ne s)

Overall Study Workflow



Collaboration is key

Share  vision to e xp lore  the  use  of a  tool

Multi-site  e xpe rim e nt using  e xisting  sam ple s

Data Analysis done  by m ultip le  g roups to ag re e  upon be st 
p ractice s



Email me: 
Connie Mitchell 
(cmitchell@hesiglobal.org)



Development and Application of 
Transcriptomics at EPA

Office of Research and Development

Logan J. Everett, Ph.D. – Bioinformatics Scientist, US EPA / ORD

The views expressed in this presentation are those of the presenter and do not 
necessarily reflect the views or policies of the U.S. EPA.
Company or product names do not constitute endorsement by U.S. EPA.



Tiered Chemical Safety Testing Strategy

Thomas, et al.
Toxicol Sci 2019

Tier 1 Primary Goals:

• Prioritize chemicals by bioactivity
& potency

• Predict biological targets for 
chemicals

High-Throughput 
Transcriptomics (HTTr) 
using TempO-seq

EPA Transcriptomic 
Assessment Product (ETAP)

Short-term in vivo exposures with 
transcriptomic profiling

Mechanism-agnostic PODs

Office of Research and Development

Target 
prediction



Automated in vitro Chemical Screening Strategy

See Harrill, et al. Tox Sci 2021
DOI: 10.1093/toxsci/kfab009

384-well test plates run in triplicate with:

Office of Research and Development

• ~40 test chemicals x 8 concentrations (half-log spacing)
• Multiple vehicle controls, reference chemicals & QC 

samples on every plate to track assay performance
• Treatment positions randomized on each plate
• Independent culture batch on each plate

https://doi.org/10.1093/toxsci/kfab009


Targeted RNA-seq Assay (TempO-seq)

Yeakley, et al. PLoS ONE (2017) DOI: 10.1371/journal.pone.0178302

• Next-Gen sequencing of 
targeted probes hybridized to 
expressed transcripts

• Whole transcriptome
coverage (>20,000 genes)

• Captures gene expression at 
lower cost than RNA-seq or 
microarrays

• Compatible with raw cell 
lysates – ideal for large-scale 
screening

Hybridized probes read 
by next-gen sequencing

Office of Research and Development

https://doi.org/10.1371/journal.pone.0178302


Transcriptomic Dose-Response Models

• Different genes may respond at different 
doses of a given exposure!

• Need to analyze both:
• Dose-responsive trends
• Coordinated changes in gene expression

• Gene-level data noisier in transcriptomics 
than targeted measurements (e.g. RT-qPCR)

• Dose-response modeling thousands of 
features (e.g. mRNA levels) leads to 
computational & statistical challenges

Office of Research and Development



Many Analysis Choices!
No single “best” method for transcriptomic
dose response modeling

• Are you interested in mechanism, or just 
want a threshold for general bioactivity?

• Is it more important to be predictive or
protective of hazard level in vivo?

• What other data is available for the 
same/analogous chemicals?

• Different technologies require different 
statistical models, quality control, etc.

• Experimental design (# of replicates, 
doses, etc.) impacts analysis choices!

Office of Research and Development



Dose-Response Modeling of Gene Sets/Signatures

• EPA/CCTE method for summarizing large-scale 
transcriptomic screening studies

• Integrates signal across known gene set
(a.k.a. signature) before dose-response modeling

Catalog of gene set signatures with toxicological relevance, 
annotated for known molecular targets

 Bioplanet (Huang, et al. Front Pharmacol 2019)

 CMap (Subramanian, et al. Cell 2017)

 DisGeNET (Piñero, et al. Database 2015)

 MSigDB (Liberzon, et al. Cell Syst 2015)

Open Source: github.com/USEPA/CompTox-httrpathway

Office of Research and Development

https://tripod.nih.gov/bioplanet/
https://doi.org/10.3389/fphar.2019.00445
http://clue.io/cmap
https://doi.org/10.1016/j.cell.2017.10.049
https://www.disgenet.org/
https://doi.org/10.1093/database/bav028
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://doi.org/10.1016/j.cels.2015.12.004
https://github.com/USEPA/CompTox-httrpathway


Dose-Response Modeling of Gene Sets/Signatures
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Public Release of HTTr Data
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HTTr Results Available on CompTox Chemicals Dashboard



HTTr tPODs Are Concordant With ToxCast PODs

Office of Research and Development

• Computed 5th percentile PODs from:
• Pilot study of 44 well-characterized

chemicals in MCF-7 cells, 6h exposure
Harrill, et al. Toxicol Sci (2021) 
DOI: 10.1093/toxsci/kfab009

• ToxCast targeted assay results (multiple 
cell types, assays, and exposure lengths)
Paul-Friedman, et al. Toxicol Sci (2020)
DOI: 10.1093/toxsci/kfz201

• Signature-based PODs are highly 
concordant with ToxCast results for the 
majority of test chemicals in pilot study

https://doi.org/10.1093/toxsci/kfab009
https://doi.org/10.1093/toxsci/kfz201


Results from first large 
screen of 1,751 chemicals 
in MCF7 cells

BPAC = Biological
Pathway Altering
Concentration.

Chemicals with known 
molecular target 
specificity tended to have 
BPAC05 much more 
potent than the median 
BPAC (red bubbles)

Office of Research and Development Credit: Joshua Harrill (EPA ORD)

Signature BMC Distributions Vary Across Chemicals

Harrill et al. Tox Sci (2024)
DOI:10.1093/toxsci/kfae108

https://doi.org/10.1093/toxsci/kfae108


Distribution of Signature BMCs Indicative of Molecular Target Specificity

Office of Research and Development Credit: Joshua Harrill (EPA ORD)

Harrill et al. Tox Sci (2024) DOI:10.1093/toxsci/kfae108

Target annotations in 
existing signature catalog 
identify target specificity 
for some chemicals.

Tested for enrichment of 
signatures with same 
target annotation by K-S 
test on AUC values 
(lower BMD or greater 
effect size)
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https://doi.org/10.1093/toxsci/kfae108


Observed similar distributions of BPAC05 and BPACM in U-2 OS cells as in MCF7:
• Some chemicals have clear delineation between target-specific and non-specific activity (red)
• Other chemicals have potent but non-specific activity (blue)

Application of Signature Analysis Method to Additional Cell Types

Bundy et al. TAAP (2024) DOI:10.1016/j.taap.2024.117073

Office of Research and Development Credit: Joshua Harrill (EPA ORD)

https://doi.org/10.1016/j.taap.2024.117073


Similarity of Signature Hits by Chemical in U-2 OS Cells

• Existing signature annotations are less effective at inferring 
chemical target in other cell types
(many signatures derived from studies in MCF-7)

• However, similarity of overall signature activity profile can 
still be used to group chemicals sharing certain common 
targets
Pairwise similarity = Jaccard Index of active signature hits 
Results shown from U-2 OS (osteosarcoma cell line)

Predicting Molecular Targets Using Signature Modeling and Reference Chemicals

Bundy et al. TAAP (2024) DOI:10.1016/j.taap.2024.117073

Office of Research and Development Credit: Jesse Rogers (EPA ORD)

https://doi.org/10.1016/j.taap.2024.117073


Reference Class-Associated Signatures (RCAS) for 
Profiling Chemical Mechanisms-of-Action

• Goal: Develop new target-specific signatures tailored to each cell line (applied to U-2 OS and HepaRG so far)
• Genes uniquely sensitive for individual molecular targets selected via univariate analysis
• Tailored signatures identify selective chemical effects during Tier 1 screening

Rogers, et al. Manuscript submitted

Office of Research and Development Credit: Jesse Rogers (EPA ORD)



Integration of TempO-Seq Readouts for Chemical 
Prioritization Framework

RCAS-derived potencies compared to non-
selective point of departure (PODNS) 
estimated from public signature collection

Chemicals with selective effects on molecular 
targets identified via RCAS and validated 
using high-throughput screening assay data
from US EPA’s ToxCast program

Rogers, et al. Manuscript submitted

Office of Research and Development Credit: Jesse Rogers (EPA ORD)



Summary

Office of Research and Development

• High-Throughput Transcriptomics (HTTr) applied to human cells in 
vitro captures a wide variety of biological perturbations and can be 
used to:

• Derive an overall “mechanism-agnostic” point of departure
(POD/BPAC)

• Detect perturbation of specific targets/mechanisms
• Ongoing work at US EPA:

• Screening in additional cell types (e.g. hTERT lines)
• Benchmarking/harmonization of analysis methods in specific 

contexts
• Development of additional signatures/models for mechanistic 

inference
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Use of ‘Omics to Inform Development and 
Safety of New Pesticide Active Ingredients

JESSICA LAROCCA
CORTEVA AGRISCIENCE



Global Regulatory Agencies

Only 1 in 139,000 
chemicals successfully 
progresses through the 
regulatory process from the 
laboratory to the field

2



Agrochemical In Vivo Mammalian Toxicology Requirements
Task Description OECD Guidelines Species Males Females

Min Max Min Max

Global Toxicokinetic Registration PK/Met (Default study) OECD 417 (2010) Rat 8 32 8 32

