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Abbreviations and Acronyms

AF
CcoC
DEHP
ECCC
ECHA
EC50
EPA
GSI
LC50
LOAEC
LOAEL
NOAEC
NOAEL
OCSPP
OPPT
SSD
TRV
TSCA
u.S.

Assessment factor

Concentration(s) of concern

Diethylhexyl pthalate

Environment and Climate Change Canada

European Chemicals Agency

Effect concentration at which 50 percent of test organisms exhibit an effect
Environmental Protection Agency

Gonadosomatic index

Lethal concentration at which 50 percent of test organisms die
Lowest-observable-adverse-effect-concentration
Lowest-observable-adverse-effect-level
No-observable-adverse-effect-concentration
No-observable-adverse-effect-level

Office of Chemical Safety and Pollution Prevention

Office of Pollution Prevention and Toxics

Species Sensitivity Distribution

Toxicity reference value

Toxic Substances Control Act

United States
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SUMMARY

EPA considered all reasonably available information identified by the Agency through its systematic
review process under TSCA to characterize environmental hazard endpoints for diethylhexyl phthalate
(DEHP). Hazard data for aquatic exposures in fish indicated no acute toxicity up to and exceeding the
limit of water solubility (3.0 pg/L). Similarly, hazard data for aquatic invertebrates indicated no acute or
chronic toxicity up to the limit of solubility, as well as no toxicity to aquatic plants and algae. EPA
calculated two concentrations of concern (COC) for aquatic organisms. For chronic exposures to aquatic
vertebrates, the COC of 0.0032 pg/L was calculated from the chronic value (ChV) of 0.032 pg/L, which
is the geometric mean of the NOAEC of 0.01 pg/L and the LOAEC of 0.1 pg/L from two studies
showing decreased body weight in 21-day old male embryos and in 21-day old female fry Japanese
medaka (O. latipes), with this ChV divided by an assessment factor (AF) of 10 (Chikae et al., 2004a;
Chikae et al., 2004b).

For chronic exposures to sediment dwelling organisms, a COC of 0.03 pg/L was derived from an
unbound LOAEC of 0.3 pg/L based on significant effects in body volume in C. riparius at every
concentration tested(Kwak and Lee, 2005), divided by an AF of 10. For terrestrial species, hazard data
for DEHP were available for mammals, avian taxa, and terrestrial plants. Dietary exposure data for mice
were used to establish a hazard value for terrestrial mammals at 80.79 mg/kg-day as the geometric mean
between the NOAEL of 46.58 mg/kg-day and the LOAEL of 140.15 mg/kg-day based on effects on
decreased survival in offspring during lactation in a reproduction study of mice. The terrestrial plant
hazard threshold was derived from perennial ryegrass (Lolium perenne) in which there was a 72-hour
NOAEC of 5.0 mg/kg soil and a LOAEC of 20 mg/kg soil, which resulted in a geometric mean of 10
mg/kg soil for growth (Ma et al., 2015). The avian hazard threshold was derived from pre-hatch DEHP
egg injections. In this study, a 100 mg/kg LOAEL was identified for chick imprinting behavior
(decrease in imprinting preference) in the chicken (Gallus gallus domesticus) (Abdul-Ghani et al.,
2012). EPA used the LOAEL of 100 mg/kg-day for the avian hazard threshold.
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1 INTRODUCTION

Diethylhexyl pthalate (DEHP) is an organic colorless liquid substance primarily used as a plasticizer in a
wide variety of consumer, commercial, and industrial products. Like most phthalates, EPA expects
DEHP to cause adverse effects on aquatic organisms through a non-specific, narcotic mode of toxic
action (Parkerton and Konkel, 2000); however, previous assessments have found few to no effects of
DEHP on organism survival and growth, reproduction, or development (Health Canada, 2015; ECJRC,
2008). EPA reviewed studies of the toxicity of DEHP to aquatic and terrestrial organisms and its
potential environmental hazards.

2 APPROACH AND METHODOLOGY

During scoping and problem formulation, EPA reviewed potential environmental health hazards
associated with DEHP. EPA identified sources of environmental hazard data shown in Figure 2-10 of
the Scope of the Risk Evaluation for DEHP (U.S. EPA, 2020).

EPA completed the review of environmental hazard data/information sources during risk evaluation
using the data quality review evaluation metrics and the rating criteria described in the 2021 Draft
Systematic Review Protocol Supporting TSCA Risk Evaluations for Chemical Substances (U.S. EPA
2021) (also called “2021 Draft Systematic Review Protocol”) and the Draft Risk Evaluation for Di-
ethylhexyl Pthalate (DEHP) — Systematic Review Protocol (U.S. EPA, 2024c). Studies were assigned an
overall quality determination of high, medium, low, or uninformative.

Several international regulatory agencies, including the European Chemicals Agency (ECHA) and
Environment and Climate Change Canada (ECCC), have investigated the environmental effects of
DEHP. In the 2008 ECHA DEHP assessment, it was determined that although there was no concern
from site-reported release information, generic exposure scenarios for high release sites/conditions of
use indicated a potential concern for sediment-dwelling organisms and birds consuming mussels (ECB,
2008). Further information was needed, although some of these concerns could be mitigated and
eliminated through risk management actions. The 2020 ECCC assessment concluded that while DEHP
may enter the environment at levels that could be harmful to biological diversity, it is currently not
entering the environment in a sufficient quantity to cause harm (Health Canada, 2020). In the same
assessment, DEHP was determined to not meet persistence or bioaccumulation criteria set forth by
ECCC. EPA has confidence in conclusions drawn by these authorities based on study results and
summaries. EPA reviewed and summarized hazard thresholds from these reports and included them in
the weight of scientific evidence supporting the hazard effects characterization.

No studies on the effects of DEHP on terrestrial wildlife mammalian species were available; therefore,
mammalian studies from human health model organisms (mice and rats) were used to calculate a hazard
value for mammals, which is expressed as doses in units of mg/kg-bw-day. Although the hazard value
for DEHP is derived from laboratory rat and mouse studies, this value can be used as surrogate
information for ecologically relevant wildlife species to evaluate risk from chronic dietary DEHP
exposure.
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3 AQUATIC SPECIES HAZARD

Toxicity to Aquatic Organisms

EPA reviewed 82 aquatic toxicity studies rated high/medium quality to determine hazard to aquatic
organisms. Some studies may have included multiple endpoints, species, and test durations. Studies that
received an overall quality determination of low, unacceptable, or did not meet systematic review
criteria were not considered quantitatively to develop hazard thresholds. Of the 82 studies, 73 studies
either demonstrated no acute or chronic effects at any concentration tested, or the reported hazard values
exceeded the limit of solubility of 3.0 pg/L determined by EPA (U.S. EPA, 2024b). Therefore, these 73
studies were not considered quantitatively to develop hazard thresholds (Table 3-1).

Aquatic Vertebrates

No acute aquatic vertebrate studies with definitive values less than the limit of solubility were available
to determine a hazard threshold for DEHP. Chronic fish hazard data for DEHP were identified in five
studies representing four fish species (Japanese medaka [Oryzias latipes]; guppy fish [Poecilia
reticulata]; goldfish [Carassius auratus]; and zebrafish [Danio rerio]).

Two medium-quality chronic fish studies evaluated the effects of DEHP at nominal concentrations of 0,
0.01, 0.1, 1.0, and 10 pg/L in water for a duration of over 21 days on Japanese medaka (O. latipes)
embryo and fry stage (Chikae et al., 2004a; Chikae et al., 2004b). In embryos, mortality was the most
sensitive endpoint, with significant effects observed starting at the lowest concentration tested, 0.01
Ma/L; however, the magnitude of this finding was not concentration-dependent and was not significantly
different than controls at the highest concentration of 10 pg/L (Chikae et al., 2004a). Mortality in the
fry stage was not significant at any concentration of DEHP (Chikae et al., 2004b). In both studies,
DEHP had a significant effect on body weight. In embryos, body weight in males was significantly
different from controls starting at 0.1 pg/L. Specifically, body weight was reduced by 15.3 percent at
this concentration compared to controls, resulting in a 21-d male embryo body weight NOAEC/LOAEC
of 0.01/0.10 pg/L. Similarly in the female fry stage, body weight was significantly reduced starting at
0.1 pg/L DEHP, with a decrease of 23.6 percent at this concentration compared to controls, resulting in
a 21-d female fry body weight NOAEC/LOAEC of 0.01/0.10 pg/L. These two NOAEC/LOAECs from
both studies were used to calculate the chronic aquatic COC. Body weight was not significant at any
DEHP concentration in female embryos, and while male fry body weight was significantly lower than
controls at 0.01 and 10 pg/L, a clear concentration-response relationship was not observed for this sex
and life stage. Additionally, significant mechanistic endpoints were also observed for the gonadosomatic
index (GSI) at the fry stage of male fish in which GSI was reduced at 0.01, 1.0, and 10 pg/L (not 0.1
pg/L). Lastly, in medaka embryos, time to hatch was significantly increased at DEHP concentrations of
0.1 and 1.0 pg/L.

A chronic fish study, which received a medium-quality ranking, was conducted on 1-week old guppy
fish (P. reticulata) over 91 days to measure effects of DEHP at water concentrations of 0.1, 1.0, and 10
Mg/L (Zanotelli et al., 2010). Metrics of growth, including length, weight, and Fulton’s condition factor
(a measure of length to weight relationship) were assessed. After day 14, guppies exposed to 10 pg/L
DEHP displayed shorter length compared to control fish, and by the end of the study, both length and
weight were significantly less than controls at 1.0 and 10 pg/L, resulting in a NOAEC/LOAEC of
0.1/1.0 pg/L. Fulton’s condition factor, defined as weight over length (cubed), was unaffected. In this
study, the solubility of DEHP may have been increased by the use of a solvent (DMSO); however, the
study authors state that at the highest tested concentration (10 pg/L), DEHP may have separated,
creating a surface layer film, and thus limiting oxygen exchange on the surface. Additionally, the
nominal concentrations of DEHP used in this study were not analytically verified, and it was noted that
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the maximum reported nominal concentration might not have been reached due to the saturation of
water with DEHP (Zanotelli et al., 2010).

