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Summary

The U.S. Environmental Protection Agency (EPA or the Agency) gathered and evaluated physical and
chemical property data and information according to the process described in the Draft Protocol for
Systematic Review in TSCA Risk Evaluations (U.S. EPA, 2021a). During the evaluation of di(2-
ethylhexyl) phthalate (DEHP), EPA considered both measured and estimated physical and chemical
property data/information summarized in Table 2-1, as applicable. Draft Risk Evaluation for Di(2-
ethylhexyl) phthalate (DEHP) — Systematic Review Supplemental File: Data Quality Evaluation and
Data Extraction Information for Physical and Chemical Properties (U.S. EPA, 2024a).

DEHP is liquid with a mild aromatic odor used as a plasticizer in the production of plastics, adhesives,
rubber, and resins (NLM, 2015a). DEHP is a medium-chained branched phthalate ester with the
chemical equation C24H3804 and a molar mass of 390.56 g/mol (NLM, 2015a). It is liquid at standard
environmental temperatures and conditions and is insoluble in water with a water solubility of 0.003
mg/L in water (Elsevier, 2021). DEHP has a melting point of —55 °C, boiling point of 384 °C, and
Henry’s Law constant of 9.87x10°% atm-m*/mol at 25 °C (Cousins and Mackay, 2000).
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1 INTRODUCTION

DEHP is a member of the phthalate class of chemicals and is mainly used as a plasticizer of polyvinyl
chloride (PVVC) and other polymers. DEHP is typically formed via the esterification of phthalic
anhydride and 2-ethylhexanol. To be able to understand and predict the behaviors and effects of DEHP
in the environment, its physical and chemical properties, and environmental fate and transport
parameters are examined in the remainder of the technical support document.

DEHP is produced by the esterification of phthalic anhydride with 2-ethylhexanol. Typical technical
grade DEHP is at least 99.0 to 99.6 percent pure (by ester content), with 0.1 percent maximum moisture
content and 0.007 to 0.01 percent acidity (as acetic acid or phthalic acid) (NTP, 2021). Purity of DEHP
from commercial manufacture is greater than 99 percent, with the remaining fraction comprised of
isophthalic acid, terephthalic acid, and maleic acid as impurities (CPSC, 2010). The following sections
discuss the selection of the physical and chemical properties of DEHP.
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2 PHYSICAL AND CHEMICAL PROPERTY ASSESSMENT OF
DEHP

2.1 Evidence Integration for Physical and Chemical Properties

Due to the relative availability of data, only studies with an overall data quality ranking of high were
selected for use in determining the representative physical and chemical properties of DEHP for the
purposes of the risk evaluation. Compared to other phthalate esters undergoing risk evaluations under
TSCA, DEHP is a relatively data rich chemical, and studies with an overall data quality ranking of high
were chosen to represent the best available data.

2.2 Final Selected Physical and Chemical Property Values for DEHP

Table 2-1. Final Selected Physical and Chemical Property Values for DEHP

Property Selected Value Reference %verall _Qua_llty
etermination
Molecular formula Co4 Hag O4
Molecular weight 390.56 g/mol
Physical form Liquid Rumble (2018b) High
Melting point =55°C Rumble (2018b) High
Boiling point 384 °C Rumble (2018b) High
Density 0.981 g/cm?® Rumble (2018b) High
Vapor pressure 1.42E-07 mmHg NLM (2015a) High
Water solubility 0.003 mg/L EC/HC (2017) High
NTP (2000b)
Elsevier (2021)
Octanol:water partition |7.60 NLM (2015a) High
coefficient (log Kow)
Octanol:air partition 10.76 (EPI Suite™) U.S. EPA (2017) High
coefficient (log Koa)
Henry’s Law constant [9.87E-06 atm-m®mol at | Cousins and Mackay (2000) High
25°C
Flash point 206 °C O'Neil (2013a) High
Autoflammability 390 °C NIOSH (1988) High
Viscosity 57.94 cP Mylona et al. (2013) High

2.3 Endpoint Assessments

2.3.1 Autoflammability

The EPA extracted and evaluated four sources containing DEHP flammability information. The selected
source was determined to be of high quality with a reported DEHP flammability of 390 °C (NIOSH
1988). Due to the limited number of high-quality data available, the EPA selected an autoflammability
value of 390 °C as the representative value for the available flammability information (NIOSH, 1988).
An autoflammability value was not selected in the Final Scope for the Risk Evaluation of DEHP (U.S.
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EPA, 2021b).