Acute Oral Toxicity (Default Rat) OECD 423 (2001) Rat 0 3 24

Acute Dermal Toxicity OECD 402 (2017) Rat 0 1 7

Acute Inhalation Toxicity OECD 403 (2009) Rat 3 15 3 15

Acute Dermal Irritation OECD 404 (2015) Rabbit 0 1 3

Acute Eye Irritation OECD 405 (2017) Rabbit 0 1 3

Dermal Sensitization (LLNA) OECD 429 (2010) Mouse 0 25 33

Acute Neurotoxicity (Rat) OECD 424 (1997) Rat 40 40

28-Day Mouse Oral + Palatability OECD 407 (2008) Mouse 20 30 20 30

28-Day Rat Oral OECD 407 (2008) Rat 20 40 20 40

13-Week Dog Oral OECD 409 (2018) Dog - Beagle 16 24 16 24

13-Week Mouse Oral OECD 408 (2018) Mouse 40 50 40 50

13-Week Rat Oral OECD 408 (2018) Rat 40 50 40 50

SubChronic Neurotoxicity OPPTS 870.6200 Rat 120 150 120 150

28-Day Rat Dermal OECD 410 (1981) Rat 20 25 20 25

1-Year Chronic Dog OECD 452 (2018) Dog - Beagle 16 21 16 21

In vivo Mouse Micronucleus OECD 474 (2016) Mouse 25 35 25 35

2-Year Chronic Rat/Carcinogenicity OECD 453 (2018) Rat 220 310 220 310

18-Month Carcinogenicity Mouse OECD 451 (2018) Mouse 200 265 200 265

Dev Screen OECD 421 OECD 421 (2016) Rat 68 68

Reproduction Study (2 gen) OECD 416 (2001) Rat 120 120

Rat Dev Tox Full (Teratogenicity) OECD 414 (2018) Rat 0 88

Rabbit Dev Tox Full (Teratogenicity) OECD 414 (2018) Rabbit 0 25

28-Day Stand-Alone Immunotoxicity (Sheep Red Blood Cell) OPPTS 870.7800 Mouse or Rat 0 50 50

3



NAMs for Predictive Toxicology Studies to Reduce Animal Use

4



Transcriptomics to Predict Points of 
Departure

5



Transcriptomics Is a Tool to Comprehensively Examine Change 
in Gene Expression (RNA levels)

Central Dogma of Molecular Biology

DNA              RNA              Protein

Typically, 13,000 – 16,000 unique RNA molecules are observed per organ

DEG: Differentially Expressed Gene

6



All Apical Effects Result From A Prior Change At The Molecular Level 

Exposure Molecular Change Apical Effect

Generic Adverse Outcome Pathway

Therefore, changes observed in comprehensive molecular data (like toxicogenomics) 
will detect any apical effect (however, the identity of the apical effect is unknown).

7



A Point of Departure Can Be Determined Using NOEL or BMD Approaches

NOEL: No Observed Effect Level

BMD: Benchmark Dose

LOEL: Lowest Observed Effect Level

BMDL: Benchmark Dose Lower 
Confidence Limit

BMR: Benchmark Response
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• Estimates the lowest dose for a “concerted” change in gene expression 

What is a Transcriptome Point of Departure (tPOD)?

9



A tPOD Accurately Estimates a Traditional Apical Endpoint POD

• R2 > 0.80
• 95% within 10-fold of traditional 

POD
• >88% within 5-fold of traditional 

POD
• High correlation after 1-5 days!!

10

Systematic literature review of >100 articles (from Jason O’Brien)

• Concordance of tPOD and a traditional POD is similar to the concordance of 
traditional PODs from repeating a guideline study



tPods Accurately Predict Apical PODs for Corteva Agrochemicals

Short-term transcriptomic 
studies with tPODs can 
approximate the apical 
POD from long-term 
studies (90-day rat, cancer 
bioassay, two-gen, etc).
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5-day Toxicogenomic Study Design to Inform Target Organs and PoDs

• Standardized study design that can be used for novel compounds with unknown hazard and PODs
• Short-term study can be used to inform PODs resulting from chronic exposure (and inform risk 

assessments)
• Rat 5-Day TGx Study Design Dietary exposure

• Males only (animal reduction purposes) (5/group)
• Organ weights collected from all organs in TGx study and perform histopathology on liver, kidney, and 

expected target organs, if known 
• Seven default organs analyzed via RNAseq – can be modified based upon prior information
• 6 – 7 dose levels tested

12



Rat 5-Day Toxicogenomics Study Control Data Analysis

If a tPOD is identified in an organ, it will be concluded that an apical effect (adaptive or adverse) is present after 5-days 
of exposure or will occur with a longer duration of exposure.

A tPOD will be derived if more than 90 DEGs are identified in an organ at the highest dose level tested.
• Data in graph below are from a control (unexposed) rat multi-organ RNAseq study (i.e. no exposure) performed at Corteva.  

• In all organs, identification of 90 DEGs was the 95th percentile upper bound in control rat organ RNAseq
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Cell Painting Toxicophenomics to Predict PODs

14



Cell Painting: A high-throughput method to inform toxicological-
induced cellular perturbations

• Cell painting is a HCI technique that involves staining of various cell organelles 
with fluorescent dyes.

• Developed by Broad Institute Nat Protoc. 2016

Adapted from Willis et al. SLAS DISCOVERY. 2020;25(7):755-69.

15



Liver Cell Painting
• Liver is the #1 target organ for 

agrochemicals.
• Many agrochemicals are extensively 

metabolites, therefore metabolically 
competent cells are more relevant.

• Therefore, HepaRG liver cells were 
selected for predictive tox

16



HepaRG Cell Painting IVIVE Approximates In Vivo Pharmaceutical PODs

IVIVE from Cell Painting PoD
(mg/kg/day)
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Comparison of cell 
paint POD with 
IVIVE with most 
sensitive 29-day 
apical endpoint POD 
(mg/kg/day)
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HepaRG Cell Painting IVIVE Approximates In Vivo Agchem Subchronic PODs

Comparison of cell paint 
POD with IVIVE with most 
sensitive liver 90-day apical 
endpoint POD (mg/kg/day).

Molecules with cell paint 
POD > highest concentration 
tested were excluded
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Machine Learning with Cell Painting to 
Predict Hazard

19



Can We Use Machine Learning to Predict Specific Toxicity 
Mechanisms/Adverse Outcomes? 

20



Cell Painting Machine Learning Can Predict Ames Classification
Training data (well level): 918 Positive V.S. 899 Negative  
(compound level: 104 Pos V.S. 107 Neg)

21



HESI OASIS

22



Mission: Gain confide nce  in the  
com bination of Ce ll Painting , 
transcrip tom ics and  p rote om ics for 
safe ty asse ssm e nt using  
he patotoxic ity as use -case . 
Ob je c t ive : Be nchm ark in vivo he patotoxic ity (from  
rode nt or c linical tria l data) induce d  by a  se rie s  of 
com pounds against inform atically a ligne d  
m ole cular & phe notyp ic  ce ll-base d assays.
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Chris Martyniuk, Ph.D.
Department of Physiological Sciences
College of Veterinary Medicine
EPA NAMs workshop, November 5-6, 2024 

Knowledge gaps and opportunities for omics 
data in environmental assessments



THE CHALLENGE FOR 
REGULATORY AGENCIES



Risk Evaluations for Existing 
Chemicals 

Prioritization

Evaluation

Management

Which one do we test?

How do we measure the toxicity?

Which ones do we regulate?

Why important?



THE ZEBRAFISH MODEL FOR HIGH 
THROUGHPUT TOXICITY TESTING

 Relatively cheap to house and 
readily accessible

 Rapid development with 
transparent developmental 
stages

 Replication: High numbers of 
individuals can be examined at 
once

 Amendable to mechanistic 
studies with chemicals of 
concern (AOPs) Nan Wu photo credit



Mitochondrial 
dysfunction

Oxidative 
stress

Hatch Rate
Deformity

Locomotor 
Activity 

High throughput screening of chemicals

Predictive toxicology, but zebrafish are not ecotox. relevant  

Molecular 
Initiating 

Event
Adverse 
Outcome

Reactive Oxygen
Species

Long term efforts: Defining AOPs 
for contaminants of concern

Evidence from omics



Zhang et al., 2018
Environ. Sci. Technol. 2018, 52, 7, 3842– 3851

Opportunities for omics in Risk 
Characterization and Assessment?



Prioritization

Evaluation

Management

Which one do we test?

How do we measure the toxicity?

Which ones do we regulate?



Dreier DA, Nouri MZ, Denslow ND, Martyniuk CJ. Lipidomics reveals multiple stressor effects (temperature × mitochondrial toxicant) in the zebrafish embryo 
toxicity test. Chemosphere. 2021 Feb;264(Pt 1):128472. doi: 10.1016/j.chemosphere.2020.128472. Epub 2020 Sep 30. PMID: 33039916.

Temperature, omics, and a mitochondrial toxicant

2,4-dinitrophenol



Dreier DA, Nouri MZ, Denslow ND, Martyniuk CJ. Lipidomics reveals multiple stressor effects (temperature × mitochondrial toxicant) in the zebrafish embryo 
toxicity test. Chemosphere. 2021 Feb;264(Pt 1):128472. doi: 10.1016/j.chemosphere.2020.128472. Epub 2020 Sep 30. PMID: 33039916.