A chronic fish study that received a high-quality ranking was conducted on mature goldfish (C. auratus)
following a 30-day DEHP exposure at 1, 10, and 100 pg/L to evaluate reproductive parameters (Golshan
et al., 2015). While some of the study concentrations exceeded the DEHP limit of solubility, the authors
note the use of a solvent (acetone) in all groups. However, the concentrations of DEHP are nominal and
were not analytically verified. Following the exposure period, sperm motility and velocity at 15s post-
sperm activation were significantly decreased at 10 and 100 pg/L compared to controls. Additionally:
11- ketotestosterone (11-KT) was significantly decreased after the 30-day exposure at all DEHP
concentrations; luteinizing hormone was significantly decreased at all concentrations after 15 days and
at concentrations of 1.0 and 100 pg/L after 30 days; and StAR mRNA levels for steroidogenesis were
significantly decreased at 1, 10, and 100 pg/L following a 30-day exposure in males (Golshan et al.
2015).

A chronic fish study that received a medium-quality ranking was conducted with DEHP on zebrafish (D.
rerio) over 21 days to measure reproductive effects at 0.2 and 20 pg/L (Corradetti et al., 2013). At the
end of the study, significant increases in GSI and decreases in embryo number and hatching rate
percentage were observed at both concentrations tested. The study authors concluded that exposure to
DEHP at environmentally relevant concentrations could negatively affect fish reproduction (Corradetti
et al., 2013).

Aquatic Invertebrates

Hazard data for DEHP acute invertebrate exposures were identified in a medium quality study
representing one species. In this study, the marine copepod (Parvocalanus crassirostris), was exposed to
DEHP at concentrations of 0.06, 0.48, 3.81, 20.52, 244.14, and 1953.13 ng/L for 48 hours (Heindler et
al., 2017). Although there may be concerns regarding the analytical verification of concentrations used
in this study, the investigators determined the LC50 to be 1.04 ng/L (0.000001 mg/L). The study authors
concluded that P. crassirostris nauplii were highly sensitive to DEHP with effects on mortality at low
concentrations at this early life stage. In the same study, a subchronic 5-day evaluation was conducted
using concentrations of 0.3, 1.0, and 3.0 ng/mL to determine reproductive effects in P. crassirostris
(Heindler et al., 2017). At test termination, a reduction in the number of eggs per female was identified
at every concentration tested. The study authors also examined the effects on population size at day 24
following exposure to 0.11 ng/L for 6 days (followed by an 18-day recovery period) or following
exposure for 24 days. At 24 days, the authors noted a similar significant reduction in population size
from DEHP exposure to 0.11 ng/L for 6 days and for 24 days and stated that the concentrations of
DEHP affected egg production within levels found in the natural environment (Heindler et al., 2017).

Chronic invertebrate hazard data were identified in one study which evaluated reproduction in one
freshwater invertebrate species (water flea [D. magna]). In a 21-day study that received a medium
quality ranking, freshwater daphnids were exposed to nominal concentrations of 0, 3, 10, and 30 pg/L in
an intermittent-flow system that provided a constant concentration of DEHP (Sanders et al., 1973). A
significant reduction in offspring was observed at 3 pug/L and above. As concentrations of DEHP
increased, the production of offspring was reduced by 60, 70, and 83 percent compared to controls
(Sanders et al., 1973).

Benthic Invertebrates
No acute benthic dwelling organism studies with definitive endpoint values below the limit of solubility
were available for the quantitative hazard assessment of DEHP. Chronic hazard data for sediment
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dwelling organisms for DEHP was identified in one study represented by one species (midge
[Chironomus riparius]).

A chronic study with nominal DEHP concentrations of 0.3, 1, 10, and 30 pg/L in water (combined with
M4 at < 0.2% acetone) evaluated growth (body length, weight, and volume) and emergence of C.
riparius in 300-mL crystallizing dishes (Kwak and Lee, 2005). At the end of the 32-day treatment
period, significant differences were observed in female emergence at 0.3 pg/L and male emergence at
1.0 pg/L compared to controls. The study authors reported there was no clear relationship for emergence
period because only one of the four concentrations had effects (no significant differences were observed
at concentrations of 10 or 30 pg/L for either sex. Male body length was significantly decreased at 0.3
and 10 pg/L, but not at 1.0 and 30 pg/L. Negative and solvent controls for male body length were also
significantly different, but this result was not explained by the study authors. However, male and female
body volume and male body width were significantly different than controls at every test concentration
(Kwak and Lee, 2005).

Amphibians
Available amphibian hazard studies suggest no hazard from DEHP below the limit of water solubility
(see Table_Apx A-1).

Aguatic Plants and Algae

Available aquatic plant and algae hazard studies suggest no hazard from DEHP below the limit of
solubility (Table_Apx A-1).
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Table 3-1. Aquatic Organism Environmental Hazard Studies Used for DEHP

Hazard Value

riparius)

Study Test Organism (NOAEC/ . . Citation
Type (Species) LOAEC or DRl =) (Study Quality)
LC50)
Aquatic vertebrates
Chronic |Guppy Fish (Poecilia |0.1/1.0 ug/L  |91-d NOAEC/ LOAEC Growth (Zanotelli et al., 2010)
reticulata) (Medium)
Japanese medaka <0.01/0.01 21-d NOAEC/ LOAEC Mortality (Chikae et al., 2004a)
(Oryzias latipes) pg/L (Medium)
0.01/0.1 pg/L  |21-d NOAEC/ LOAEC Development
Japanese medaka 0.01/0.1 pg/L  {21-d NOAEC/ LOAEC Growth/ (Chikae et al., 2004b)
(Oryzias latipes) Development  |(Medium)
Goldfish (Carassius |1.0/10 pg/L 30-day NOAEC/LOAEC  |Reproduction |(Golshan et al., 2015) (High)
auratus)
Zebrafish (Danio <0.2/0.2 pg/L |21-day NOAEC/LOAEC |Reproduction/ |(Corradetti et al., 2013)
rerio) Development  |(Medium)
Aquatic invertebrates
Acute |Copepod 0.001 pg/L 48-hour LC50 Mortality (Heindler et al., 2017)
(Parcovalanus (Medium)
crassirostris)(nauplii)
Chronic |Water flea (Daphnia |<3.0/3.0 ug/L |21-day NOAEC/LOAEC |Reproduction |(Sandersetal., 1973)
magna) (Medium)
Marine copepod <0.3/0.3 pg/L  |5-day NOAEC/LOAEC Reproduction |(Heindler et al., 2017)
(Parvocalanus (Medium)
crassirostris)
Benthic invertebrates
Chronic {Midge (Chironomus |<0.3/0.3 pg/L |32-day NOAEC/LOAEC |Growth (Kwak and Lee, 2005)

(High)
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4 TERRESTRIAL SPECIES HAZARD

EPA assigned an overall quality level of high or medium to 44 studies of terrestrial species. EPA used
studies with the most conservative LOAEL from the human health animal model data set (terrestrial
mammals) and considered only studies with reproductive endpoints over that of survival/mortality. Four
terrestrial toxicity studies were included for the quantitative DEHP risk evaluation and are presented in
Table 4-1. These studies contained relevant DEHP terrestrial toxicity data for terrestrial mammals
including: F344/N rats; avian species including chicken (Gallus gallus domesticus); and terrestrial plants
including cucumber (Cucumis sativus), mungbean (Vigna radiata), perennial ryegrass (Lolium perenne),
radish (Raphanus sativus), alfalfa (Medicago sativa), common oat (Avena sativa), common onion
(Allium cepa), and bread wheat (Triticum aestivum).

Terrestrial Mammals

EPA considered 26 studies to evaluate hazard to terrestrial mammals from the human health animal
model data set. From this data set, EPA selected the study with the most conservative LOAEL value to
represent hazard to terrestrial mammals. The selected study evaluated effects of DEHP on mouse pup
survival during lactation (Tanaka, 2002). DEHP was administered via diet to the FO generation 4-weeks
before mating, during five days of mating, all of gestation, and all of lactation. The F1 generation was
administered DEHP via diet after weaning and through week nine. In male mice, the concentration of
DEHP administered during pre-mating ranged from 15.59 to 142.08 mg/kg-day and ranged from 19.86
to 168.17 mg/kg-day in females. During mating, the concentration of DEHP administered to both males
and females ranged from 14.67 to 125.77 mg/kg-day. During gestation, female rats were administered
DEHP concentration of 16.84 to 140.15 mg/kg-day and 59.89 to 493 mg/kg-day during lactation. From
post-weaning through week nine, male and female mice were given DEHP concentration of 15.85 to
144.59 mg/kg-day and 19 to 170.50 mg/kg-day, respectively. The lowest dose available from pre-
mating, gestation, and lactation for females was used to establish a hazard value. From this study, the
lowest value for which a significant effect was observed resulted from doses administered during
gestation, which resulted in a lactation (birth to weaning) NOAEL/LOAEL of 46.58/140.15 mg/kg-day
for a reduced pup survival during lactation.

A second study was also considered but not selected to evaluate DEHP hazard to terrestrial mammals
(Lamb et al., 1987). The study compared reproductive toxicity of DEHP and other phthalates to COBS
CD-1 mice over a 98-day cohabitation period to observe the number of litters per breeding pair, number
of live pups, pup weight, and offspring survival. Evaluation at the end of the study indicated dose-
dependent decreases in fertility and in the number of live pups in DEHP-exposed mice. However, that
study was not selected to represent terrestrial vertebrate hazard due to uncertainties regarding the
achieved dose. Although the investigators reported the analytical concentrations in the diet, achieved
doses (in mg/kg-day) were not reported and could not be calculated because body weights and food
consumption data were not adequately reported across all dose groups.

Terrestrial Invertebrates

Available studies received through systematic review administered DEHP as a 20, 10, or 1 mg/L test
solution that exceeded the limit of solubility. The study authors indicated that 100 puL of DEHP solution
was “uniformly dripped” into the 24-well plates containing the test organisms (Yin et al., 2018). As a
result, it is uncertain if the administration of aqueous solutions of DEHP above solubility resulted in
appropriate DEHP concentrations in the culture media, and final concentrations were not analytically
determined. Therefore, a hazard threshold could not be established for terrestrial invertebrates because
of the uncertainty regarding exposure concentrations.
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Terrestrial Avian

One avian study using the chicken (Gallus gallus domesticus) examined the effects of pre-hatch egg
injections with single dose of 0, 5, 20, 50, and 100 mg/kg DEHP administered on incubation day zero.
There was no significant decrease in hatching or late hatchings between controls and DEHP treated
groups at any test dose. Developmental effects, including gastroschisis and omphalocele were reported,
but it was not clear if the effects were from DEHP-treated groups only, as the study authors pooled
DEHP and DBP results together for that metric. This study also evaluated the effects of a single dose of
100 mg/kg (via egg injection) on imprinting in juvenile chicks. Significant effects were observed in
juvenile imprinting (assessed as a decrease in imprinting preference scores) when eggs were injected
with a single dose of 100 mg/kg DEHP, resulting in a behavioral change (imprinting) LOAEL of 100
mg/kg, with a NOAEL not established for this endpoint because it was not examined in the study
examining the range of doses. Additionally, elevated alkaline phosphatase and 8-
hydroxydeoxyguanosine were reported in exposed chicks at 100 mg/kg DEHP (Abdul-Ghani et al.,
2012).