2.3.2 Melting Point

The EPA extracted and evaluated 24 sources containing DEHP melting point information. Fifteen of the
sources were identified and evaluated as overall high-quality data sources. The overall high-quality
sources reported DEHP melting points ranging from —58 to —46 °C (NIOSH, 2019; U.S. EPA, 2019;
DOE, 2016; NLM, 2015a; ECHA, 2012; OEHHA, 2011; NIOSH, 2007; Mitsunobu and Takahashi,
2006; EFSA, 2005; Park and Sheehan, 2000; NTP, 1992). U.S. EPA selected a melting point value of —
55 °C (Rumble, 2018b) as a representative value of the available information obtained from the overall
high-quality data sources. In addition, the selected value is consistent with the value selected in the Final
Scope for the Risk Evaluation of DEHP (U.S. EPA, 2021D).

2.3.3 Boiling Point

The EPA extracted and evaluated 29 data sources containing DEHP boiling point information. Fifteen of
the sources were identified and evaluated as overall high-quality data sources. The overall high-quality
sources reported DEHP boiling points ranging from 230 to 384 °C (NIOSH, 2019; U.S. EPA, 2019;
Rumble, 2018a; DOE, 2016; NLM, 2015a; ECHA, 2012; OEHHA, 2011; Rossol et al., 2009; NIOSH,
2007; EFSA, 2005; Park and Sheehan, 2000; NTP, 1992). EPA selected a boiling point value of 384 °C
(Rumble, 2018Db) as a representative value under normal environmental conditions within the available
information obtained from the overall high-quality data sources, as these studies were conducted in a
manner which would accurately measure boiling point under normal environmental temperatures and
pressures. In addition, the selected value is consistent with the value selected in the Final Scope for the
Risk Evaluation of DEHP (U.S. EPA, 2021b).

2.3.4 Density

The EPA extracted and evaluated 21 data sources containing DEHP density information. Ten of the
sources were identified and evaluated as overall high-quality data sources. The overall high-quality
sources reported DEHP density values ranging from 0.97 to 0.986 g/cm?® (NCBI, 2020b; ECHA, 2016;
NLM, 2015b; O'Neil, 2013b; NTP, 2003; ExxonMobil, 2001; De Lorenzi et al., 1998). EPA selected a
density of 0.981 g/cm® (Rumble, 2018b) for the density of DEHP within the available information
obtained from the overall high-quality data sources. In addition, the selected value is consistent with the
value selected in the Final Scope for the Risk Evaluation of DEHP (U.S. EPA, 2021b).

2.3.5 Vapor Pressure

The EPA extracted and evaluated 28 data sources containing DEHP vapor pressure information.
Eighteen of the sources were identified and evaluated as overall high-quality data sources. The overall
high-quality sources reported DEHP vapor density values ranging from 1.42x107 to less than 0.01
mmHg (Elsevier, 2021; NIOSH, 2019; U.S. EPA, 2019; Rumble, 2018a; DOE, 2016; NLM, 2015z3;
O'Neil, 2013a; ECHA, 2012; OEHHA, 2011; Lu, 2009; NIOSH, 2007; Mitsunobu and Takahashi, 2006;
Price, 2001; NTP, 2000a; NIOSH, 1988; Howard et al., 1985). EPA selected a vapor pressure value of
1.42x107" mmHg (NLM, 2015a) as a representative value of the available information obtained from the
overall high-quality data sources under normal environmental conditions. In addition, the selected value
is consistent with the value selected in the Final Scope for the Risk Evaluation of DEHP (U.S. EPA
2021b).