Dreier DA, Nouri MZ, Denslow ND, Martyniuk CJ. Lipidomics reveals multiple stressor effects (temperature × mitochondrial toxicant) in the zebrafish embryo 
toxicity test. Chemosphere. 2021 Feb;264(Pt 1):128472. doi: 10.1016/j.chemosphere.2020.128472. Epub 2020 Sep 30. PMID: 33039916.

Lipidomics data set



THE CHALLENGE MOVING INTO THE 
ENVIRONMENT…

Ecological Interactions

Individual Response 

Health Sex of fish

Habitat / where 
fish lives

Water (temperature, pH)



INDIVIDUAL VARIABILITY IN GENE 
EXPRESSION

Cowie et al. Comp Biochem Physiol B Biochem Mol Biol. 2015

N = 15 fish



Largest watershed in southern 
Ontario, Canada

This system receives discharges 
from 30 Sewage Plants

Upgrades at the Kitchener Plant
Ref = upstream
EX1 = downstream Waterloo
EX2 = downstream Kitchener

Marjan P, Bragg LM, MacLatchy DL, Servos MR, Martyniuk CJ. 
How Does Reference Site Selection Influence Interpretation of 
Omics Data?: Evaluating Liver Transcriptome Responses in Male 
Rainbow Darter (Etheostoma caeruleum) across an Urban 
Environment. Environ Sci Technol. 2017 Jun 6;51(11):6470-6479. 
doi: 10.1021/acs.est.7b00894. Epub 2017 May 17. PMID: 
28489360.



Time and 
transcriptomes

Marjan et al. 2017 ET and C

Upgrade

Cell Fate

DNA Repair

Stress



Time and 
transcriptomes

Marjan et al. 2017 ET and C

Upgrade

Cell Fate

DNA Repair

Stress

Genome 
Stability

Protein 
Regulation

Reproduction



Bertolatus DW, Barber LB, Martyniuk CJ, Zhen H, Collette TW, Ekman DR, Jastrow 
A, Rapp JL, Vajda AM. Multi-omic responses of fish exposed to complex 
chemical mixtures in the Shenandoah River watershed. Sci Total Environ. 2023 
Dec 1;902:165975. doi: 10.1016/j.scitotenv.2023.165975. Epub 2023 Aug 1. PMID: 
37536598; PMCID: PMC10592118.



“While there are several putative biomarkers identified in hubs 
related to gene sets, temporal responses in the hepatic 
transcriptome made it challenging to elucidate definitive 
response patterns that could be used in field-based 
ecotoxicogenomic studies on the impacts of well-treated 
MWWE.” 

Marjan P, Martyniuk CJ, Arlos MJ, Servos MR, Ruecker NJ, Munkittrick KR. Identifying transcriptomic indicators of tertiary treated municipal effluent in longnose dace (Rhinichthys 
cataractae) caged under semi-controlled conditions in experimental raceways. Sci Total Environ. 2024 May 1;923:171257. doi: 10.1016/j.scitotenv.2024.171257. Epub 2024 Feb 27. 
PMID: 38417510.



• DEFINING NORMAL: AN IMPORTANT EEM CONSIDERATION

• Sampling period and temporal variability

• Spatial scale variation in field studies

• Understanding magnitude of abiotic, non-chemical factors

• Physiological responses



Omics: Good at predicting 
individual habit

But….

Relative response due to
chemical vs. other variables?



Martyniuk CJ. Are we closer to the vision? A proposed framework for incorporating omics into environmental assessments. Environ Toxicol 
Pharmacol. 2018 Apr;59:87-93. doi: 10.1016/j.etap.2018.03.005. Epub 2018 Mar 8. PMID: 29549817.



Prioritization

Evaluation

Management

Which one do we test?

How do we measure the toxicity?

Which ones do we regulate?
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Fostering transparency
and reproducibility using the
OECD Omics Reporting Framework
Presented at the 4th U.S. Environmental Protection Agency NAMs Conference:
State of Science on Development and Use of NAMs for Chemical Safety Testing (November 5-6, 2024)

Matthew J. Meier, Research Scientist, Health Canada
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Evaluating thousands of chemicals for potential toxicity: easier said than done

• Disadvantages of historically used single-
endpoint tests:
 Slow 
 Expensive
 Use animals

• New Approach Methods (NAMs)
 Regulatory agencies worldwide are reducing reliance 

on tests in animals (EU and cosmetics, 2013; US EPA; 
Canada has legislated changes in CEPA)

• Omics plays a critical role in NAM-based tests
 Compatibility with non-animal tests: e.g., human cell 

lines, micro-physiological systems – increasingly 
complex in vitro assays

3



Using omics to explore biological responses

4



The promise of toxicogenomics 
for human health protection

• Molecular alterations occur before 
changes in apical endpoints

• Omics provides significant 
advantages over traditional 
toxicology tests
 Rapid & cost-effective data generation
 Reduction in animal use

5
Meier, M.J., Harrill, J., Johnson, K., Thomas, R.S., Tong, W., Rager, J.E., Yauk, C.L.
Nat Rev Genet (2024).
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The promise of toxicogenomics for human health protection

6
6



Implementing toxicogenomics in decision-making

The fine print:
government, industry, and 
academia must agree on 
acceptable criteria for data use

• Data streams 
converge on risk 
assessment

7



“Torture the data, and it will confess to anything.”

-Ronald Coase, British economist



Challenges applying omics in risk assessment

• Lack of transparency in data generation and 
processing

• Lack of standardisation in study parameters 
and reporting of results

• Lack of case studies and guidance 
describing acceptable (and ultimately best) 
practices

Impacts on 
experimental or 
analytical 
reproducibility

Reduced 
regulatory utility

9



OECD Omics Reporting Framework (OORF)

10

• Recognition in international community that 
omics provides significant advantages over 
traditional tests
 However - regulators don’t want to drink from a fire hose

• Growing interest in regulatory applications of 
omics must be supported by guidelines and 
frameworks

• The OECD Omics Reporting Framework (OORF) 
is now publicly available for use (Nov. 2023)
 Began under the Extended Advisory Group for Molecular 

Screening and Toxicogenomics (EAGMST), now the 
OORF and related projects are within the Omics Expert 
Group, reporting to the Advisory Group on Emerging 
Science in Chemicals Assessment (ESCA), under the 
Working Party on Hazard Assessment (WPHA)

https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/omics-technologies-chemical-testing.html



Objective

Develop a framework to standardize reporting of omics data generation and analyses, so regulators 
can understand and interpret omics studies.

Why do we need the OORF?

To ensure that sufficient information is available to enable an evaluation of the quality of the 
experimental data and interpretation, and support reproducibility.

(The 5 Rs: Regulatory Ratification Requires Reproducible Research)

× NOT to stipulate the methods of data analysis or interpretation
 Rather, provide guidance on reporting of information that fosters transparency and 

reproducibility

OECD Omics Reporting Framework (OORF)

11



Modular structure of the OORF



Expanding the scope of the OORF

• Early OORF development focused on transcriptomics and metabolomics
• There is a need to expand and re-evaluate language to encompass all omics
• Ksenia Groh (Eawag) and Alexandra Schaffert (Medical University Innsbruck) are co-leading 

the integration of proteomics modules, and reviewing what components should be updated, 
creating new DAPRMs

13



Reporting templates

14
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OORF trials: how do we develop modules?

16

I. Identify omics dataset
II. Process and analyze dataset
III. Populate reporting fields in one or more modules of the OORF
IV. Write an ease-of-use commentary

Data provider:

I. Use blinded reporting template to reprocess and reproduce the original analysis
II. Write a second ease-of-use commentary

Trial coordinator: I. Review report for completeness (return to data provider if incomplete)
II. Truncate and blind results and send to ‘end user’

End user:

I. Review report for completeness (return to end user if incomplete)
II. Concordance analysis of two completed OORF reporting templatesTrial coordinator:

I. Review concordance analysis and two ease-of-use commentaries
II. Update TRF/MRF reporting templates as required

Omics expert 
group:

1

2

3

4

5

Participant Step Actions



Examples of OORF trials

17



Trial results: Differentially Abundant Molecules DARM

Number of Differentially Expressed Genes Correlation of DESeq2 Outputs

• Highly comparable results from 
Submitter and End User

18



• Expert group met to reach consensus on 
parameter inclusion
 Participants: Richard Beger, Carole Yauk, 

Timothy Ebbels, Joshua Harrill, Pim Leonards, 
Mark Viant, Oliver Schmitz, Magda Sachana, 
Vikrant Vijay, Andrew Williams

• Module & guidance drafted to capture 
elements across different enrichment analysis 
experiments

• Reviewed by experts in metabolomics, 
proteomics, and transcriptomics

• Conducted trials to test module
• Comments from Omics Expert Group now 

being addressed

19

Reporting templates – DARMs – enrichment analysis, in development



Development of Enrichment Analysis DARM (transcriptomics point of view)

 Features to be tested for enrichment could be 
derived from many sources:
» DEGs
» Fold changes in expression
» Gene clusters (e.g., WGCNA modules)
» Dose-responsive genes

 Common Statistical Methods
» GSEA (Gene Set Enrichment Analysis)
» ORA (Over-Representation Analysis)