Another study examined the effects of DEHP on feed consumption, growth, and reproduction in the
chicken (Gallus gallus domesticus), where individual animals were fed a single concentration of 1
percent DEHP incorporated into their diet for 4 weeks. Overall, feed consumption was decreased over
the 4-week period, however this may have been influenced by food aversion. This effect was most
prominent during the first 2 weeks of the study, as feed intake approached the same levels as controls
from days 14 to 28. Similarly, egg production in the treated group was decreased by 5 percent compared
to controls over the 4-week period. Although there was an increase in liver lipids and cholesterol in the
treated group compared to controls, no significant effects were observed in chicken growth (Wood and
Bitman, 1980). The study reported group mean body weight changes for each week in a table; however,
food consumption was only reported graphically. Therefore, this study was excluded from quantitative
use in hazard determination due to uncertainty in the achieved dose of DEHP.

Terrestrial Plants

For terrestrial plant species, one medium- and one high-quality study were identified by EPA as relevant
for quantitative assessment. A study on the effects of DEHP on mungbean (V. radiata) shoot and root
length identified 72-hour EC50s (analyzed by regression analysis) of 16,500 and 3,969 mg/kg dry soil,
respectively (Ma et al., 2014). Another study looked at the effects of DEHP on growth in perennial
ryegrass (L. perenne), radish (R. sativus), alfalfa (M. sativa), and bread wheat (T. aestivum) (Ma et al.
2015). In perennial ryegrass, root elongation and seedling growth significantly decreased by 9 and 22
percent, respectively, at 20 mg/kg DEHP resulting in 72-hour NOAEC/LOAEC of 5.0/20 mg/kg soil
(dry weight). However, both root elongation and seedling growth increased at higher concentrations of
DEHP (100 and 500 mg/kg DEHP). In the radish, root elongation and seedling growth were found to be
significantly increased, compared to controls, at all tested concentrations. In alfalfa, root elongation and
seedling growth were both significantly decreased at all treated concentrations (5 mg/kg soil and above).
In wheat, root elongation was decreased in all treated groups (5 mg/kg soil and above), but seedling
growth was only decreased at the low concentration (5 mg/kg soil). At 5.0 mg/kg soil DEHP, alfalfa root
length and seedling growth decreased by 25 and 7 percent, respectively, and by 10 and 6 percent,
respectively, in bread wheat (Ma et al., 2014).
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Table 4-1. Terrestrial Organism Environmental Hazard Studies Used for DEHP

Test Organism

Hazard Value
(NOAEL/
LOAEL or EC50)

Duration

Endpoint

Citation
(Study Quality)

Terrestrial vertebrates

root

Perennial ryegrass (Lolium
perenne)

5.0/20 mg/kg soil

72-hour
NOAEC/

Radish (Raphanus sativus)

Alfalfa (Medicago sativa)

Bread wheat (Triticum
aestivum)

<5.0/5.0 mg/kg soil

LOAEC

Mice 46.58/140.15 Lactation (birth |Reproduction |(Tanaka, 2002)
(80.79)? mg/kg-day |to weaning)
NOAEL/
LOAEL
Terrestrial avian
Chicken (Gallus gallus) <100/100 mg/kg  |Egg to juvenile |Behavior (Abdul-Ghani et
NOAEL/ (imprinting) |al., 2012)
LOAEL (Medium)
Terrestrial plants
Mungbean (Vigna radiata) |16,550 mg/kg soil |72-hour EC50 |Growth (Ma et al., 2014)
shoot (Medium)
Mungbean (Vigna radiata) {3,969 mg/kg soil

(Ma et al., 2015)
(High)

aRepresents a geometric mean
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5 WEIGHT OF SCIENTIFIC EVIDENCE FOR ENVIRONMENTAL
HAZARD

EPA uses several considerations when weighing and weighting the scientific evidence to determine
confidence in the environmental hazard data. These considerations include the quality of the database,
consistency, strength and precision, biological gradient/dose response, and relevance. This approach
aligns with the Draft Systematic Review Protocol Supporting TSCA Risk Evaluations for Chemical
Substances (U.S. EPA, 2021) regarding the evaluation of these considerations for the determination of
each environmental hazard threshold. Criteria for assessing confidence is described in Appendix B.1.

Quality of the Database; Consistency; Strength (Effect Magnitude), and Precision

All studies that factored into the confidence section received an overall quality determination of high or
medium. Based on systematic review data quality evaluation of studies, two studies with an overall
quality determination of high and seven studies with an overall quality determination of medium were
considered for the aquatic environmental hazard assessment. Studies with an overall quality
determination of low or uninformative were not used for aquatic or terrestrial hazard characterization.

Several aquatic and terrestrial studies evaluated multiple endpoints, species, and durations, adding to the
overall strength of the database (Appendix A). Aquatic studies were considered quantitatively for acute
and chronic hazards if the effect was demonstrated at equal to or less than the limit of DEHP solubility
in water (3.0 ug/L). Five aquatic studies showed effects with an unbounded LOAEC (Heindler et al.,
2017; Corradetti et al., 2013; Kwak and Lee, 2005; Kim and Lee, 2004; Sanders et al., 1973). The
remaining studies showed definitive effects less than the limit of solubility ((Heindler et al., 2017)
(acute); (Zanotelli et al., 2010; Chikae et al., 2004a; Chikae et al., 2004b)). These studies reported
effects on mortality, growth, reproduction, and development at concentrations ranging from less than
0.01 up to10 pg/L.

All studies considered for the mammalian assessment demonstrated effects following dietary exposure
for chronic durations (Appendix A). The study with the most sensitive endpoint was selected to
represent the mammalian hazard threshold (Tanaka, 2002). Of the two representative avian studies
considered, only one with acceptable endpoints was available to represent the avian hazard threshold
(Abdul-Ghani et al., 2012). Most terrestrial invertebrate studies demonstrated no effects, and remaining
terrestrial invertebrate studies conducted exposures in aqueous media using concentrations of DEHP that
exceed solubility and are not expected to be found in the natural environment. However, effects were
observed in mammalian vertebrates over a chronic duration when exposed through the dietary route
(Aviles et al., 2019; Chen et al., 2018). Significant effects were also observed in all but one of the
terrestrial plant studies.

Confidence in the gquality of the database, consistency, and strength and precision of the database for
terrestrial vertebrates (mammals) were all considered to be robust. Confidence in the quality of the
database, consistency, and strength and precision of the database for avian species were all considered
slight. Confidence in the quality of the database, consistency, and strength and precision of the database
for terrestrial invertebrates is considered robust, slight, and slight, respectively. Confidence in the
quality of the database, consistency, strength and precision of the database for terrestrial plants is
considered robust, robust, and moderate, respectively (Table_Apx B-2).

Biological Gradient/Dose-Response: Most aquatic hazard studies reviewed by EPA incorporated

concentrations exceeding the DEHP limit of water solubility (3.0 pg/L).
In the chronic fish and aquatic invertebrate studies considered for hazard threshold determination,
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effects from DEHP were observed as low as 0.01 pg/L. In both studies by Chikae (2004a; 2004b) a
dose-response gradient was established using nominal concentrations of 0.01, 0.1, 1.0, and 10.0 pg/L
with definitive NOAEC/LOAEC values established. A dose-response relationship was not observed in
the study on benthic dwelling organisms since the LOAEC was unbounded (i.e., effects were observed
at the lowest concentration tested, so a NOAEC was not established). Confidence in the biological
gradient/dose-response is considered slight for all aquatic taxa.

For terrestrial organisms, all chronic studies of rodents considered for quantitative assessment of
mammalian hazard demonstrated a dose-response relationship, including the study from which the
hazard value was derived (Tanaka, 2002). For avian taxa, only one study was considered quantitatively,
but the study authors only used one concentration for the endpoint (imprinting) (Abdul-Ghani et al.,
2012). A wide range of terrestrial invertebrate studies were considered. However, many of these studies
exposed organisms to concentrations of DEHP that exceeded the limit of solubility and/or found no
effects at the highest concentration tested. Terrestrial plant studies demonstrated effects at multiple test
concentrations in multiple species. Some studies showed effects at the lowest concentration tested while
others showed no effects at the highest concentration tested (Gao et al., 2018; Ma et al., 2015).
Confidence in the biological gradient/dose-response is considered: (1) robust for terrestrial mammals;
(2) slight for avian taxa; and (3) moderate for terrestrial invertebrate and terrestrial plants.

Biological, Physical/Chemical, Environmental Relevance: The 48-hour mortality endpoint evaluated in
an acute aquatic invertebrate hazard study is a relevant endpoint for ecological hazard (Heindler et al.,
2017). Growth, development, and reproduction endpoints in the remaining chronic studies are also
relevant endpoints for biological and ecological hazard (Heindler et al., 2017; Golshan et al., 2015;
Corradetti et al., 2013; Zanotelli et al., 2010; Chikae et al., 2004a; Chikae et al., 2004b; Kim and Lee,
2004; Sanders et al., 1973). Growth and emergence of the midge C. riparius is a biologically relevant
endpoint for benthic dwelling organisms (Kwak and Lee, 2005). Most acute fish and aquatic invertebrate
hazard studies considered the low solubility/high hydrophobicity of DEHP within the experimental
design and incorporated a solvent. Although these studies incorporated test concentrations less than the
limit of solubility in the experimental design, all studies considered for hazard threshold determination
incorporated the solvent ethanol to enhance DEHP solubility (Heindler et al., 2017; Corradetti et al.,
2013; Chikae et al., 2004a; Chikae et al., 2004b; Sanders et al., 1973), or solvents acetone (Golshan et
al., 2015; Kwak and Lee, 2005) or DMSO (Zanotelli et al., 2010).