2.3.6 Vapor Density

The EPA extracted and evaluated two data sources containing DEHP vapor pressure information. Two
of the sources were identified and evaluated as overall high-quality data sources. The overall high-
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quality sources reported DEHP vapor density value of 16 in two high-quality studies (NLM, 2015a;
NIOSH, 1988). U.S. EPA selected a vapor density value of 16 (NLM, 2015a) as a representative value
of the available information obtained from the overall high-quality data sources. In addition, the selected
value is consistent with the value selected in the Final Scope for the Risk Evaluation of DEHP (U.S.
EPA, 2021b).

2.3.7 Water Solubility

The EPA extracted and evaluated 44 data sources containing DEHP water solubility information.
Twenty-one of the sources were identified and evaluated as overall high-quality data sources. The
overall high-quality data sources identified water solubility values for DEHP ranging from 0.00006
mg/L at 12 °C to 0.4 mg/L at 25 °C (Mitsunobu and Takahashi, 2006; Boese, 1984). The large range of
values available in the literature is likely due to the tendency of phthalate esters to form colloidal
suspensions in water, leading to erroneously high measurements of DEHPs aqueous solubility via
methods such as slow-stir, or shake flask water solubility tests. The EPA selected a representative non-
colloidal water solubility of 0.003 mg/L for DEHP (Elsevier, 2021) for use in the risk assessment. This
value was chosen to represent the range of non-colloidal water solubilities extracted from numerous data
sources and is also the most commonly cited representative value for the non-colloidal water solubility
of DEHP in all of the extracted primary and secondary data sources. This water solubility was chosen to
better represent the distribution of DEHP in the environment and aqueous media.

2.3.8 Log Octanol/Water Partitioning Coefficient

The EPA extracted and evaluated 13 data sources containing DEHP octanol-water partitioning
coefficient information from 30 studies. Eight of the sources were identified and evaluated as overall
high-quality data sources. The overall high-quality sources reported DEHP log Kow ranging from 6.69
to 8.66 (Elsevier, 2021; U.S. EPA, 2019; EC/HC, 2017; NLM, 2015a; ECHA, 2012; NTP, 2000b;
Verbruggen et al., 1999; Mueller and Klein, 1992). EPA selected a measured log Kow value of 7.60
(NLM, 2015a) for use in the risk evaluation, as it was the only measured value cited in the above
studies. The selected value is consistent with the value selected in the Final Scope for the Risk
Evaluation of DEHP (U.S. EPA, 2021b).

2.3.9 Log Octanol/Air Partitioning Coefficient

No data are available in the current literature pertaining to the octanol-air partitioning coefficient of
DEHP. With no available data, EPA estimated a representative octanol/air partitioning coefficient of
10.76 via EPI Suite™ for use as the representative log Koa value for DEHP (U.S. EPA, 2017).

2.3.10 Henry’s Law Constant

The Henry’s Law constant (HLC) selected in the Final Scope for the Risk Evaluation of DEHP (U.S.
EPA, 2021b) was a value calculated in EPI Suite™ from the vapor pressure and water solubility of
DEHP and was 2.08x10° atm-m3/mole at 25 °C (U.S. EPA, 2012a). One overall high-quality data
source was identified during the systematic review process. This measured value was chosen to best
represent the HLC over the modeled values presented in the scoping document. The EPA selected a
HLC value of 9.87x107° atm-m3/mol at 25 °C (Cousins and Mackay, 2000) for this risk evaluation.
DEHP is considered a semi-volatile organic compound (SVOC).

2.3.11 Flashpoint

The EPA extracted and evaluated five data sources containing DEHP flashpoint information. Three of
the sources were identified and evaluated as overall high-quality data sources. The overall high-quality
sources reported DEHP flash points ranging from 206 to 218 °C (Elsevier, 2021; O'Neil, 2013a; NIOSH,
2007; Bonnevie and Wenning, 1995; NIOSH, 1988). EPA selected a flashpoint value of 206 °C (O'Neil
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2013a) as a representative value of the available information obtained from the overall high-quality data
sources under normal environmental conditions. The selected value is consistent with the value selected
in the Final Scope for the Risk Evaluation of DEHP (U.S. EPA, 2021b).