 Common Databases
» Reactome
» WikiPathways
» MSigDB
» CLUE (CMap and LINCS Unified Environment)
» GO
» KEGG
» IPA (Ingenuity pathway analysis: proprietary 

database and software, Qiagen)

20



OORF trial case study

Trial module: enrichment analysis DARM
Topic: hexabromocyclododecane (HBCD) exposure dataset with RNA-Seq results 
(male and female rat liver, PRJNA395549)
Data submitter: Andrew Williams produced a GSEA analysis using the fgsea R 
package
End user: John Stead (Carleton University) reproduced the analysis

21



Challenges in trials

• GSEA: Andrew provided code alongside completed EA DARM and raw 
data
 John successfully ran the code
 Result: tables of normalized enrichment scores (NES) for all Reactome 

pathways
 Pearson correlation of NES was high (for matched rows & complete cases), 

but not identical
• I re-ran the analysis myself

 Produced yet a 3rd different set of results… and more, through 
troubleshooting

• Why? Permutations or packages?
 Reusing the code, a first instinct, was necessary – but not sufficient
 R package versions must be matched (can be accomplished with virtual 

environments, but may not be trivial for a casual user)
• Correlation of 1 between John’s and my analyses: key was using 

Bioconductor v3.15 packages (including reactome.db)
• Correlation of 0.99992 between Andrew’s original analysis and mine 

using reactome.db 1.77
• The main determinant in this example turned out to be the reactome.db 

version: however – big caveat – the version used by Andrew (1.79, 
correctly reported in the reporting module) was no longer 
available! Anywhere!!

22



Lessons learned from OORF trials: analysis reproducibility

Analyses in open-source computing environments (R, Python, etc.)
• Reproducibility depends less on reporting fields and more on code/scripts (versions still important)
• Issue: users may not have sufficient expertise with open-source computing environments (easier for end 
users with coding skills to reproduce)
• No financial or licensing barriers for accessing tools

Analyses using freeware analysis software or web applications (BMDExpress)
• Reproducibility depends on clear and precise reporting in the OORF documentation and/or a configuration 

file the end user could follow
• More user friendly and require less technical/statistical expertise compared to open-source computing
• No “pay wall”

Analyses using proprietary software (Partek, Ingenuity, etc.):  
• Reproducibility depends on clear and precise reporting in the OORF documentation and/or a configuration 

file the end user could follow
• End user needs access to the same software (and version)
• “Pay wall” issues

23



Lessons learned from OORF trials: big picture

• Trials have demonstrated where clarifications/revisions in the OORF were needed
• High degree of concordance observed in the trial results (i.e., the framework works)

 Minor differences in pipelines that implement permutation analyses (expected but not major 
differences), and different database versions (also expected)

 Differences would not change study conclusions

• Challenges include finding submitters and end-users that have access to, or are willing to apply, 
the same software or pipeline
 Paywall issues with some software
 Complexity of using other people's pipelines

» GitHub repositories and Omics Data Analysis Framework for Regulatory Application (R-ODAF) or EPA’s httrpl 
are solutions

• Experience with regulatory partners demonstrates utility for increasing transparency and 
reproducibility of the omics analyses
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Application Reporting Module case study: chemical grouping using gene 
expression data for a common group of chemicals (BPA and alternatives)

• Qualitative Analysis: 
 Bioactivity profile-based grouping using 

the complete set of features (top 
figures)

 Established thresholds to focus on 
chemicals with demonstrated bioactivity 
after exposure

• Grouping Analysis:
 Bioactivity profile-based grouping using 

a subset of pre-filtered differentially 
expressed genes

 Omics signature-based grouping using 
subset of genes from a published 
estrogen receptor biomarker

• The methods, approaches, and results are 
being used to develop and trial the 
reporting module

Mark Viant & Anthony Reardon



ICCS Toxicogenomics Web Application
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Future of the OORF: the “last mile” of NAMs?

• Reporting module for ‘omics biomarkers/pattern matching
 Outcome from discussion at International Workshop on Genotoxicity Testing (IWGT) in Ottawa 

(2022), Working group on “TGx-Biomarkers that Predict Genotoxicity”
• OECD Omics website provides a resource for sharing and disseminating the OORF

 https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/omics-technologies-chemical-testing.html

• Application Reporting Modules (ARMs)
 Development and trialling of ‘Chemical Grouping’ ARM adopted into WPHA work plan in March 

2022
• Revise and update as required

 It would be valuable to harmonize the format of the OORF into fully machine-readable schema
• Health Canada is aiming for better interoperability with international agencies for 

consistency in analytical approaches used for transcriptomics
• The OORF contributes guidance and a framework, key components for getting NAMs 

implemented in practice
 Case studies, training, and implementation are the other key components for omics use in decision-making
 A remaining challenge is encouraging regulators to request a filled OORF where omics experiments may have 

been done (solution: make it easier for people to fill out, e.g., ICCS web application; education on use – that is, 
teach about modular nature and re-useability of components)

27
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Estimating Points of Departure (PODs) using 
New Approach Methods (NAMs)

In Vitro Measured Bioactive
Point of Departure (PODin vitro) µM

in vitro-in vivo extrapolation 
(IVIVE) converts µM to 
mg/kg/day

mg/kg/day mg/kg/day mg/kg/day

Paul Friedman et al. (2020)

 In vitro-in vivo extrapolation 
(IVIVE) allows estimation of 
chemical-specific Points of 
Departure (PODs) based on 
new approach methods (NAMs)
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Estimating Points of Departure (PODs) using 
New Approach Methods (NAMs)

µM

in vitro-in vivo extrapolation 
(IVIVE) converts µM to 
mg/kg/day

mg/kg/day mg/kg/day mg/kg/day

Apply high-
throughput 

toxicokinetics 
(httk) to get 
mg/kg/day

In Vitro Measured Bioactive
Point of Departure (PODin vitro)

PODNAM

Uncertainty in intake rate for single chemical 

Paul Friedman et al. (2020)

 In vitro-in vivo extrapolation 
(IVIVE) allows estimation of 
chemical-specific Points of 
Departure (PODs) based on 
new approach methods (NAMs)

Exposure
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Estimating Points of Departure (PODs) using 
New Approach Methods (NAMs)

Apply high-
throughput 

toxicokinetics 
(httk) to get 
mg/kg/day

In Vitro Measured Bioactive
Point of Departure (PODin vitro)

PODNAM

Paul Friedman et al. (2020)

mg/kg/day mg/kg/day

µM

in vitro-in vivo extrapolation 
(IVIVE) converts µM to 
mg/kg/day

 In vitro-in vivo extrapolation 
(IVIVE) allows estimation of 
chemical-specific Points of 
Departure (PODs) based on 
new approach methods (NAMs)

 Conservative assumptions allow 
calculation of a protective PODNAM 
that is less than PODtraditional

Bioactivity:Exposure Ratio 
(BER) is a surrogate measure of risk

Exposure

Bioactivity:exposure
ratio
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Estimating Points of Departure (PODs) using 
New Approach Methods (NAMs)

µM

in vitro-in vivo extrapolation 
(IVIVE) converts µM to 
mg/kg/day

mg/kg/day mg/kg/day mg/kg/day

Paul Friedman et al. (2020)

Apply high-
throughput 

toxicokinetics 
(httk) to get 
mg/kg/day

In Vitro Measured Bioactive
Point of Departure (PODin vitro)

PODNAM

Distribution of PODtraditional for a single chemical 

 In vitro-in vivo extrapolation 
(IVIVE) allows estimation of 
chemical-specific Points of 
Departure (PODs) based on 
new approach methods (NAMs)

 Conservative assumptions allow 
calculation of a protective PODNAM 
that is less than PODtraditional

PODtraditionalExposure

Bioactivity:exposure
ratio

PODtrad:PODNAM
ratio
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Standardized NAM Data and Tools

 Hazard (ToxCast/Tox21): There are nearly 10,000 
chemicals with in vitro bioactivity data

 Exposure: There are more than 400,000 
chemicals with “exposure forecasts” (ExpoCast)

 Dose-Response: There are currently 7,569 
chemicals with high throughput toxicokinetics 
(HTTK) data/predictions (including Css, Vd, thalf)

https://comptox.epa.gov/dashboard

https://comptox.epa.gov/dashboard
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Standardized NAM Data and Tools

 Hazard (ToxCast/Tox21): There are nearly 10,000 
chemicals with in vitro bioactivity data

 Exposure: There are more than 400,000 
chemicals with “exposure forecasts” (ExpoCast)

 Dose-Response: There are currently 7,569 
chemicals with high throughput toxicokinetics 
(HTTK) data/predictions (including Css, Vd, thalf)

https://comptox.epa.gov/dashboard

HTTK is the combination of 
chemical-specific in vitro TK data and 

generic physiologically-based TK models 
(Breen et al., 2021)

https://comptox.epa.gov/dashboard
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Openly Available TK Information

https://comptox.epa.gov/dashboard

 EPA’s data and tools for 
HTTK are made available 
through R package “httk”

 The “httk” tool has been 
used to calculate key TK 
information that is available 
on the CompTox Chemicals 
Dashboard and elsewhere