DEHP is expected to partition to the benthos and impact sediment-dwelling organisms to a greater
extent compared to pelagic organisms within the water column. Most studies where benthic dwelling
organisms were exposed to DEHP via bulk sediment demonstrated no hazard (Appendix A). However,
two benthic invertebrate studies did demonstrate hazard in aqueous exposures (Kwak and Lee, 2005;
Kim and Lee, 2004). Test concentrations in the study conducted by Kim and Lee (2004) however,
exceeded the limit of solubility. In the benthic environment, several chronic studies not considered for
hazard threshold determination listed an unbounded NOAEC. Therefore, there is uncertainty regarding
the actual hazard value, especially to sensitive or early life stages of aquatic organisms that reside in
these habitats. Conversely, Kwak and Lee (2005) did demonstrate an unbounded LOAEC which was
used for the determination of the hazard threshold. Confidence in biological, physical/chemical, and
environmental relevance is considered robust for all aquatic organism studies considered for hazard
threshold determination. In the terrestrial environment, the main exposure pathway would be soil
exposure or through DEHP ingestion. Animal studies considered for quantitative terrestrial hazard
endpoints were all dietary based where the low solubility of DEHP is less of a factor. Studies in the
mammalian, avian, terrestrial invertebrate, and terrestrial plant database considered DEHP exposure in
the study design. Multiple species across multiple taxa were identified with acceptable hazard endpoints,
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thereby emphasizing biological relevance. Confidence in biological, physical/chemical, and
environmental relevance is considered robust for all terrestrial organisms.

Overall, EPA has robust confidence in the evidence for acute aquatic species and aquatic plants that
DEHP has low hazard potential in these taxa. EPA has robust confidence in the evidence for chronic
aquatic hazard for DEHP and moderate confidence in the evidence for chronic benthic organisms
(Table_Apx B-2). Within the terrestrial environment, EPA has robust confidence in the evidence for
terrestrial mammalian hazard and terrestrial plants, slight confidence in the evidence for avian hazard,
and no reasonably available data to determine confidence to terrestrial invertebrates (Table_Apx B-2).
Therefore, the weight of scientific evidence leads EPA to have moderate confidence in the overall
conclusion that DEHP has potential hazards to wild organism populations. EPA does, however, have
uncertainty and less confidence in the number (two studies) and quality of the studies in the avian taxa
and terrestrial invertebrate database as well as strength and precision of that data, and does not have
sufficient data to establish a dose-response relationship for those taxa. A more detailed explanation of
the weight of scientific evidence, uncertainties, and overall confidence is presented in Appendix A

Although EPA reviewed over ninety studies, no consistent effects of DEHP on aquatic organism
survival, growth, reproduction, or development were observed across taxonomic groups, habitats,
exposure type, and exposure duration other than within the chronic hazard data set (vertebrates and
benthic dwelling invertebrates). Chronic effects were consistently observed in vertebrates at levels less
than the limit of solubility, affecting survival, growth, development, and reproduction. One study
demonstrated effects on benthic dwelling organisms with an unbounded LOAEC. No consistent effects
of DEHP on aquatic organisms on the endpoints was observed in acute or chronic invertebrates,
amphibians, and aquatic plants and algae. No acute toxicity was observed below the EPA determined
DEHP limit of water solubility 3.0 pug/L. Unbounded effects were observed in some aquatic studies
affecting reproduction and development in vertebrates and invertebrates as identified above in Table 3-1.
Although DEHP is expected to partition to sediment, no effects were observed in sediment dwelling
organisms. For acute exposures to DEHP, most studies and endpoints that exposed fish, amphibians,
invertebrates, and algae via water in the aquatic environment reported no effects up to the highest
concentration tested. Additionally, most studies tested concentrations that exceed the DEHP limit of
water solubility. To achieve target doses, most studies were conducted with a solvent to enhance
solubility. However, these reported values exceed expected environmental conditions.

Within the terrestrial environment, EPA has robust confidence in the evidence and hazard potential for
terrestrial mammalian and terrestrial plants, and low confidence for avian taxa (see Table 4-1 above).
EPA has robust confidence in terrestrial mammalian and terrestrial plants hazard values due to the high
number of high-quality rodent studies with ecologically relevant endpoints used as human health models
and well-represented terrestrial plant data.
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ENVIRONMENTAL HAZARD THRESHOLDS

EPA calculates hazard thresholds to identify potential concerns to aquatic and terrestrial species. After
weighing the scientific evidence, EPA selects the appropriate toxicity value from the integrated data to
use for hazard thresholds. Table 5-1 summarizes the concentrations of concern identified for DEHP. See
Section 5 and Appendix A for more details about how EPA weighed the scientific evidence.

In aquatic species, EPA uses probabilistic approaches (e.g., Species Sensitivity Distribution [SSD])
when enough data are available and deterministic approaches (e.g., deriving a geometric mean of several
comparable values) when more limited data are available. However, no reasonably available acute
aquatic vertebrate or invertebrate studies with definitive values less than the 3.0 pg/L limit of solubility
or studies that showed effects up to the limit of solubility were available for quantitative assessment of
DEHP. For DEHP, a deterministic approach was used to assess hazard in aquatic taxa, and hazard values
were assigned for terrestrial taxa. For the deterministic approaches, COCs are calculated by dividing a
hazard value by an assessment factor (AF) according to EPA methods (U.S. EPA, 2016, 2013, 2012).

Equation 5-1.
COC = toxicity value +~ AF

For terrestrial species, EPA estimates hazard by calculating a toxicity reference value (TRV) or by
assigning the hazard value as the hazard threshold in the case of mammals, birds, and terrestrial plants.

5.1 Aquatic Species COCs

EPA reviewed 82 studies categorized as high or medium quality rated studies for toxicity to aquatic
organisms. Of these studies, 73 demonstrated no acute/chronic effects up to or exceeding the highest
concentration tested, or the effects occurred at concentrations greater than the limit of solubility (3.0
Mg/L). EPA typically does not consider unbounded NOAEC/LOAEC values in the calculation of COCs.
These studies were not considered for quantitative risk evaluation but can be found in Appendix A.
Studies that received an overall quality determination of low, unacceptable, or did not meet systematic
review criteria were likewise not considered quantitatively for determination of hazard values. The
remaining one acute and four chronic studies found in Table 3-1 were considered by EPA for COC
calculations.

Acute Aquatic Threshold

One 48-hour acute toxicity study with the marine copepod P. crassirostris was considered quantitatively
(Heindler et al., 2017). P. crassirostris were exposed to DEHP at 0.06, 0.48, 3.81, 20.52, 244.14, and
1953.13 ng/ml, and the LC50 was determined to be 1.04 ng/mL (1.04 ug/L). However, that study was
excluded from the final quantitative assessment due to low confidence in the measured hazard value. In
addition to the lack of analytical verification of the low DEHP concentrations used in the study, the
materials, such as the mesh screen used to filter out adult copepods and the polycarbonate carboys in the
culturing system, may have contributed to background concentration of DEHP. Further, that study
represented an outlier in comparison to the other available acute aquatic data in which toxicity was not
observed at concentrations below DEHP water solubility. Therefore, that study was not considered for
COC calculations.

EPA did not identify any other reasonably available data with definitive hazard values to be used in
deriving a hazard threshold for acute aquatic species, including sediment-dwelling organisms. The data
suggest that DEHP has low acute toxicity, as no definitive effects were observed below the limit of
water solubility.
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Chronic Aquatic Vertebrate Threshold

The DEHP chronic aquatic COC was derived from the ChV from the two 21-d NOAEC/LOAEC studies
of 0.01/0.1 pg/L for the aquatic vertebrate Japanese medaka (O. latipes) with the application of an AF of
10. The ChV for O. latipes was the most sensitive chronic endpoint represented in Table 3-1 for aquatic
vertebrates and invertebrates representing effects of growth and development of embryo and fry O.
latipes (Chikae et al., 2004a; Chikae et al., 2004b). The chronic value (ChV) was determined to be 0.032
Mg/L based on the geometric mean of the NOAEC/LOAEC values for growth and development; thus the
COC (ChV/AF) was 0.0032 pg/L.

Amphibian Threshold
No studies with definitive values below the limit of solubility were available to assess the hazard of
DEHP to amphibians. Therefore, a hazard threshold could not be established.

Aquatic Plants and Algae Threshold
No studies with definitive values below the limit of solubility were available to assess the hazard of
DEHP to aquatic plants or algae. Therefore, a hazard threshold could not be established.

Acute Benthic Threshold

No studies with definitive values below the limit of solubility were available to assess the hazard of
DEHP to benthic taxa on an acute exposure basis. Therefore, a hazard threshold could not be
established.

Chronic Benthic Threshold

One study was submitted to evaluate DEHP toxicity to benthic dwelling organisms C. riparius (Kwak
and Lee, 2005). The DEHP chronic benthic COC was derived based on significant reduction in male
body width and male body volume and significant increase female body volume at every concentration
tested, resulting in a LOAEC of 0.3 pug/L and a NOAEC not established. EPA will be using the LOAEC
of 0.3 pg/L as the chronic benthic hazard threshold.

COC for Aquatic Toxicity

EPA did not identify any reasonably available data with definitive hazard values below the limit of
solubility to be used in deriving a hazard threshold for acute aquatic vertebrates, acute and chronic
invertebrates and amphibians, and aquatic plants and algae.

The DEHP chronic aquatic vertebrate COC was derived from the ChV from the two 21-d
NOAEC/LOAEC studies of 0.01/0.1 pg/L for the aquatic vertebrate Japanese medaka (O. latipes) with
the application of an AF of 10. The ChV for O. latipes was the most sensitive chronic endpoint
represented in Table 3-1 for aquatic vertebrates and invertebrates representing effects of growth and
development of embryo and fry O. latipes (Chikae et al., 2004a; Chikae et al., 2004b). The chronic value
(ChV) was determined to be 0.032 pg/L based on the geometric mean of the NOAEC/LOAEC values
for growth and development; thus the COC (ChV/AF) was 0.0032 ug/L.

The chronic benthic organism COC was derived from an unbounded LOAEC at 0.3 pg/L from a C.
riparius 30-d DEHP exposure resulting in significant effects on male body width and male and female
body volume (Kwak and Lee, 2005). The LOAEC/AF of 10 resulted in a chronic COC of 0.03 pg/L.

5.2 Terrestrial Species Hazard Values

Terrestrial Mammal Threshold
For terrestrial vertebrate species exposed to DEHP, EPA estimated hazard using a deterministic
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approach. Twenty-six laboratory rat and mouse studies were assessed with the most sensitive and
ecologically-relevant reproductive endpoint value chosen to represent the terrestrial mammalian hazard
threshold. Phthalates are endocrine disrupters, and thus studies were filtered to identify those with
reproductive effects as the most sensitive endpoints. The terrestrial mammalian hazard threshold was
derived from the NOAEL/LOAEL of 48.58/140.15 mg/kg-day (representing the maternal achieved
intake during lactation), which resulted in a geometric mean of 80.79 mg/kg-day as the hazard value for
terrestrial mammals. This was the most sensitive hazard value from the data set, with the LOAEL based
on a decrease in pup survival during lactation (Tanaka, 2002).