2.3.12 Viscosity

The EPA extracted and evaluated two data sources containing DEHP viscosity information. The sources
identified and evaluated received an overall high-quality data ranking. The selected value for the
viscosity of DEHP is 57.94 cP at 25 °C (U.S. EPA, 2021b; Mylona et al., 2013).

2.4 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty
for the Physical and Chemical Property Assessment

Due to the water solubility of DEHP and its tendency to form colloidal suspensions in water, certain
physical and chemical properties may be difficult to measure experimentally (water solubility,
octanol/water partitioning coefficient, organic carbon partitioning coefficients) with traditional guideline
tests. The representative physical and chemical values were selected based on professional judgement
and the overall data quality ranking of the associated references. In some instances where no data were
available, or there was a wide range of data that generally, but did not consistently agree with one
another, models such as EPI Suite™ were used to estimate the value for the endpoint (octanol-water
partitioning coefficient and organic carbon-water partitioning coefficient) and cross checked with
reported data from systematic review.
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3 APPROACH AND METHODOLOGY FOR FATE AND
TRANSPORT ASSESSMENT

DEHP - Environmental Fate and Transport:
Key Points

EPA evaluated the reasonably available information to characterize the environmental fate and
transport of DEHP, the key points are summarized below.

Given the consistent results from numerous high-quality studies, there is robust evidence that DEHP:

e isexpected to have environmental biodegradation half-life in aquatic aerobic environments
on the order of days to weeks (Section 0);

e isnot expected to appreciably hydrolyze under environmental conditions (Section 4.2);
e isexpected to degrade rapidly via direct and indirect photolysis (Section 4.3);
e isnot expected to be subject to long range transport;

e is expected to show strong affinity and sorption potential for organic carbon in sediment and
soil (Sections 6.2.2 and 6.3.1);

o will be removed at rates greater than 85 percent in conventional wastewater treatment
systems (Section 7.2);

o will show strong affinity for adsorption to particulate matter and will not likely exist in
gaseous phase when released to air (Sections 5.1 and 6.1); and

e s likely to be found, and accumulate, in indoor dust (Section 6.1.1).

As a result of limited studies identified, there is moderate confidence that DEHP:

e isexpected to be removed in conventional drinking water treatment systems both in the
treatment process, and via reduction by chlorination and chlorination byproducts in post
treatment storage and drinking water conveyance (Section 7.3); and

e is not expected to be bioaccumulative in fish in the water column or benthic organisms
exposed to sediment with elevated concentrations of DEHP (Section 8).

Reasonably available environmental fate and transport data—including biotic and abiotic biodegradation
rates, removal during wastewater treatment, volatilization from lakes and rivers, and organic carbon-
water partition coefficient (log Koc)—are the parameters used for the fate and transport assessment of
the current draft risk evaluation. Information on the full extracted data set is available in the
supplemental file Draft Risk Evaluation for Di-ethylhexyl Phthalate (1,2-Benzenedicarboxylic acid, 1,2-
bis(2-ethylhexyl) ester) (DEHP) — Systematic Review of Data Quality Evaluation and Data Extraction
Information for Environmental Fate and Transport (U.S. EPA, 2024b). Supportive fate estimates were
based on modeling results from EPI Suite™ (U.S. EPA, 2012a), a predictive tool for physical and
chemical properties and environmental fate estimation. Information regarding the model inputs is
available in Section 3.1.
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These were updated with additional information identified through the systematic review process after
publication of the Final Scope for the Risk Evaluation for Di-ethylhexyl Phthalate (1,2-
Benzenedicarboxylic acid, 1,2-bis(2-ethylhexyl) ester) (DEHP) CASRN: 117-81-7 (U.S. EPA, 2021b).

3.1 EPI Suite™ Model Inputs and Settings

The approach described by Mackay (1996) using the Level 111 Fugacity model in EPI Suite™
(LEV3EPI™) was used for this Tier Il analysis. LEV3EPI™ is described as a steady-state, non-
equilibrium model that uses a chemical’s physical and chemical properties and degradation rates to
predict partitioning of the chemical between environmental compartments and its persistence in a model
environment (U.S. EPA, 2012a). Environmental release information is useful for fugacity modeling
because the emission rates will refine the fugacity model to more accurately predict a real-time percent
mass distribution for each environmental medium. Environmental degradation half-lives were taken
from high- and medium-quality studies that were identified through systematic review to reduce levels
of uncertainties. The results of the Level 111 Fugacity modeling are presented and discussed in Section
5.2.