The current HTTK data in CCD is HTTK v2.2.1. Please see the 
Data Sources table in the Release Notes for more information

https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes
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Openly Available TK Information
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used to calculate key TK 
information that is available 
on the CompTox Chemicals 
Dashboard and elsewhere
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Data Sources table in the Release Notes for more information

https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes
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Openly Available TK Information

 EPA’s data and tools for 
HTTK are made available 
through R package “httk”

 The “httk” tool has been 
used to calculate key TK 
information that is available 
on the CompTox Chemicals 
Dashboard and elsewhere

https://comptox.epa.gov/dashboard

Vd
thalf

Css

The current HTTK data in CCD is HTTK v2.2.1. Please see the 
Data Sources table in the Release Notes for more information

https://comptox.epa.gov/dashboard
https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard-release-notes
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𝐀𝐀𝐀𝐀𝐀𝐀 =  𝑭𝑭𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰  ×  [𝑿𝑿]

 There are many approaches to IVIVE, but we choose a relatively simple one:
 We make various assumptions that allow conversion of an in vitro concentration [𝑿𝑿] (µM) 

into an administered equivalent dose (AED) with units of mg/kg body weight/day:

 AED is the external dose rate that would be needed to produce a given steady-state 
plasma concentration

 FIVIVE is a scaling factor that varies by chemical

IVIVE by Scaling Factor

HTTK can predict FIVIVE
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IVIVE by Scaling Factor

 The “95” refers to the upper 95th percentile – due to human variability and 
measurement uncertainty there are a range of possible Css values

“httk” predicts IVIVE scaling factors using probabilistic methods that account for 
human variability and measurement uncertainty

 For a given chemical, FIVIVE = 1 / Css,95

 Css,95 is the steady-state plasma concentration resulting from a 1 mg/kg/day exposure
 HTTK can predict Css,95 using “reverse dosimetry” IVIVE (Tan et al., 2007), leading to an 

oral equivalent dose (OED): 

𝐎𝐎𝐎𝐎𝐎𝐎𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗
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Means of Obtaining HTTK 
Scaling Factors

 EPA’s R package “httk” (targeting bioinformatics community) (Pearce et al., 2017)
https://CRAN.R-project.org/package=httk

 CompTox Chemicals Dashboard (in use by US EPA) (Williams et al., 2017)
https://comptox.epa.gov/dashboard/

 SimCYP SimRFlow Tool (in use by EU-ToxRisk) (Khalidi et al., 2022)
https://www.certara.com/software/simcyp-pbpk/

 NICEATM Integrated Chemistry Environment (in use by US NTP) (Bell et al., 2020)
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive

 TKPlate (in use by EFSA) (Dorne et al., 2023)
https://zenodo.org/record/2548850

https://cran.r-project.org/package=httk
https://comptox.epa.gov/dashboard/
https://www.certara.com/software/simcyp-pbpk/
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive
https://zenodo.org/record/2548850
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Means of Obtaining HTTK 
Scaling Factors

 EPA’s R package “httk” (targeting bioinformatics community) (Pearce et al., 2017)
https://CRAN.R-project.org/package=httk

 CompTox Chemicals Dashboard (in use by US EPA) (Williams et al., 2017)
https://comptox.epa.gov/dashboard/

 SimCYP SimRFlow Tool (in use by EU-ToxRisk) (Khalidi et al., 2022)
https://www.certara.com/software/simcyp-pbpk/

 NICEATM Integrated Chemistry Environment (in use by US NTP) (Bell et al., 2020)
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive

 TKPlate (in use by EFSA) (Dorne et al., 2023)
https://zenodo.org/record/2548850

All these tools make use of data/models from EPA’s open-source “httk” package

https://cran.r-project.org/package=httk
https://comptox.epa.gov/dashboard/
https://www.certara.com/software/simcyp-pbpk/
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive
https://zenodo.org/record/2548850
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Recent Updates to EPA “httk” Package

 EPA now analyzing in vitro TK data with upcoming tool “invitroTKstats”
 “invitroTKstats” is a standardized workflow that allows auditable and reproducible 

analysis
 Analysis estimates chemical-specific measurement uncertainty

 Updated “httk-pop” human variability simulator to reflect most 
recent NHANES cohorts (Breen et al., 2022)

 Developed human gestational exposure model (Kapraun et al., 2022)

 Measured in vitro gut permeability data using Caco-2 cell-line for 
non-pharmaceuticals
 Values allow prediction of chemicals that are poorly absorbed 

orally (Honda et al., 2024)

https://cran.r-project.org/package=httk
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Adjusting for Oral Absorption

 Steady-state plasma concentration is proportional to dose and fraction absorbed (Fabs):

 In vitro Caco-2 measurements (or QPSRs) characterize absorption from the gut
 Administered equivalent dose (AED) depends on predicted steady-state plasma 

concentration:

𝐎𝐎𝐎𝐎𝐎𝐎𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗

𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗 ~ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 ∗ 𝑭𝑭𝒂𝒂𝒂𝒂𝒂𝒂

 If Fabs < 100%, then Css,95 decreases and therefore the necessary AED95 increases
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New In Vitro TK Measurements

 EPA’s laboratories (Wetmore), contractors (Cyprotex), and 
collaborators (National Toxicology Program, EC Joint 
Research Centre, Health Canada) continue to generate 
new, chemical-specific in vitro TK measurements

 These data are analyzed with unreleased tool 
“invitroTKstats” to produce chemical-specific estimates of 
measurement uncertainty

 Literature in vitro TK data curated by ICF

HTTK Data

R package “httk”

Various
QSPRs

R package 
“invitroTKstats” 
in development

In vitro 
measured 

parameters 

In silico 
predicted

parameters 
Clint, fup, 

Caco-2 permeability 

Open 
Literature

Mass spectrometry 
data of chemical 
concentrations in 
HTTK assays (No 

Database Yet)
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HTTK QSPRs
 Machine-learning based quantitative structure-property 

relationship (QSPR) models now available for hepatic metabolism, 
plasma protein binding, and Caco-2 
(Dawson et al., 2021, Honda et al., 2024)

Analyze 
new data 

from 
Cyprotex

Use new data to evaluate 
Dawson 2021 Clint/Fup and 
Honda 2024 Caco2 QSPRs

1. Estimate prediction accuracy
2. Evaluate accuracy of out of 

domain predictions
3. Characterize outlier sensitivity

Report 
Accuracy 
for QSPR 

Predictions

Model is 
Sufficient

Yes
Build new 
QSPR with 
new Data

No

https://github.com/HumanExposure/Dawson-et-al.-2021_Clint_fup_predictions

 Nearly 10,000 predictions based on HTTK QSPRs 
available on the CompTox Chemicals Dashboard

 New in vitro TK measured data being used to 
establish accuracy of QSPRs and build new models 
(Tabatabaei Sadeghi, in preparation)

 Model domains of applicability indicate chemical 
properties that are consistent with the training set

https://github.com/HumanExposure/Dawson-et-al.-2021_Clint_fup_predictions
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HTTK Confidence Assessment
 How well does HTTK predict chemical 

absorption, distribution, metabolism, and 
excretion?

 Toxicokinetic Concentration vs. Time 
database (CvTdb) contains structured TK data 
from the peer-reviewed literature 
(Sayre et al., 2020)

Taylor Wall, Risa Sayre, Caroline Ring, Gilberto Padilla Mercado

 EPA actively curating data from publications
 Collaborators including Showa Pharmaceutical also providing data

 CvTdb data can be analyzed with open-source tool “invivoPKfit” to estimate 
TK statistics such as half-life and volume of distribution 
(Padilla Mercado et al., in preparation)
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HTTK Confidence Assessment
CvTdb combined with “invivoPKfit” allows evaluation of HTTK predictions

Area Under the 
Curve (AUC) 
calibrated by 
“invivoPKfit”

Office of Research and Development Gilberto Padilla Mercado, Rogelio Tornero-Velez, Taylor Wall, Risa Sayre, Caroline Ring 

Manuscript under internal review
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HTTK Confidence Assessment
CvTdb combined with “invivoPKfit” allows evaluation of HTTK predictions

Office of Research and Development Gilberto Padilla Mercado, Rogelio Tornero-Velez, Taylor Wall, Risa Sayre, Caroline Ring 

Manuscript under internal review
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HTTK Confidence Assessment
CvTdb combined with “invivoPKfit” allows evaluation of HTTK predictions

Gilberto Padilla Mercado, Rogelio Tornero-Velez, Taylor Wall, Risa Sayre, Caroline Ring Office of Research and Development
Manuscript under internal review
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HTTK Confidence Assessment
CvTdb combined with “invivoPKfit” allows evaluation of HTTK predictions

Estimated 16-fold error for predictions 
based on in vitro TK data

Similar error for predictions based on 
consensus (multiple) QSPRs

Office of Research and Development Gilberto Padilla Mercado, Rogelio Tornero-Velez, Taylor Wall, Risa Sayre, Caroline Ring 

Manuscript under internal review
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In Vitro Distribution
 “httk” tool includes modified* 

Armitage et al. (2014) model 
for estimating in vitro 
distribution 

 Nominal tested concentration 
does not equal concentration 
in the cells

Meredith Scherer, Katie Paul Friedman
*Model has been updated to include ionization and plastic binding
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Meredith Scherer, Katie Paul Friedman
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In Vitro Distribution
 “httk” tool includes modified* 