Avian Threshold

The avian hazard threshold was derived from pre-hatch DEHP egg injections, which resulted in a 100
mg/kg LOAEL for chick imprinting behavior in the chicken (Gallus gallus domesticus), and a NOAEL
that was not established because 100 mg/kg was the only dose tested, along with controls, in the study in
which effects on imprinting behavior were observed (Abdul-Ghani et al., 2012). EPA is using the
LOAEL of 100 mg/kg-day for the avian hazard threshold.

Terrestrial Invertebrate Threshold

Available invertebrate studies identified through systematic review showed no effects of DEHP. Other
studies administered DEHP as an aqueous test solution that exceeded the limit of solubility, and the
amount of DEHP administered to test organisms was unclear. Therefore, a hazard threshold could not be
established.

Terrestrial Plant Threshold

The terrestrial plant hazard threshold was derived from the DEHP 72-hour NOAEC/LOAEC of 5.0/20
mg/kg soil, which resulted in a geometric mean of 10 mg/kg soil for the growth of perennial ryegrass
(Lolium perenne) (Ma et al., 2015).

Calculations

e The DEHP hazard threshold for mammals is 80.79 mg/kg-bw/day.
e The DEHP hazard threshold for birds is 100 mg/kg
e The DEHP hazard threshold for terrestrial plants is 10 mg/kg soil.

Table 5-1. Environmental Hazard Thresholds for Environmental Toxicity

Environmental Assessment Assess_ment Hazard Threshold
Medium
Acute Agquatic Assessment Surface water ND
Chronic Aquatic Vertebrate Assessment Surface water 0.0032 pg/L
Chronic Benthic Invertebrate Assessment | Sediment porewater | 0.03 pg/L
Algal Assessment Surface water ND
Mammal: Hazard Value Dietary 80.79 mg/kg-day
Terrestrial Invertebrate Soil ND
Avian: Hazard Value Egg injection 100 mg/kg
Terrestrial Plants: Hazard value Soil 10 mg/kg soil

ND = not determined
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6 CONCLUSIONS FOR ENVIRONMENTAL HAZARD:
STRENGTHS, LIMITATIONS, ASSUMPTIONS, AND KEY
SOURCES OF UNCERTAINTY

EPA determined that DEHP poses no acute exposure effects on aquatic organisms because the available
evidence indicates that there were no acute effects up to the limit of water solubility (3.0 ug/L). Most of
the available studies tested concentrations that exceed the DEHP limit of water solubility. To achieve
target doses, most studies were conducted with a solvent to enhance DEHP solubility in water. However,
these reported values exceed expected environmental conditions. EPA determined that DEHP poses
potential chronic hazard to aquatic organisms based on data from two studies Chikae et al. (2004a) and
Chikae et al. (2004b) from which a COC of 0.0032 ug/L was derived.

EPA determined that DEHP poses a hazard to terrestrial mammals at a dietary dose of 80.79 mg/kg-day,
which is supported by laboratory rodent studies. This terrestrial hazard value is limited by uncertainties
surrounding the lack of available studies for wild animal and/or plant populations, as well as
uncertainties regarding whether laboratory rodent results may translate to wild populations.
Additionally, DEHP was also found to pose a hazard to terrestrial avian and plant species based on two
studies in which terrestrial hazard values of 100 mg/kg for the avian threshold (Abdul-Ghani et al.,
2012) and 10 mg/kg soil for the plant threshold (IMa et al., 2015) were identified.

EPA has robust confidence that DEHP poses little to no hazard to aquatic vertebrates in the environment
on an acute exposure basis, and no hazard to aquatic invertebrates on an acute or chronic basis. This
robust confidence is supported by reasonably available data which consistently found that acute DEHP
exposure poses no hazard up to and exceeding the limit of water solubility. Conversely, EPA has robust
confidence that DEHP poses potential hazard to aquatic vertebrates on a chronic basis below the limit of
water solubility. This robust confidence is supported by two studies in which effects on mortality,
growth, and development were observed in Japanese medaka exposed to 0.1 pg/L DEHP for 21-d
(Chikae et al., 2004a; Chikae et al., 2004b) as well as studies by Golshan et al. (2015), Corradetti et al.
(2013), and Zanotelli et al. (2010). These studies reported effects on mortality, growth, reproduction,
and development at concentrations ranging from 0.01 up to10 pg/L. There is uncertainty, however, in
chronic aquatic vertebrate data since the majority of studies either only used DEHP concentrations
above the limit of water solubility or found no effects up to the limit of solubility even when a solvent
was incorporated.

EPA has moderate confidence that DEHP has effects on growth and development to benthic dwelling
invertebrate species below the limit of water solubility. This moderate confidence is supported by one
study in which effects on growth were observed in midge exposed to 0.3 pg/L DEHP (Kwak and Lee,
2005). However, since a LOAEC was used in the COC, there is uncertainty regarding the actual hazard
value for this group. Although not used for COC determination, a pelagic invertebrate study with the
marine copepod (Parvocalanus crassirostris) also showed effects around a similar threshold of less than
0.3 pg/L (Heindler et al., 2017). This study was not considered for COC calculations due to analytical
measurement concerns and background concentrations of DEHP.

EPA has robust confidence that DEHP poses little to no acute exposure hazard to aquatic algae. This
robust confidence is supported by reasonably available data indicating DEHP poses no risk to aquatic
algae below the limit of water solubility. The approach to EPA’s consideration of the strengths,
limitations, assumptions, and key sources of uncertainty for environmental hazard is outlined in
7Appendix A.
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EPA acknowledges the aquatic hazard conclusions are limited by the low number of studies available to
assess DEHP concentrations below the limit of water solubility. EPA does not have data on acute
vertebrates, acute or chronic invertebrates, amphibians, and/or aquatic plants and algae which leads to
further uncertainty of the effects of DEHP on these organisms.

In the terrestrial environment, EPA has robust confidence that DEHP poses potential hazard to mammals
and terrestrial plants. The conclusion that DEHP poses hazard to terrestrial mammals at a dietary dose of
80.79 mg/kg-day is supported by evidence obtained from laboratory rodent studies used as human health
models. Additionally, nearly all other studies of rats and mice considered for hazard threshold
determination were within an order of magnitude of the selected value. Utilizing human health rodent
models as a surrogate for terrestrial models introduces uncertainty into the terrestrial hazard
characterization, because these species may not be fully representative of effects in a more diverse array
of wild animal populations.

The conclusion that DEHP poses hazard to terrestrial plants is supported by two terrestrial plant studies
that identified effects of DEHP on plant growth in six plant species (Ma et al., 2015; Ma et al., 2014).
For avian taxa, EPA has more uncertainty and less confidence given (1) the number and quality of the
studies in the database; (2) the strength and precision of more subtle and mechanistic effects found
within studies (i.e., increased liver lipids and cholesterol, evaluated alkaline phosphatase and 8-
hydroxydeoxyguanosine, morphologic abnormalities); and (3) the study design, not allowing for dose-
response effects to be detected for mechanistic endpoints. EPA identified no studies within the
reasonably available database to assess risk to terrestrial invertebrates.