The following inputs parameters were used for the Level 111 Fugacity model in EPI Suite™:
e Melting point =-55 °C
e Vapor pressure = 1.42x10~" mmHg
e Water solubility = 0.003 mg/L
e Log Kow =7.60
e  SMILES: 0=C(OCC(CCCC)CC)c(c(ccecl)C(=0)OCC(CCCC)CC)cl
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4 TRANSFORMATION PROCESSES

Biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to
phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form
carbon dioxide (CO2) and/or methane (CH4) {Huang, 2012, 1597688}. The monoester phthalates are
also expected to undergo biodegradation more rapidly than the diester form. The transformation
products and degradants will not be considered in this fate and transport assessment as they are not
expected to be as persistent as DEHP in environmental media. Both biotic and abiotic routes of
degradation for DEHP are described in the following sections below.

4.1 Biodegradation

DEHP can be considered readily biodegradable under most aquatic and terrestrial environmental
conditions. To determine the biodegradation potential of DEHP, EPA evaluated 38 data sources with
overall quality determinations of high or medium containing biodegradation information in water, soil,
and sediments under aerobic and anaerobic conditions (Table 4-1).

4.1.1 Biodegradation in Water

The aerobic primary biodegradation of DEHP in water has reported to be greater than 90 percent over 2
to 5 days in activated sludge (EC/HC, 2015a), 68.1 to 73.5 percent over 7 days in river water
(Hashizume et al., 2002), 70 to 78 percent over 28 days in activated sludge (Monsanto, 1976), and
greater than 99 percent over 28 days in acclimated activated sludge (SRC, 1983). Reported half-lives
range from less than 5 days in activated sludge to less than 7 days in river water (Fujita et al., 2005). An
additional study found no biodegredation over 20 days when using a microbial inoculum from a
petrochemical waste treatment plant (Union Carbide, 1974). It was also found that biodegradation of
DEHP in water using an activated sludge inoculum required gradual acclimation, with the unacclimated
inoculum degrading 0 percent and the fully acclimated inoculum degrading 93 to 95 percent over 28
days (Tabak et al., 1981).

EPA identified seven studies that evaluated the ready biodegradability of DEHP in water using OECD
guideline methods. Five of those studies reported that it passed the 10-day ready biodegradability test
with losses of 55 to 86.16 percent over 28 to 29 days (NCBI, 2020a; EC/HC, 2015a; Scholz et al., 1997).
Two studies using OECD guideline methods found that it did not pass the 10-day ready biodegradability
test, reporting loses of 4 to 5 percent (EC/HC, 2015a) and 58.7 percent (Stasinakis et al., 2008) over 28
days. Additional non-OECD guideline die-away tests found that approximately 62 percent of DEHP was
biodegraded over 5 weeks using river water (Saeger and Tucker, 1976) and calculated a half-life of 0.46
days using an acclimated activated sludge inoculum (SRC, 1984). A non-OECD guideline study also
found that filtration of river water prior to a die-away test decreased biodegredation from 11 to 78
percent to 4 to 28 percent over 32 to 34 days (Wylie et al., 1982). The authors hypothesized that the
presence of suspended solids in the unfiltered samples helped to facilitate biodegradation.

The ultimate biodegradation rate of DEHP in aerobic water has been reported to be 85.5 percent over 28
days using an inoculum of soil, activated sludge, and raw wastewater (SRC, 1983); 34.9 to 71.2 percent
over 40 days using an inoculum of activated sludge (Subba-Rao et al., 1982); 66 percent over 96 hours
using an activated sludge inoculum (Thomas et al., 1986); 54 percent over 33 days using an unreported
inoculum (Union Carbide, 1974); and 73.81 to 86.16 percent over 27 days using an activated sludge
inoculum (Saeger and Tucker, 1976). The ultimate biodegradation half-life of DEHP has been reported
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to be greater than 14 days with loses of 30 to 70 percent over 14 days when using an activated sludge
inoculum at a mixed liquor suspended solids concentration of approximately 100 mg/L and 15 to 35
percent over 14 days when using a river water inoculum with a suspended solids concentration of
approximately 25 mg/L (Fujita et al., 2005).