Armitage et al. (2014) model 
for estimating in vitro 
distribution 

 Nominal tested concentration 
does not equal concentration 
in the cells

Meredith Scherer, Katie Paul Friedman
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New Models for HTTK

Multiple new models are in development including:

 Full human gestational (Truong and Paul Freidman)
 Chemical mixtures (Schacht and Evans)
 PFAS (Wetmore and Tornero-Velez)
 Dermal Exposure (Meade and Evans)
 Inhalation Steady-State (Ring and Schacht)
 Blood-Brain Barrier (Unnikrishnan, Chang, Sluka, Kreutz, Li…)

 HTTK is the combination of in vitro TK data and high throughput physiologically-based 
toxicokinetic (HT-PBTK) models 

A recent manuscript provides a guide to developing new HT-PBTK models using existing 
HTTK data and methods (Davidson-Fritz et al., pre-print)
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Full Human Gestational IVIVE

 Kapraun et al. (2022) model 
describes human gestation in second 
and third trimesters

 Truong et al. have developed a new 
HT-PBTK model for full gestation

 Allows IVIVE for thyroid bioactivity 
during the human perinatal period

Kimberly Truong, Dustin Kapraun, Katie Paul Friedman
Manuscript under internal review

IYD

DIO2

DIO1
Liver

Thyroid

Brain Placenta

DIO3

Goal: Administered Equivalent Dose 
(AED) for Thyroid-Relevant 

Bioactivity in relevant compartments 
and lifestages of concern

Volume of Conceptus /
Volume of Placenta + Fetus + Amniotic

Fluid    

Kapraun et al. 
(2022)
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HTTK for PFAS

Barbara Wetmore, Rogelio Tornero-Velez, Rachael Cogbill, Michael Devito, Chris Lau

 Typical in vitro TK measurements do not capture the role of transporters that may be important for 
understanding per- and polyfluorinated alkyl substances (PFAS)

 Dawson et al. (2023) machine learning model approximates the impact of transporters on toxicokinetics

 New PFAS-specific in vitro TK 
measurements from Wetmore lab and 
NTP were recently published 
(Smeltz, et al. 2023, Kreutz, et al. 2023, 
Crizer et al. 2024)

 New HT-PBTK models specifically for 
PFAS allow prediction of TK and IVIVE, 
including interspecies differences
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Inhalation IVIVE

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]

𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗,𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖

𝐈𝐈𝐈𝐈𝐈𝐈𝟗𝟗𝟗𝟗 =
[𝑿𝑿]

𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗,𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

Administered Equivalent Dose

Inhalation Equivalent Dose

In Vitro 
Point of Departure

New IVIVE model including inhalation 
and exhalation allows estimation of 
inhalation equivalent doses in ppm

Celia Schacht, Caroline Ring
Manuscript under internal review
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Open-Source Tools
 R package “httk” allows for probabilistic in vitro-in vivo extrapolation (IVIVE) and toxicokinetics (TK)

Pearce et al. (2017)
 Simulates human variability and propagates measurement uncertainty
 In vitro TK data for >1,000 chemicals and QSPR predictions for ~9,000 more
 https://CRAN.R-project.org/package=httk  

 Toxicokinetic Concentration vs. Time database (CvTdb) provides public, curated data with study annotation
Sayre et al. (2020)
 >250 analytes from hundreds of studies
 https://github.com/USEPA/CompTox-PK-CvTdb

 R package “invivoPKfit” allows for consistent, reproducible TK parameter estimation from CvT data
Padilla Mercado et al. (2024)
 https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

 Forthcoming R package “invitroTKstats” allows for transparent estimation of in vitro TK parameters
Wambaugh et al. (2019)
 Calculates chemical-specific measurement uncertainty

https://cran.r-project.org/package=httk
https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Using HTTK in Decision Making

 Accelerating the Pace of Chemical Risk 
Assessment (APCRA) international 
government collaboration is developing 
decision trees to guide consideration of 
using HTTK in decision making
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EPA HTTK Research
APCRA workgroup
HTTK in 
decision making
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EPA HTTK Research
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EPA HTTK Research
APCRA workgroup
on HTTK in 
decision making
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EPA HTTK Research
HTTK Data HTTK Models

R package “httk” R package “invivoPKfit”HTTK
QSPRs

R package 
“invitroTKstats” 
in development

In vitro 
measured 

parameters 

Predicted steady-state 
concentration (Css), 
half-life, volume of 
distribution, days to 

steady-state

In vivo steady-state 
concentration (Css), 
half-life, volume of 

distribution, days to 
steady-state

In silico 
predicted

parameters 
Clint, fup, 

Caco-2 permeability 

Open 
Literature

Mass spectrometry 
data of chemical 
concentrations in 
HTTK assays (No 

Database Yet)

Tables of in vitro and 
physiological parameters 
and models built to use 

them

CvTdb 
(TK Concentration vs. 

time database)

Underlying Data

Confidence Characterization
APCRA workgroup
on HTTK in 
decision making
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EPA HTTK Research
HTTK Data HTTK Models

R package “httk” R package “invivoPKfit” Open-Source ToolsHTTK
QSPRs

R package 
“invitroTKstats” 
in development

In vitro 
measured 

parameters 

Predicted steady-state 
concentration (Css), 
half-life, volume of 
distribution, days to 

steady-state

In vivo steady-state 
concentration (Css), 
half-life, volume of 

distribution, days to 
steady-state

In silico 
predicted

parameters 
Clint, fup, 

Caco-2 permeability 

Open 
Literature

Mass spectrometry 
data of chemical 
concentrations in 
HTTK assays (No 

Database Yet)

Tables of in vitro and 
physiological parameters 
and models built to use 

them

CvTdb 
(TK Concentration vs. 

time database)

Underlying Data

Confidence Characterization
APCRA workgroup
on HTTK in 
decision making
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EPA HTTK Research
HTTK Data HTTK Models

R package “httk” R package “invivoPKfit” Open-Source ToolsHTTK
QSPRs

R package 
“invitroTKstats” 
in development

Dashboard

In vitro 
measured 

parameters 

Predicted steady-state 
concentration (Css), 
half-life, volume of 
distribution, days to 

steady-state

In vivo steady-state 
concentration (Css), 
half-life, volume of 

distribution, days to 
steady-state

In silico 
predicted

parameters 
Clint, fup, 

Caco-2 permeability 
API’s in beta testing

Open 
Literature

Mass spectrometry 
data of chemical 
concentrations in 
HTTK assays (No 

Database Yet)

Tables of in vitro and 
physiological parameters 
and models built to use 

them

CvTdb 
(TK Concentration vs. 

time database)

Underlying Data

Confidence Characterization
APCRA workgroup
on HTTK in 
decision making
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Conclusions

 HTTK is being expanded to better cover relevant 
chemicals (volatiles, PFAS) and susceptible and 
highly exposed populations (pregnancy, 
occupational)

 HTTK resources are widely available on-line
Please send any questions to: 

wambaugh.john@epa.gov

 HTTK is needed to convert from 
bioactive in vitro concentrations to 
putative dose rates needed to produce 
those concentrations in the body

 HTTK allows rapid calculations for a 
variety of scenarios High 

Throughput 
Exposure 

Predictions

mg/kg/day

High 
Throughput 

Screening 
+ Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

mailto:wambaugh.john@epa.gov
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 Not only the number increased, so did the diversity in chemical structures!
 Global release into environment: 310 kg of toxic chemicals per second![1] 
 One in every six children suffers from neurodevelopmental abnormality 

suspected to be triggered by exposure to environmental chemicals![2] [1] https://www.worldometers.info/
[2] https://braindrain.dk/ 

The use of anthropogenic organic chemicals has changed 
over the last decades

https://www.worldometers.info/
https://braindrain.dk/
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Explore chemical exposures and toxicity based on freely 
dissolved concentrations
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Quantitative in vitro-in vivo extrapolation (QIVIVE)
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Chemical transport models to investigate the distribution 
of chemicals in in vitro cell assays

? Can the system be approximated with an equilibrium or kinetic model?
? How much complexity is necessary to predict/explain exposure?



PAGE 6

Computing chemical transport models: 
The benefit of simplicity 
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Computing chemical transport models: 
Implementation of numerical models in R

Solve the equations in discrete time steps – increase the number of time steps (∆t) 
to increase the model accuracy and to avoid numerical errors
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In vitro cell assays to measure toxicokinetics and various 
toxic endpoints – Translation of effect concentrations

Genetically 
modified  cell

Cost-efficient, reproducible in high-throughput 
format, classified as non-animal test1

Potential to reveal mode of action (MoA) 

Large databases already exist, e.g., “Toxicology in 
the 21st Century” (Tox21) program2

  Databases neglect chemical bioavailability

1 Escher, B., and Leusch, F. (2012) ISBN: 9781843393689.
2 Tox21 10K library, U.S. EPA.

Quantitative predictive power 
depends on controlling & assessing 
effective concentrations!

Cfree and Ccell
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Chemical fate in in vitro cell-based assays results from 
various processes

Base medium often 
supplemented with 
0.5 - 10% protein- 
and lipid-rich foetal 
bovine serum 
(FBS)
Extend and kinetics 
of cellular uptake: 
active and passive 
transport 
mechanisms

Cell lines derived 
from different 

tissue: metabolic 
capacity?