The aquatic vertebrate and benthic COCs and terrestrial hazard values identified in this technical support
document will be used in the Draft Environmental Hazard Assessment for Diethylhexyl Phthalate
(DEHP) (U.S. EPA, 2024a) to characterize environmental risk.
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1193  Appendix A ENVIRONMENTAL HAZARD TABLE OF STUDIES
1194
1195 Table Apx A-1. List of Aquatic Studies Not Considered for Quantitative Assessment
Test Organism Hazard q n Citation
ST T (Spe(?ies) Values DIUIFERIE SE (Data Evaluation Rating)
Acute Acute aquatic vertebrates
Japanese medaka >0.67 mg/L  |96-hour LC50 Mortality (DeFoe et al., 1990) (High)
(Oryzias latipes)
Fathead minnow >0.32mg/L  |96-hour LC50 Mortality (DeFoe et al., 1990) (High)
(Pimephales promelas)
Rainbow trout >19.5mg/L  |96-hour LC50 Mortality (DeFoe et al., 1990) (High)
(Oncorhynchus mykiss)
Rainbow trout >0.32mg/L  |96-hour LC50 Mortality (EG&G Bionomics, 1983b)
(Oncorhynchus mykiss) (High)
Sheepshead minnow >0.17 mg/L  |96-hour LC50 Mortality (Adams et al., 1995) (High)
(Cyprinodon variegatus)
Fathead minnow >0.16 mg/L  |96-hour LC50 Mortality (Adams et al., 1995) (High)
(Pimephales promelas)
Bluegill (Lepomis >0.20 mg/L  |96-hour LC50 Mortality (Adams et al., 1995) (High)
macrochirus)
Fathead minnow >0.67 mg/L  |96-hour LC50 Mortality (Adams et al., 1995) (High)
(Pimephales promelas)
Rainbow trout >0.32 mg/L  |96-hour LC50 Mortality (Adams et al., 1995) (High)
(Oncorhynchus mykiss)
Fathead minnow >0.67 mg/L  |96-hour LC50 Mortality (EG&G Bionomics, 1984a)
(Pimephales promelas) (High)
Fathead minnow >0.24 mg/L  |96-hour LC50 Mortality (EG&G Bionomics, 1983a)
(Pimephales promelas) (High)
Fathead minnow >0.1 mg/L 48-hour LC50 Mortality (Wood et al., 2015) (High)
(Pimephales promelas)
Danio rerio (Zebra >0.5 mg/L 72-hour LC50 Mortality (Chen et al., 2014) (Medium)
Danio)
Bluegill (Lepomis >770 mg/L 96-hour LC50 Mortality (Buccafusco et al., 1981)
macrochirus) (Medium)
Sheepshead minnow >550 mg/L 96-hour LC50 Mortality (Heitmuller et al., 1981)
(Cyprinodon variegatus) (Medium)
Bluegill (Lepomis >0.32mg/L  |96-hour LC50 Mortality (EG&G Bionomics, 1983c)
macrochirus) (High)
Sheepshead minnow >0.17 mg/L  |96-hour LC50 Mortality (Springborn Bionomics, 1984b)
(Cyprinodon variegatus) (High)
Zebra fish (Danio rerio) [<2.03/2.03 24-hour Growth/ (Kinch et al., 2016) (High)
mg/L NOAEC/LOAEC |Development
Common carp 37.95mg/L  |96-hour LC50 Mortality (Zhao et al., 2014) (Medium)
(Cyprinus carpio)
Acute aquatic invertebrates
Water flea (Daphnia 2.0 mg/L 48-hour EC50 Mortality (Monsanto, 1983a) (High)
magna)
Harpacticoid copepod |>300 mg/L  {96-hour LC50 Mortality (Linden et al., 1979) (Medium)
(Nitrocra spinipes)
Midge (Paratanytarsus |>0.24 mg/L  [96-hour LC50 Mortality (EG&G Bionomics, 1984d)
parthenogeneticus) (High)
Opossum shrimp >0.44 mg/L  |96-hour LC50 Mortality (EG&G Bionomics, 1984b)
(Americamysis bahia) (High)
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Test Organism Hazard 8 8 Citation
STl TS (Spegies) Values DRl SelE (Data Evaluation Rating)
Acute Water flea (Daphnia >0.32mg/L  |48-hour LC50 Mortality (Springborn Bionomics, 1984a)
magna) (Medium)
Water flea (Daphnia >0.16 mg/L  |48-hour EC50 Immobilization |(Adams et al., 1995) (High)
magna)
Midge (Paratanytarsus |>0.18 mg/L  [96-hour LC50 Mortality (Adams et al., 1995) (High)
parthenogeneticus)
Opossum shrimp >0.37 mg/L  |96-hour LC50 Mortality (Adams et al., 1995) (High)
(Americamysis bahia)
Water flea (Daphnia >0.32mg/L  |48-hour LC50 Mortality (Brown and Thompson, 1982)
magna) (Medium)
Water flea (Daphnia 2.0 mg/L 48-hour EC50 Mortality (Monsanto, 1983a) (High)
magna)
Water flea (Daphnia 13.9 mg/L 48-hour EC50 Mortality (Monsanto, 1983b) (High)
magna)
Copepod (Parcovalanus |>5.1 mg/L 48-hour LC50 Mortality (Heindler et al., 2017)
Crassirostris) (Medium)
Water flea (Daphnia 0.56 mg/L 48-hour LC50 Mortality (Wang et al., 2018) (High)
magna)(juvenile)
Water flea (Daphnia 0.35 mg/L 48-hour LC50 Mortality (Wang et al., 2018) (High)
magna)
Midge (Chironomus 0.05 mg/L 48-hour NOEC Growth/ (Lee et al., 2006) (Medium)
tentans) Development
Taiwan abalone 0.0188/0.204 |96-hour Growth/ (Liu et al., 2009) (Medium)
(Haliotis diversicolor) |mg/L NOAEC/LOAEC |Development
Taiwan abalone 20/>20 mg/L |96-hour Growth/ (Yang et al., 2009) (Medium)
(Haliotis diversicolor) NOAEC/LOAEC |Development
Rotifer (Brachionus >2 mg/L 96-hour NOEC Reproduction |(Cruciani et al., 2015)
calyciflorus) (Medium)
Midge (Chironomus >10.0 mg/L  |48-hour LC50 Mortality (Monsanto, 1983c) (Medium)
tetans)
Water flea (Daphnia 2.69/>2.69 72-hour Growth (Jorddo et al., 2015) (Medium)
magna) mg/L NOEAC/LOAEC
Calanoid copepod 0.5 mg/L 96-hour LC50 Mortality (Forget-Leray et al., 2005)
(Eurytemora affinis) (High)
Water flea (Daphnia >3.9 mg/L 24-hour LOAEC |Mortality (Seyoum and Pradhan, 2019)
magna) (Medium)
Water flea (Daphnia 2.1 mg/L 24-hour EC50 Mortality (Huang et al., 2016) (High)
magna)
Midge (Chironomus >18 mg/L 48-hour LC50 Emergence and |(Streufort, 1978) (High)
plumosus) Reproduction
Sub- Chronic aquatic vertebrate
chronic/  |Fathead minnow 0.012/>0.012 |28-day Reproduction |(Crago and Klaper, 2012)
chronic (Pimephales promelas) |mg/L NOAEC/LOEC (Medium)
Chinese rare minnow  |4.2/13.3 pg/L |6-month Reproduction [(Guo et al., 2015) (High)
(Gobiocypris rarus) NOAEC/LOAEC
Japanese medaka 0.39/>0.39 14-day Reproduction  |(Shioda and Wakabayashi,
(Oryzias latipes) mg/L NOAEC/LOAEC 2000) (Medium)
Zebrafish (Danio rerio) [0.5/5 mg 10-day Reproduction |(Uren-Webster et al., 2010)
DEHP/kg diet [NOAEC/LOAEC (High)
Japanese medaka 1.0/10.0 pg/L |3-month Growth/Develo |(Kim et al., 2002) (Medium)
(Oryzias latipes) NOAEC/LOAEC |pment
Japanese medaka 5/>5 mg/L 21-day Growth (Metcalfe et al., 2001)
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Test Organism Hazard 8 8 Citation
STl TS (Species) Values DRl SelE (Data Evaluation Rating)
Sub- (Oryzias latipes) NOAEC/LOAEC (Medium)
chronic/ | Bagrid catfish 100/500 4/8-week Growth (Jee et al., 2009) (High)
chronic (Pseudobagrus mg/kg diet NOAEC/LOAEC
fulvidraco)
Marine medaka <0.1/0.1 mg/L |6-month Reproduction |(Ye et al., 2014) (Medium)
(Oryzias melastigma) NOAEC/LOAEC
Rainbow trout (Salmo  |5/14 pg/L 24-day Survival (Mehrle and Mayer, 1976)
gairdneri) NOAEC/LOAEC (Medium)
Rainbow trout (Salmo  |50/>50 mg 10-day Reproduction  |(Ahmadivand et al., 2016)
gairdneri) DEHP/kg NOAEC/LOAEC (High)
Japanese medaka <20/20 pg/L | 7-day Growth (Yang et al., 2018) (High)
(Oryzias latipes) NOAEC/LOAEC
Yellowhead catfish 0.1/0.5 mg/L |57-day Growth/Develo |(Yuan et al., 2017) (High)
(Aeromonas hydrophila) NOAEC/LOAEC |pment
African sharptooth >100 pg/L 14-day NOAEC  |Survival (Wood et al., 2015) (High)
catfish (Clarias
gariepinus)
African sharptooth 400/>400 14-day Growth (Adeogun et al., 2018) (High)
catfish (Clarias Mg/l NOAEC/LOAEC
gariepinus)
Zebrafish (Danio rerio) [<0.5/0.5 pg/L |6-month Growth/Reprod | (Muhammad et al., 2018)
NOAEC/LOAEC |uction (Medium)
Zebrafish (Danio rerio) [4.0/<4.0 7-week Growth/Reprod | (Buerger et al., 2019) (High)
mg/kg diet NOAEC/LOAEC |uction
Zebrafish (Danio rerio) |33/100 pg/L  |3-month Reproduction |(Ma et al., 2018) (High)
NOAEC/LOAEC
Atlantic salmon (Salmo [300/1500 28-day Growth (Norrgren et al., 1999)
salar) mg/kg NOAEC/LOAEC (Medium)
Atlantic salmon (Salmo [1634-1661 28-day Population (Norman et al., 2007) (High)
salar) mg/kg diet NOAEC/LOAEC
Japanese medaka 0.496/<0.496 |90-day Growth (DeFoe et al., 1990) (High)
(Oryzias latipes); mg/L NOAEC/LOAEC
Rainbow trout (Salmo
gairdneri)
Chronic aquatic invertebrates
Water flea (Daphnia 107/>107 21-day Reproduction |(Brown and Thompson, 1982)
magna) Mo/l NOAEC/LOAEC (Medium)
Water flea (Daphnia 0.39/>0.39 14-day Growth/Reprod | (Seyoum and Pradhan, 2019)
magna) mg/L NOAEC/LOAEC |uction (Medium)
Water flea (Daphnia 0.077/0.16 14-day Survival (Springborn Bionomics, 1984c)
magna) mg/L NOAEC/LOAEC (High)
Water flea (Daphnia 0.077/0.16 21-day Survival (Rhodes et al., 1995) (High)
magna) mg/L NOAEC/LOAEC
Water flea (Daphnia 158/>811 21-day Survival and  |(Knowles et al., 1987) (High)
magna) pg/L NOAEC/LOAEC |Reproduction
Abalone (Haliotis 2/10 pg/L 9, 120-hour Reproduction |(Zhou et al., 2011) (High)
diversicolor) NOAEC/LOAEC |and
Development
Copepod (Eurytemora |109/245 pg/L |10-day Reproduction |(Forget-Leray et al., 2005)
affinis) NOAEC/LOAEC (High)
Copepod (Eurytemora |109/245 pg/L |10-day Survival (Forget-Leray et al., 2005)
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Test Organism Hazard ] n Citation
SiElle)y Vg (Species) Values PRLCUI) S/l (Data Evaluation Rating)
Sub- affinis) NOAEC/LOAEC (High)
chronic/  |Penaeid shrimp 60000/>60000 | 21-day Mortality (Hobson et al., 1984) (Medium)
chronic (Penaeus vannamei)  |ppm NOAEC/LOAEC
Freshwater rotifer 5000/>5000 |6-day Reproduction  |(Zhao et al., 2009) (Medium)
(Brachionus pa/L NOAEC/LOAEC |and Mortality
calyciflorus)
Freshwater amphipod  |100/500 pg/L |25-day Behavior (Thurén and Woin, 1991)
(Gammarus pulex) NOAEC/LOAEC (Medium)
Grass shrimp 0.39/0.51 28-day Mortality and |(Laughlin et al., 1978)
(Palaemonetes pugio) |mg/L NOAEC/LOAEC |Growth/Develo |(Medium)
pment
Mud crab 10/30 pg/L | 7-day Survival (Park et al., 2019) (Medium)
(Macrophthalmus NOAEC/LOAEC
japonicus)
Water flea (Daphnia 1.0/>1.0 21-day Mortality (Brown et al., 1998) (High)
magna) NOAEC/LOAEC

Aquatic benthic invertebrates

Scud (Hyalella azteca) |>3,170 mg/kg |10-day LC50 Mortality (Call et al., 2001a) (High)
dw bs