While biodegradation rates will depend on environmental conditions, such pre-conditioning of
microorganisms to the presence of DEHP (Tabak et al., 1981; Price et al., 1974; Union Carbide, 1974),
the data suggest that the half-life of DEHP in aerobic waters will be on the order of days to weeks.

4.1.2 Biodegradation in Sediments

In aerobic sediments, rates of biodegradation of DEHP have been reported to be 5.9 to 19.79 percent
over 28 days in a microcosm study using sediment from a lake in Missouri (Johnson et al., 1984). Half-
lives in aerobic sediments have been reported to be 347 days in a microcosm study using sediment from
a marine environment in Canada (Kickham et al., 2012), 7.3 to 27.5 days in a microcosm study using
sediment from a river in Taiwan (Yuan et al., 2002), and approximately 14 days in a microcosm study
using sediment from a river in Japan (Yuwatini et al., 2006). Reported biodegradation rates of DEHP in
anaerobic sediments showed a high amount of variability, with rates of O percent over 365 days (Painter
and Jones, 1990), 13 percent over 30 days (Kao et al., 2005), and up to 9.86 percent in 28 days (Johnson
et al., 1984). Reported half-lives in anaerobic sediments show a similar level or variability with values
ranging from 22.8 days (Yuan et al., 2002) to 279.5 days (Lertsirisopon et al., 2006). Overall, the data
suggest that the half-life of DEHP in both aerobic and anaerobic sediments will be on the order of
months to years.

4.1.3 Biodegradation in Soils

In aerobic soils, the half-life of DEHP has been reported to be 8.7 days in soil from an agricultural field
(Yuan et al., 2011), 54 to 170 days in a silty sand soil (Rudel et al., 1993), 20 to 31 days in silty loam
soil (Rudel et al., 1993), and 73 days in soil from an agricultural field (Lindequist Madsen et al., 1999).
Additionally, there have been reported degradation rates of 98.9 percent over 49 days (Carrara et al.
2011), 10 percent over 10 days (Cartwright et al., 2000), 8.5 to 21.8 percent over 60 days (Gejlsbjerg et
al., 2001), 55.5 to 90.47 percent over 112 days (He et al., 2018), 8.2 percent in 7 days (Schmitzer et al.,
1988), 7 to 43 percent over 35 days (Zhu et al., 2018), and 31 to 38 percent over 42 days (Zhu et al.
2019). Temperature was shown to be an important factor, with reported half-lives of 223, 187, and 73
days in experiments conducted at 5, 10, and 20 °C, respectively (Lindequist Madsen et al., 1999).

Biodegredation rates in soils amended with biosolids were similar to those reported for unamended soils,
with reported rates of 84.1 percent in a freshly amended soil over 146 days (Fairbanks, 1984), 89 percent
in a preconditioned soil over 146 days (Fairbanks, 1984), 5.8 to 18.0 percent over 60 days in an
amended soil (Gejlsbjerg et al., 2001), 95 to 96 percent in an amended soil in a 1-year field study
(Petersen et al., 2003), approximately 40 percent over 84 days in an amended soil (Roslev et al., 1998).
One study reported half-lives ranging from 5.8 to 9.9 days for a soil amended with biosolids at
soil:biosolids ratios ranging from 0:1 to 1:1 (Yuan et al., 2011). The half-life for the unamended soil was
8.7 days and the shortest half-life was 5.8 days at a soild:biosolids ratio of 1:0.2. An additional study
reported a half-life of 64 days when sampling from the top 20 cm of an amended agricultural soil (Tran
etal., 2015).
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Under anaerobic conditions, biodegredation rates in soils have been reported to be 34 percent over 30
days (Shanker et al., 1985) and 35 to 38 percent over 42 days (Zhu et al., 2019). Temperature was again

shown to be an important factor impacting biodegradation, with rates of 25, 30, and 50 percent at 5, 10,

and 20 °C, respectively, over 125 days in anaerobic soils amended with biosolids (

Vavilin, 2007).