What level of model complexity do we need to predict 
exposure (Cfree, Ccell) reasonably accurate?

Standard well 
plates with plastic 
lids: exchange with 
outside air possible 96-, 384-, 1536-

well plates with 
different medium 
volume to plastic 

surface area ratios



Equilibrium mass balance model to quantify the effective 
dose in HTS in vitro bioassays

FBS proteins 
and lipids

Complex system Simplified model Model simulations

PAGE 10



Measuring chemical uptake kinetics with fluorescence 
microscopy

PAGE 11

t95% = 40 min



Transport of chemicals into the plastic material of multi-
well plates used for bioassays 
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Adjusting the FBS content in the medium to achieve 
controlled exposure conditions and easier modeling

PAGE 13

Equilibrium model sufficiently accurate?



Establishment of a quantitative extrapolation framework 
for risk assessment to protect human health

PAGE 14



Cytotoxicity burst – Specificity analysis of in vitro HTS 
effect data using mass balance modeling

PAGE 15

 Automated processing of ~8,000 chemicals with ~380,000 data 
points in MATLAB

 Specificity analysis of ToxCast/Tox21 effect data to identify highly 
potent chemicals and potentially false-positive effects

Concept 
applicable to 
other modes 

of action?



Experimental evaluation of model performance: 
Measuring Cfree in in vitro cell assays

PAGE 16

Metabolism?



Characterizing metabolism of in vitro cells:
Fit experimental data to 2-comp kinetic transport model
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Chemical transport models to investigate the distribution 
of chemicals in in vitro cell assays

? Can the process be approximated with an equilibrium or kinetic model?
? How much complexity is necessary to predict/explain exposure?

Can we simplify?
For in vitro exposure, YES*!

PAGE 18
*but there are exceptions



Work in progress: Implementation of a kinetic transport 
model for in vitro cell-based bioassays

PAGE 19

 Limited parameters available to parameterize a comprehensive in vitro kinetic model



Work in progress: Implementation of a kinetic transport 
model for in vitro cell-based bioassays

PAGE 20

Fischer et al. (in preparation)

 96-well plate, 120 µL OptiMEM + 10% FBS  0.5% - 10% FBS
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• A New Approach Method (NAM) to fill the bridge 
between cell-based assays and animal trials.

• Better representation of human response
• Useful for high throughput testing
• Addresses ethical concerns

• Typically made of polydimethylsiloxane (PDMS):
• Inexpensive
• Flexible
• Transparent
• Gas permeable

• But PDMS tends to sequester 
hydrophobic compounds.

• Need to avoid, mitigate, or measure and model.

Microphysiological Systems 
  (Organ-on-Chip Devices)
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1. Measure chemical-PDMS interaction and transport parameters.
a. Partition coefficients: k = CPDMS/Csol
b. Diffusion coefficients in PDMS: DP
c. Evaluate correlations with chemical properties

2. Be wary of read-across methods.

3. Validate multiphysics models for in-device toxicokinetics.

4. Investigate the effectiveness of mitigation strategies for reducing 
chemical sequestration in microfluidic devices:
a. SEBS co-polymers as PDMS alternatives; and
b. media with carrier proteins.

Talk Outline
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b. Diffusion coefficients in PDMS: DP
c. Evaluate correlations with chemical properties

2. Be wary of read-across methods.

3. Validate multiphysics models for in-device toxicokinetics.
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Measuring Chemical-PDMS Interaction and Transport Parameters

Disk Soak Experiments
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Auner et al, Lab on a Chip 2019
Hermann et al, bioRxiv, 2024
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Measuring Chemical-PDMS Interaction and Transport Parameters

Disk Soak Experiments

Membrane Experiments time (h)

C/
C 0

time (h)

C/
C 0 Source

Sink

in Solution

Auner et al, Lab on a Chip 2019
Hermann et al, bioRxiv, 2024
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Measuring Chemical-PDMS Interaction and Transport Parameters

Disk Soak Experiments

Membrane Experiments

Aqueous Solution PDMS

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −𝐻𝐻(𝑘𝑘𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠  − 𝐶𝐶𝑃𝑃)

Data fit to a 4-parameter partition-diffusion model

𝜕𝜕𝐶𝐶𝑃𝑃
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑃𝑃
𝜕𝜕2𝐶𝐶𝑃𝑃
𝜕𝜕𝑥𝑥2

𝜕𝜕𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕2𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠
𝜕𝜕𝑥𝑥2
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Test set of 10 chemicals



U.S. EPA – 4th NAMs Conference on the State of the Science on Development and Use of NAMS for Chemical Safety Testing

7 were sufficiently soluble to 
perform experiments directly 
in phosphate-buffered saline

Test set of 10 chemicals

Disk Membrane

Source

Sink
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3 required the addition of 
DMSO as a cosolvent

Test set of 10 chemicals

Disk Membrane

Source

Sink

Membrane Membrane

Log-linear relationship between partition 
coefficient (k) and cosolvent fraction
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3 required the addition of 
DMSO as a cosolvent

Test set of 10 chemicals

No clear relationship between diffusion 
constant in PDMS (DP) and cosolvent fraction

Disk Membrane

Source

Sink

Membrane Membrane
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The best-fit chemical-PDMS interaction parameters span several orders of magnitude
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𝐷𝐷𝑃𝑃 ~ 𝑙𝑙2

𝑡𝑡
~ 300 µm2/h ~ 3 x 10-4 mm2/h

Rhodamine-B

Spreads ~30 µm into PDMS within 3 hours:

500 µm 50 µm

Validate DP by visualizing diffusion into the PDMS bulk

PDMS

Soln

PDMS

Soln

PDMSSoln

log[𝐷𝐷𝑃𝑃] ~ -3.5 
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rhodamine B

rhodamine 6G

rhodamine B

rhodamine 6G

Result from disk/membrane 
experiments for rhodamine B: 
       log[DP] = -3.44 ± 0.68 (in mm2/hr)

Validate DP by visualizing diffusion into the PDMS bulk
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time (min) time (min)

time (min)

(in mm2/hr)

Tracking additional dyes:  DP can vary over 4 orders of magnitude 
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Dyes without a color-code did not diffuse 
into PDMS (but some bound to surface)
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Dyes without a color-code did not diffuse 
into PDMS (but some bound to surface)
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1. Measure chemical-PDMS interaction and transport parameters.
a. Partition coefficients: k = CPDMS/Csol
b. Diffusion coefficients in PDMS: DP
c. Evaluate correlations with chemical properties

2. Be wary of read-across methods.

3. Validate multiphysics models for in-device toxicokinetics.

4. Investigate the effectiveness of mitigation strategies for reducing 
chemical sequestration in microfluidic devices:
a. SEBS co-polymers as PDMS alternatives; and
b. media with carrier proteins.

Talk Outline
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Some chemically similar pairs do have similar PDMS interactions.

Both are quite hydrophobic, 
but neither interacts measurably with PDMS.

Disk Membrane Disk Membrane
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Similar chemicals can interact with PDMS quite differently!
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Similar chemicals can interact with PDMS quite differently!
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Similar chemicals can interact with PDMS quite differently!

Read-across used in 
Grant et al, Lab on a Chip, 2021
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1. Measure chemical-PDMS interaction and transport parameters.
a. Partition coefficients: k = CPDMS/Csol
b. Diffusion coefficients in PDMS: DP
c. Evaluate correlations with chemical properties

2. Be wary of read-across methods.

3. Validate multiphysics models for in-device toxicokinetics.

4. Investigate the effectiveness of mitigation strategies for reducing 
chemical sequestration in microfluidic devices:
a. SEBS co-polymers as PDMS alternatives; and
b. media with carrier proteins.

Talk Outline
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ModelMeasurements

Modelling chemical distribution during flow through a microfluidic channel



U.S. EPA – 4th NAMs Conference on the State of the Science on Development and Use of NAMS for Chemical Safety Testing

1. Measure chemical-PDMS interaction and transport parameters.
a. Partition coefficients: k = CPDMS/Csol
b. Diffusion coefficients in PDMS: DP
c. Evaluate correlations with chemical properties

2. Be wary of read-across methods.

3. Validate multiphysics models for in-device toxicokinetics.

4. Investigate the effectiveness of mitigation strategies for reducing 
chemical sequestration in microfluidic devices:
a. SEBS co-polymers as PDMS alternatives; and
b. media with carrier proteins.

Talk Outline
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Chemicals still partition into FlexdymTM (SEBS), but diffuse through it more slowly. 

Greater partition coefficient for FlexdymTM, 
but with slower diffusion.
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Chemicals still partition into FlexdymTM (SEBS), but diffuse through it more slowly. 

Similar partition coefficient for FlexdymTM, 
but with no detectable diffusion.
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Adding BSA to media can reduce partitioning into PDMS

Bovine serum albumin
PDB DOI: https://doi.org/10.2210/pdb4F5S/pdb

Mol Wt = 66,433 Da             1% w/v = 15 mM

https://doi.org/10.2210/pdb4F5S/pdb
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Summary
• Disk-soak and membrane-diffusion experiments are working well. 