Scud (Hyalella azteca |>0.273 mg/L |10-day LC50 Mortality (Call et al., 2001a) (High)
Midge (Chironomus >3,070 mg/kg |10-day LC50 Mortality (Call et al., 2001a) (High)
tentans) dw bs
Midge (Chironomus >0.382 mg/L |10-day LC50 Mortality (Call et al., 2001a) (High)
tentans)
Scud (Hyalella azteca [>0.059 mg/L |10-day LC50 Mortality (Call et al., 2001b) (High)
Midge (Chironomus >0.047 mg/L |10-day LC50 Mortality (Call et al., 2001b) (High)
tentans)
Worm (Lumbriculus >0.069 mg/L |10-day LC50 Mortality (Call et al., 2001b) (High)
variegatus)
Scud (Gammarus pulex) [0.1/>0.5 mg/L | 20-day NOAEC/ |Behavior (Thurén and Woin, 1991)

LOAC (Medium)
Midge (Chironomus 4300/>4300 |28-day Emergence (Brown et al., 1996) (High)
riparius) mg/kg NOAEC/LOAEC
Midge (Paratanytarsus |>0.24 mg/L  |48-hour LC50 Mortality (EG&G Bionomics, 1984c)
parthenogenica) (High)
Midge (Chironomus >144/144 40-day Emergence and |(Streufort, 1978) (High)
plumosus) pa/L LOAEC/NOAEC |Reproduction
Midge (Chironomus 0.36/>0.36 35-day Emergence and |(Streufert et al., 1980)
plumosus) mg/L NOAEC/LOAEC |Reproduction |(Medium)
Midge (Chironomus <0.01/0.01 30-day NOAEC/ |Reproduction |(Kim and Lee, 2004) (Medium)
riparius) mg/L (ppm) |LOAEC

Amphibians
Chinese brown frog 0.039/0.39 80-day Growth/Develo |(Zhang et al., 2018) (Medium)
(Rana chensinensis) mg/L NOAEC/LOAEC |pment
Moorfrog (Rana 8.8-800 pg/g |60-day Survival, (Larson and Thuren, 1987)
arvalis) wet weight NOAEC/LOAEC |growth, (Medium)

development
Aquatic plants and algae

Green algae . . .
(Raphidc?celis >0.1mg/L  |14-day EC50 gmx)hpﬁ;ﬂ Ea‘;gﬁ)"bom Bionomics, 1984d)

subcapitata)
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Test Organism Hazard ] n Citation
SiElle)y Vg (Species) Values PRLCUI) S/l (Data Evaluation Rating)
Green algae >0.1 mg/L 96-hour EC50 Growth and (Adams et al., 1995) (High)
(Raphidocelis Chlorophyll
subcapitata)

EC50 = effect concentration at which 50 percent of test organisms exhibit an effect

LOAEC = Lowest-observable-adverse-effect-concentration

LC50 = Lethal concentration at which 50 percent of test organisms die

NOAEC = No-observable-adverse-effect-concentration

Study type is not listed for terrestrial species as the duration for determining acute or chronic is more variable in terrestrial
species as compared to aquatic species.
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1197 Table Apx A-2. List of Terrestrial Studies Not Considered for Quantitative Assessment

Test Organism Hazard Values Duration Endpoint (Stigst(lgga(\fi)ty)
Mice 14/138 mg/kg-day 18-week NOAEC/ |Reproduction (Lamb et al., 1987)

138/414 mg/kg-day LOAEC

70/90 mg/kg-day GD 0-18 NOAEC/ (Shiota et al., 1980) (Shiota and

190/410 mg/kg-day LOAEC Nishimura, 1982)

91/191 mg/kg-day GD 0-17 NOAEC/ (RTI International, 1984)

191/292 mg/kg-day LOAEC (Tyl etal., 1988)

169/537 mg/kg-day

20/200 mg/kg-day 10-day NOAEC/ (Chiang et al., 2020)
LOAEC

150/200 mg/kg-day GD 7-14 NOAEC/ (Quinnies et al., 2015)
LOAEC

5/250 mg/kg-day GD 7-16 NOAEC/ (Ungewitter et al., 2017)
LOAEC

172/493 mg/kg-day Two-generation (Tanaka, 2002)

5/500 mg/kg-day 8-week NOAEC/ (Schmidt et al., 2012)
LOAEC

5/500 mg/kg-day GD 0.5-PND 21 (Pocar et al., 2012)
NOAEC/ LOAEC

250/500 mg/kg-day E6.5-14.5 NOAEC/ (Tang et al., 2018)
LOAEC

500/750 mg/kg-day GD 11-birth (Barakat et al., 2017)
NOAEC/ LOAEC

500/1000 mg/kg-day GD 1-6 NOAEC/ (Lietal., 2012)
LOAEC

500/1000 mg/kg-day GD 7-9 NOAEC/ (Shiota and Mima, 1985)

1000/2000 mg/kg-day ~ |LOAEC

Rats 93/272 mg/kg-day Two-generation (BASF, 2001)

145/400 mg/kg-day NOAEC/ LOAEC

148/451 mg/kg-day

271/792 mg/kg-day

272/999 mg/kg-day

451/1128 mg/kg-day

136/409 mg/kg-day PND 1-22 NOAEC/ (NTP, 1995)
LOAEC

1381/2762 mg/kg-day GD 0-20

357/666 mg/kg-day GD 0-20 NOAEC/ (Wolkowski-Tyl et al., 1983)

422/767 mg/kg-day LOAEC (Tyl et al., 1988)

856/1055 mg/kg-day

767/1168 mg/kg-day

300/750 mg/kg-day GD 7-PND 17 (Jarfelt et al., 2005)
NOAEC/ LOAEC

284/820 mg/kg-day Two- generation (BASF, 1999)

277/820 mg/kg-day NOAEC/ LOAEC

504/1131 mg/kg-day

300/1000 mg/kg-day 5-week NOAEC/ (Takai et al., 2009)
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. . . Citation(s)
Test Organism Hazard Values Duration Endpoint (Study Quality)
1000/3000 mg/kg-day LOAEC
284/1156 mg/kg-day 60-day NOAEC/ (Agarwal et al., 1986)
LOAEC
974/1461 mg/kg-day GD 6-15 NOAEC/ (Morrissey et al., 1989)
LOAEC
5000/10000 mg/kg-day |4-w NOAEC/ (Dalgaard et al., 2000)
LOAEC
Chicken (Gallus 100/<100 mg/kg 5-day NOAEL/ Behavior (Abdul-Ghani et al., 2012)
gallus) LOAEL
Fruit fly >7.8 mg/L? N/A Mortality (Vogel and Nivard, 1993) (Rating)
(Drosophila

melanogaster)

Earthworm (Eisenia
fetida)

3140 pg/cm?®

48-hour LC50

(Neuhauser et al., 1985) (Medium)

Nematode 22.55 mg/L*® 24-hour LC50 (Roh et al., 2007) (Medium)
(ICaerIthabd'“S >100 mg/L® 24-hour LC50 (Yin etal., 2018) (Medium)
elegans) 1.0/10 mg/L*® 75-hour Reproduction —
NOAEC/LOAEC fecundity
1.0/2.0 mg/L® 24-hour Behavior (Tseng et al., 2013) (High)
NOAEC/LOAEC
<0.2/0.2 mg/L° 72-hour (Lietal., 2018) (Medium)
<0.1/0.1 mg/L° NOAEC/LOAEC (How et al., 2019) (Medium)
0.1/1.5 mg/L* 48-hour Reproduction —
NOAEC/LOAEC Brood size
Springtail 5,000/>5,000 mg/kg 50-day NOAEC/ Mortality (Jensen et al., 2001) (Medium)
(Folsomia LOAEC
fimetaria) Adult 1 000/>1,000 mg/kg 30-day NOAEC/
LOAEC
Fruit fly 78.11/>78.11 mg/L? 7-day post hatch Behavior (Cao et al., 2016) (Medium)
(Drosophila
melanogaster)
Nematode <1.5/1.5 mg/L? 28-day NOAEC/ Survival (How et al., 2019) (Medium)
(Caenorhabditis LOAEC
elegans)
Fruit fly 0.2/0.4 % diet 60-day NOAEC/ Mortality (Chen et al., 2018) (High)
(Drosophila LOAEC

melanogaster)

Black garden ant
(Lasius niger)

<2.0/2.0 mg/L¢

5-week NOAEC/
LOAEC

Reproduction

(Cuvillier-Hot et al., 2014) (High)

Cucumber 30/50 mg/L® 7-day NOAEC/
(Cucumis sativus) LOAEC
Common oat 500/>500 mg/kg soil 72-hour

(Avena sativa) NOAEC/LOAEC
Common onion

(Allium cepa)

Bread wheat 43.2 (53) mg/L*® 72-hour 1C50
(Triticum aestivum) | <10/10 mg/kg soil N/A

Growth

(Zhang et al., 2014) (Medium)

(Ma et al., 2015) (High)

(Gao et al., 2017) (High)

(Gao et al., 2018) (Medium)

Page 38 of 43



https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=63427
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=63454
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=673614
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1249807
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=200657
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3625226
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=698288
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4829298
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2215375
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5555457
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5593882
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=789786
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5495570
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5593882
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5494836
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2345940
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1987637
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2915866
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3515118
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5493185

1200
1201

1202

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

DRAFT DELIBERATIVE — DO NOT DISTRIBUTE
Version — August 2024

Appendix B ENVIRONMENTAL HAZARD DETAILS

B.1 Evidence Integration

Data integration includes analysis, synthesis, and integration of information for the draft risk evaluation.
During data integration, EPA considers quality, consistency, relevancy, coherence, and biological
plausibility to make final conclusions regarding the weight of scientific evidence. As stated in the 2021
Draft Systematic Review Protocol (U.S. EPA, 2021), data integration involves transparently discussing
the significant issues, strengths, and limitations as well as the uncertainties of the reasonably available
information and the major points of interpretation.

The general analytical approaches for integrating evidence for environmental hazard is discussed in
Section 7.4 of the 2021 Draft Systematic Review Protocol.

The organization and approach to integrating hazard evidence is determined by the reasonably available
evidence regarding routes of exposure, exposure media, duration of exposure, taxa, metabolism and
distribution, effects evaluated, the number of studies pertaining to each effect, as well as the results of
the data quality evaluation.

The environmental hazard integration is organized around effects to aquatic and terrestrial organisms as
well as the respective environmental compartments (e.g., pelagic, benthic, soil). Environmental hazard
assessment may be complex based on the considerations of the quantity, relevance, and quality of the
available evidence.

For DEHP, environmental hazard data from toxicology studies identified during systematic review have
used evidence that characterizes apical endpoints; that is, endpoints that could have population-level
effects such as reproduction, growth, and/or mortality. Additionally, mechanistic data that can be linked
to apical endpoints will add to the weight of scientific evidence supporting hazard thresholds.