Overall, the data suggest that the half-life of DEHP in both aerobic and anerobic soils will be on the
order of weeks to months.

Table 4-1. Summary of DEHP’s Biodegradation Data

Environmental

Degradation

Overall Quality

Conditions Value ARUH(EEE) RERIEE Determination
81.5%/24 hours, N.D. EC/HC (2015a) Medium
91%/48 hours,
>91%/2-5 days
N.D. <5 days with Fujita et al. (2005) High
activated sludge
inoculum, <7
days in river
water with no
inoculum
68.1-73.5%/7 days | N.D. Hashizume et al. (2002) Medium
50%/24 hours N.D. Monsanto (1976) Medium
(river die away
method), 70—
0,
Aerobic primary (738e/r:1/i?080?1?iynsuous
biodegradation in .
water activate sludge
method)
N.D. 60-70 hours in NCBI (2020a) Medium
groundwater
impacted by
DEHP; no
biodegredation
in waters not
impacted by
DEHP
>99%/28 days N.D. SRC (1983) High
70-78%/24 hours N.D. Saeger and Tucker (1976) | High
(semi-continuous
activated sludge
method)
. 82%/29 days N.D.
Aerobic ready
biodegradation in EC/HC (2015b) Medium
water 63%/28 days N.D.
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Environmental

Degradation

Overall Quality

Conditions Value ARNRB(EES) REEETEE Determination
60-70%/28 days N.D.
4-5%/28 days N.D.
69%/28 days N.D. NCBI (2020a) High
58.7%/28 days 6.9 days Stasinakis et al. (2008) High
81-84%/29 days N.D. Scholz et al. (1997) High
85.5%/28 days N.D. SRC (1983) High
30-70%/14 days N.D. Fujita et al. (2005) High
with activated
. . sludge inoculum,

river and pond

water
water
73.81-86.16%/27 | N.D. Saeger and Tucker (1976) | High
days based on CO;
evolution
5.9%/28 days, N.D. Johnson et al. (1984) High
9.98-19.79%/28
days (primary
degradation)

Aerobic 13.79%/28 days N.D. Johnson et al. (1984) High

biodegradation in | (ultimate)

sediment N.D. 347 days (ready) | Kickham et al. (2012) High
N.D. 7.3-27.5 days Yuan et al. (2002) High
N.D. Approximately Yuwatini et al. (2006) Medium

14 days

N.D. 27.5 days Chang et al. (2005a) High
9.86%/28 days N.D. Johnson et al. (1984) High
(ultimate)

Anaerobic

biodegradation in 13%/30 days N.D. Kao et al. (2005) High

sediment
N.D. 207.5-279.5 Lertsirisopon et al. (2006) | High

days

0%/365 days in N.D. Painter and Jones (1990) Medium

Page 18 of 55



https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=7681905
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=698261
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=680132
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1316198
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5490395
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=790777
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679999
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679999
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1339546
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5541359
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1333872
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679331
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679999
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=681974
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=675274
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5492430

506

507
508
509
510
511
512
513
514
515
516

517
518
519
520
521

PUBLIC RELEASE DRAFT

December 2024

Environmental

Degradation

Half-life (days)

Reference

Overall Quality

(1999)

Conditions Value Determination
freshwater
sediment, 18%/365
days in salt marsh
sediment
N.D. 22.8-39.1 days Yuan et al. (2002) High
98.8%/49 days N.D. Carrara et al. (2011) High
10%/10 days N.D. Cartwright et al. (2000) High
. 8.5-21.8%/60 days | N.D. Gejlsbjerg et al. (2001) High
Aerobic
biodegradation in 55.5-90.47%/112 | N.D. He et al. (2018 High
soil days
8.2%I/7 days N.D. Schmitzer et al. (1988) Medium
7-43%/35 days N.D. Zhu et al. (2018) High
31-38%/42 days N.D. Zhu et al. (2019) High
N.D. 8.7 days Yuan et al. (2011) High
N.D. 54-170 daysina | Ridel et al. (1993) High
Anaerobic silty sand, 20-31
biodegradation in days in a silty
soil loam
N.D. 73 days Lindequist Madsen et al. High

4.2 Hydrolysis

The HYDROWIN™ module in EPI Suite™ was used to estimate the hydrolysis half-lives of DEHP.
The estimated half-lives of DEHP were 195 days at pH 8 and 25 °C, and 5.36 years at pH 7 and 25 °C
(U.S. EPA, 2017), indicating that hydrolysis is a possible degradation pathway of DEHP under more

caustic conditions.