• Partition and diffusion coefficients (k and DP) can be extracted by fitting data to 
numerical solutions of PDEs.

• Diffusion coefficients are confirmed by direct observation of dyes.

• PDMS-interaction properties show the same trends noted in Auner et al: 
hydrophobicity is important, and yet some chemicals with very high LogP have 
surprisingly weak interactions – be wary of simple read-across methods!

• Multiphysics models based on measured k and DP values do a good job of predicting 
chemical distributions under flow within a microfluidic device – measure and model 
is a viable strategy!

• In terms of mitigation, substituting SEBS co-polymer reduces but does not eliminate 
diffusion through the polymer. Including a carrier protein like BSA in the culture 
medium can reduce chemical partitioning into PDMS.



U.S. EPA – 4th NAMs Conference on the State of the Science on Development and Use of NAMS for Chemical Safety Testing

EXTRAS – ANOMALOUS DIFFUSION
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time (min) time (min)

time (min)

DP in mm2/hr; Dα in mm2/hrα
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Dyes without a color-code did not diffuse 
into PDMS (but some bound to surface)
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Dyes without a color-code did not diffuse 
into PDMS (but some bound to surface)
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BACKGROUND

• Chemical Risk Assessment can and should be based on 
non-animal data!
• This implies the need to use alternatives such as in vitro 
and in silico methods (New approach methodologies, NAMs)!
• Especially to interpret and use in vitro toxicity data in 
combination with biokinetic data!
• Biokinetic (ADME) data can be generated by in silico and in 
vitro models!
• PBK modeling is the way to accurately integrate and use in 
vitro data for the design of experiments and extrapolate in 
vitro effect data to in vivo for safety assessment by setting 
Point of Departure (PoD).

2



AN INTERNATIONAL EFFORT TO PROMOTE THE REGULATORY USE 
OF PHYSIOLOGICALLY BASED KINETIC (PBK) MODELS!

3



OECD GD 331 GUIDANCE ON CHARACTERIZATION, VALIDATION 
AND REPORTING OF PBK MODELS FOR REGULATORY PURPOSES 

• The GD provides contextual information on the 
scientific process of model characterization and 
evaluation, but not a technical guidance on model 
development or applications

• The GD is not prescriptive guidance on model 
acceptance; the level of confidence required for a 
model should depend on the regulatory context of 
use

• The GD is applicable to most chemicals and all 
species, provided that appropriate methods/data 
exit to parameterize a model

• The GD is a living document 

4



GD 331 ELEMENTS

1. Provide a scientific workflow for 
characterizing and validating PBK models, 
with emphasis on models that are 
constructed without using in vivo data

2. Provide knowledge sources on in vitro and 
in silico methods that can be used to 
generate model parameters

5



MODEL PARAMETRISATION STEP 3

6

For each of the ADME parameter, the OECD GD reports
pointers for the modeler and assessor.

Before using an in vitro parameter, one must 
up-scale the value - in vitro to in vivo using 
scaling factors.



MODEL PERFORMANCE STEP 5 
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1. Model Validation

2. Sensitivity, Uncertainty Analysis

3. Predictive capacity 

Assessment of model predictive capacity 
by using a read-across approach



GD 331 ELEMENTS
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PBK Model Reporting 
Template

Checklist for Evaluation 
of Model Applicability

3. Provide an assessment framework for 
evaluating PBK models for intended 
purposes

4. Provide a template for documenting PBK 
models 

5. Provide a checklist to support the 
evaluation of PBK model applicability 
according to context of use. 



TAKE HOME MSG PART 1

• Models are designed for purpose; required confidence varies as a function of 
the application

• Important Aspects of PBK Model Description and Assessment
• Quality of the source data
• Model characterization and implementation
• Model uncertainty and sensitivity
• Extent of critical input/prior acceptance

• Best Practice in Developing and Assessing PBK Models to Support 
Regulatory Application

• Collaboration with regulatory authorities in development
• Design for purpose addressing aspects important for the regulatory 

community
• Transparency in documentation 9



https://www.oecd.org/env/e
hs/testing/developmental-
neurotoxicity.htm

https://www.oecd.org/env/ehs/testing/developmental-neurotoxicity.htm
https://www.oecd.org/env/ehs/testing/developmental-neurotoxicity.htm
https://www.oecd.org/env/ehs/testing/developmental-neurotoxicity.htm


• How can an in vitro concentration 
associated with bioactivity be converted to 
an external exposure level?

• How can a point of departure (PoD) from 
DNT-IVB be derived, and how can its 
corresponding in vivo tissue or 
plasma/blood concentration be determined?

OECD WORKING GROUP 2022

Exposure
Kinetics



PRINCIPLES OF QUANTITATIVE IN VITRO TO IN VIVO EXTRAPOLATION 
(QIVIVE) APPLYING PBK MODELLING FOR DNT IVB 

The aim of this document is to provide an overview of the principles of QIVIVE 
through the application of PBK modelling to facilitate the incorporation of data 
from the Developmental Neurotoxicity In Vitro Battery (DNT IVB) into chemical 
hazard characterization and human health risk assessments. 
This document should be read in conjunction with the Initial Recommendations 
on Evaluation of Data from the Developmental Neurotoxicity (DNT) In Vitro 
Battery (IVB).
This document is not an exhaustive technical guidance for conducting QIVIVE in 
regulatory applications. 

In Draft

The term ‘QIVIVE’ describes the process of converting an in vitro
concentration associated with a specific bioactivity to an external 
dose (Chang et al., 2022a). 

QIVIVE 
Definition

https://www.mdpi.com/2305-6304/10/5/232



QUANTITATIVE IN VITRO TO IN VIVO EXTRAPOLATION (QIVIVE)

Schematic presentation of a QIVIVE approach in which an in vitro POD is translated to 
an external dose using PBK modelling. As highlighted in the published Initial 
Recommendations on Evaluation of Data from the DNT IVB, to date, results from the 
DNT IVB are expressed as in vitro benchmark concentrations (BMC).



QUANTITATIVE IN VITRO TO IN VIVO EXTRAPOLATION (QIVIVE)

Schematic presentation of a QIVIVE approach in which 
in vitro concentration-response data are translated into 
in vivo dose-response data using PBK modelling, from 
which an external POD can be derived.

In forward dosimetry, a PBK model 
is used to predict the internal 
concentrations resulting from a 
specific or a range of external 
doses. The predicted internal 
concentration can then be 
compared to the in vitro effect 
concentrations (Maass et al., 2023).



WHAT IS NEEDED – PART I 

• BMC or in vitro concentration response curve
• In vitro nominal to free concentration 



WHAT IS NEEDED – PART II

• PBK model structure 

Dallman et al., 2017
https://github.com/Open-Systems-Pharmacology/Pregnancy-Models



WHAT IS NEEDED – PART II

• PBK model structure 
• Input data for the model

• Physiology – Gestational, I, II, III or Infant + lactation.
• Biochemical – Fub, permeability, BBB, placenta, 

clearance., metabolism
• Physico chemical – Log Kow, Pka and MW …   

The essential set of parameters required for a model 
should adequately depict the physiology of the target 
species and the ADME of a chemical for the intended 
purpose, such as absorption rates, plasma protein 
binding, and clearance. Detailed recommendations for 
parameterizing a PBK model with in vitro and in silico 
approaches (OECD 331, 2021), or with in vivo data, such 
as those outlined in OECD TG417 (2010), can be found in 
published guidance documents (EPA 2006, WHO 2010).



DATABASE OF AVAILABLE P & L PBK MODELS 

Building on the 
Thompson PBK Database

Thompson CV, Firman JW, […] Madden JC. 
A Systematic Review of Published 
Physiologically-based Kinetic Models and an 
Assessment of their Chemical Space Coverage. 
Altern Lab Anim. 2021 Sep;49(5):197-208. doi: 
10.1177/02611929211060264. 

Extracted in excel:
- Information on the paper
- Information on the chemical
- Chemicals identifiers
- Information on the PBK model (Pregnancy/Lactation)
- Information on PBK model parametrisation
- Information on how the model was validated

Dr. Pavani Gonnabathula 

https://jobs.ljmu.ac.uk/vacancies/9797-491997-Research%20jobs.html

17/11/2024



TAKE HOME MSG PART II

• Provide principles and information to perform 
QIVIVE for OECD DNT in vitro test battery! 

• QIVIVE approaches are presented!
• PBK model framework is proposed!
• PBK model availability is provided!

Overall, there is a need for a general QIVIVE guidance!!!



WHAT NEXT?
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Working Group of National Co-
ordinators of the TGs 

programme (WNT)

Working Party on Hazard Assessment (WPHA)

STILL TO BE ACCEPTED BY OECD WP!!!



WHAT NEXT? @EFSA PPR WG QIVIVE 4 DNT IVB

Self-task mandate of the Plant 
Protection Products and their 
Residues (PPR) Panel for a Scientific 
Opinion on the application of 
physiologically based kinetic (PBK) 
modelling for the quantitative in vitro 
to in vivo extrapolation (QIVIVE) of 
developmental neurotoxicity in vitro 
battery (DNT IVB) data for pesticide 
active substances.

Kick – off July 2024https://open.efsa.europa.eu/questions/EFSA-Q-2024-00299
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