B.1.1 Weight of Scientific Evidence

After calculating the hazard thresholds that were carried forward to characterize risk, a narrative
describing the weight of scientific evidence and uncertainties was completed to support EPA’s
decisions. The weight of scientific evidence fundamentally means that the evidence is weighed (i.e.,
ranked) and weighted (i.e., a piece or set of evidence or uncertainty may have more importance or
influence in the result than another). Based on the weight of scientific evidence and uncertainties, a
confidence statement was developed that qualitatively ranks (i.e., robust, moderate, slight, or
indeterminate) the confidence in the hazard threshold. The qualitative confidence levels are described
below.

The evidence considerations and criteria detailed within (U.S. EPA, 2021) guides the application of
strength-of-evidence judgments for environmental hazard effect within a given evidence stream and
were adapted from Table 7-10 of the 2021 Draft Systematic Review Protocol (U.S. EPA, 2021).

EPA used the strength-of-evidence and uncertainties from (U.S. EPA, 2021) for the hazard assessment
to qualitatively rank the overall confidence using evidence for environmental hazard (Table_Apx B-2).
Confidence levels of robust (+ + +), moderate (+ +), slight (+), or indeterminant are assigned for each
evidence property that corresponds to the evidence considerations (U.S. EPA, 2021). The rank of the
Quality of the Database consideration is based on the systematic review overall quality determination
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(high, medium, or low) for studies used to calculate the hazard threshold, and whether there are data
gaps in the toxicity data set. Another consideration in the Quality of the Database is the risk of bias (i.e.,
how representative is the study to ecologically relevant endpoints). Additionally, because of the
importance of the studies used for deriving hazard thresholds, the Quality of the Database consideration
may have greater weight than the other individual considerations. The high, medium, and low systematic
review overall quality determination ranks correspond to the evidence table ranks of robust (+ + +),
moderate (+ +), or slight (+), respectively. The evidence considerations are weighted based on
professional judgment to obtain the overall confidence for each hazard threshold. In other words, the
weights of each evidence property relative to the other properties are dependent on the specifics of the
weight of scientific evidence and uncertainties that are described in the narrative and may or may not be
equal. Therefore, the overall score is not necessarily a mean or defaulted to the lowest score. The
confidence levels and uncertainty type examples are described below.

Confidence Levels

e Robust (+ + +) confidence suggests thorough understanding of the scientific evidence and
uncertainties. The supporting weight of scientific evidence outweighs the uncertainties to the
point where it is unlikely that the uncertainties could have a significant effect on the exposure or
hazard estimate.

e Moderate (+ +) confidence suggests some understanding of the scientific evidence and
uncertainties. The supporting scientific evidence weighed against the uncertainties is reasonably
adequate to characterize exposure or hazard estimates.

e Slight (+) confidence is assigned when the weight of scientific evidence may not be adequate to
characterize the scenario, and when the assessor is making the best scientific assessment possible
in the absence of complete information. There are additional uncertainties that may need to be
considered.

B.1.2 Data Integration Considerations Applied to Aquatic and Terrestrial Hazard
Representing the DEHP Environmental Hazard Database

Types of Uncertainties

The following uncertainties may be relevant to one or more of the weight of scientific evidence
considerations listed above and will be integrated into that property’s rank in the evidence (Table_Apx
B-2):

e Scenario Uncertainty: Uncertainty regarding missing or incomplete information needed to fully
define the exposure and dose.
o The sources of scenario uncertainty include descriptive errors, aggregation errors, errors
in professional judgment, and incomplete analysis.
e Parameter Uncertainty: Uncertainty regarding some parameter.
o Sources of parameter uncertainty include measurement errors, sampling errors,
variability, and use of generic or surrogate data.
e Model Uncertainty: Uncertainty regarding gaps in scientific theory required to make predictions
on the basis of causal inferences.
o Modeling assumptions may be simplified representations of reality.

Table_Apx B-1 summarizes the weight of scientific evidence and uncertainties, while increasing
transparency on how EPA arrived at the overall confidence level for each exposure hazard threshold.
Symbols are used to provide a visual overview of the confidence in the body of evidence, while de-
emphasizing an individual ranking that may give the impression that ranks are cumulative (e.g., ranks of
different categories may have different weights).
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Table_Apx B-1. Considerations that Inform Evaluations of the Strength of the Evidence within an Evidence Stream (i.e., Apical
Endpoints, Mechanistic, or Field Studies)

Consideration

Increased Evidence Strength (of the Apical
Endpoints, Mechanistic, or Field Studies Evidence)

Decreased Evidence Strength (of the Apical Endpoints, Mechanistic, or
Field Studies Evidence)

The evidence considerations and criteria laid out here guide the application of strength-of-evidence judgments for an outcome or environmental hazard effect within a
given evidence stream. Evidence integration or synthesis results that do not warrant an increase or decrease in evidence strength for a given consideration are
considered “neutral” and are not described in this table (and, in general, are captured in the assessment-specific evidence profile tables).

Quality of the database?® (risk
of bias)

* A large evidence base of high- or medium-quality
studies increases strength.

« Strength increases if relevant species are represented
in a database.

* An evidence base of mostly low-quality studies decreases strength.

* Strength also decreases if the database has data gaps for relevant species, i.e.,
a trophic level that is not represented.

* Decisions to increase strength for other considerations in this table should
generally not be made if there are serious concerns for risk of bias; in other
words, all the other considerations in this table are dependent upon the quality
of the database.

Consistency

Similarity of findings for a given outcome (e.g., of a
similar magnitude, direction) across independent
studies or experiments increases strength, particularly
when consistency is observed across species, life stage,
sex, wildlife populations, and across or within aquatic
and terrestrial exposure pathways.

* Unexplained inconsistency (i.e., conflicting evidence; see U.S. EPA (2005)
decreases strength.)

* Strength should not be decreased if discrepant findings can be reasonably
explained by study confidence conclusions; variation in population or species,
sex, or life stage; frequency of exposure (e.g., intermittent or continuous);
exposure levels (low or high); or exposure duration.

Strength (effect magnitude)
and precision

« Evidence of a large magnitude effect (considered
either within or across studies) can increase strength.

» Effects of a concerning rarity or severity can also
increase strength, even if they are of a small magnitude.
* Precise results from individual studies or across the
set of studies increases strength, noting that biological
significance isprioritized over statistical significance.

* Use of probabilistic model (e.g., Web-ICE, SSD) may
increase strength.

Strength may be decreased if effect sizes thatare small in magnitude are
concluded not to be biologically significant, or if there are only a few studies
with imprecise results.

Biological gradient/dose-
response

* Evidence of dose-response increases strength.

* Dose-response may be demonstrated across studies or
within studies and it can be dose- or duration-
dependent.

* Dose response may not be a monotonic dose-response
(monotonicity should not necessarily be expected, e.g.,
different outcomes may be expected at low vs. high
doses due to activation of different mechanistic

* A lack of dose-response when expected based on biological understanding
and having a wide range of doses/exposures evaluated in the evidence base can
decrease strength.

* In experimental studies, strength may be decreased when effects resolve
under certain experimental conditions (e.g., rapid reversibility after removal of
exposure).

» However, many reversible effects are of high concern. Deciding between
these situations is informed by factors such as the toxicokinetics of the
chemical and the conditions of exposure, see (U.S. EPA, 1998), endpoint
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Consideration

Increased Evidence Strength (of the Apical
Endpoints, Mechanistic, or Field Studies Evidence)

Decreased Evidence Strength (of the Apical Endpoints, Mechanistic, or
Field Studies Evidence)

pathways or induction of systemic toxicity at very high
doses).

* Decreases in a response after cessation of exposure
(e.g., return to baseline fecundity) also may increase
strength by increasing certainty in a relationship
between exposure and outcome (this particularly
applicable to field studies).

severity, judgments regarding the potential for delayed or secondary effects, as
well as the exposure context focus of the assessment (e.g., addressing
intermittent or short-term exposures).

* In rare cases, and typically only in toxicology studies, the magnitude of
effects at a given exposure level might decrease with longer exposures (e.g.,
due to tolerance or acclimation).

» Like the discussion of reversibility above, a decision about whether this
decreases evidence strength depends on the exposure context focus of the
assessment and other factors.

« If the data are not adequate to evaluate a dose-response pattern, then strength
is neither increased nor decreased.

Biological relevance

Effects observed in different populations or
representative species suggesting that the effect is
likely relevant to the population or representative
species of interest (e.g., correspondence among the
taxa, life stages, and processes measured or observed
and the assessment endpoint).

An effect observed only in a specific population or species without a clear
analogy to the population or representative species of interest decreases
strength.

Physical/chemical relevance

Correspondence between the substance tested and the
substance constituting the stressor of concern.

The substance tested is an analog of the chemical of interest or a mixture of
chemicals which include other chemicals besides the chemical of interest.

Environmental relevance

Correspondence between test conditions and conditions
in the region of concern.

The test is conducted using conditions that would not occur in the
environment.

@ Database refers to the entire data set of studies integrated in the environmental hazard assessment and used to inform the strength of the evidence. In this context,
database does not refer to a computer database that stores aggregations of data records such as the ECOTOX Knowledgebase.
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Table Apx B-2. DEHP Evidence Table Summarizing the Overall Confidence Derived from Hazard Thresholds

Types of Evidence CUUEIILS @ Consistency Streng_th ane Grztlalci)l:cr)lgt;g)ac:se- Relevance Ha_zard

the Database Precision Confidence
Response

Aquatic

/Acute aquatic assessment +++ +++ +++ + +++ Robust

Chronic aquatic assessment +++ + ++ + +++ Robust

Chronic benthic assessment ++ ++ ++ + +++ Moderate

Algal assessment ++ +++ ++ + +++ Robust

Terrestrial

Chronic mammalian assessment +++ +++ +++ +++ +++ Robust

Chronic avian assessment + + + + +++ Slight

Terrestrial invertebrate assessment  ++ +++ ++ + +++ Robust

Terrestrial plant assessment +++ +++ ++ ++ +++ Robust

2 Relevance includes biological, physical/chemical, and environmental relevance

+++ Robust confidence suggests thorough understanding of the scientific evidence and uncertainties. The supporting weight of scientific evidence
outweighs the uncertainties to the point where it is unlikely that the uncertainties could have a significant effect on the hazard estimate.

++ Moderate confidence suggests some understanding of the scientific evidence and uncertainties. The supporting scientific evidence weighed against the
uncertainties is reasonably adequate to characterize hazard estimates.

+ Slight confidence is assigned when the weight of scientific evidence may not be adequate to characterize the scenario, and when the assessor is making
the best scientific assessment possible in the absence of complete information. There are additional uncertainties that may need to be considered.
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