When compared to other degradation pathways, hydrolysis is not expected to be a significant
degradation pathway under standard environmental conditions. However, higher temperatures,
variations from standard environmental pH, and chemical catalysts present in the deeper anoxic zones of
landfills may favor the degradation of DEHP via hydrolysis (Huang et al., 2013). This is discussed
further in Section 6.3.3.

4.3 Photolysis

DEHP contains chromophores that absorb light at greater than 290 nm wavelength (

NCBI, 2020b), and

will undergo direct photodegradation in air. Gaseous CO; is the main product and 2-ethyl-1-hexene, 2-
ethylhexanol, and phthalic acid are the major byproducts. Modeled indirect photodegradation half-lives
indicated a slightly more rapid degradation rate, calculating a half-life of 5.58 hours using an estimated

Page 19 of 55



https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5541359
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1249420
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1322235
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=789785
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4829343
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5707607
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=4829393
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5493208
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1249569
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=773059
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1334106
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11181058
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1597688
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=6629861

522
523
524
525
526
527
528
529
530

PUBLIC RELEASE DRAFT
December 2024

rate constant of 2.39x10~!"' cm®/molecule-second at 25 °C, assuming a 12-hour day with 21.96x107*2
-OH/cm?3 (U.S. EPA, 2017). Both of these rates indicate that DEHP degrades rapidly when released to
the atmosphere and is likely not subject to long range transport in the atmosphere. In addition, Yu
(2019) concluded that DEHP was readily photodegraded via direct exposure to direct sunlight in a
simulated natural water and had a median half-life of approximately 4 hours when starting with an
aqueous concentration of 50 ug/mL DEHP. This study also concluded that the presence of other
natural reactive species (Fe**, NOs, CI) increased the indirect photodegradation rates of DEHP under
simulated sunlight (Yu et al., 2019).
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531 5 PARTITIONING
DEHP - Partitioning Analysis:
Key Points
EPA considered all reasonably available information identified by the systematic review process
under TSCA to characterize the chemistry and fate and transport of DEHP. The following bullets
summarize the key points of this partitioning analysis:
e When primarily released to water, approximately 46 to 62 percent of DEHP will partition to
sediment, with the remaining fraction remaining in the water compartment.
e When released to air, approximately 85 percent of DEHP will partition to soil, with the
remaining 15 percent distributed to the air, water, and sediment compartments.
e When primarily released to soil, DEHP will remain in soil completely.
e When released equally to air, water, and soil, DEHP will predominantly partition to the soil
compartment (57-60%), with the remaining fractions partitioning to water (16-21%) or
sediment (18-26%).
532
533 5.1 Tier I Analysis
534  DEHP is a member of the phthalate class of chemicals and is mainly used as a plasticizer of PVC and
535  other polymers. To be able to understand and predict the behaviors and effects of DEHP in the
536  environment, a Tier | analysis will determine whether an environmental compartment (e.g., air, water,
537  etc.) will accumulate DEHP at concentrations that may lead to environmental exposure (i.e., major
538 compartment) or are unlikely to result in risk (i.e., minor compartment). The first step in identifying the
539  major and minor compartments for DEHP is to consider partitioning values (Table 5-1) which indicate
540 the potential for a substance to favor one compartment over another. DEHP does not naturally occur in
541 the environment; however, DEHP has been detected in water, soil, and sediment in environmental
542  monitoring studies indicating its ability to exist in those media (NLM, 2015a; ECJRC, 2008).
543
544 Table 5-1. Partitioning Values for DEHP
Parameter Value(s) Log Value(s)? Reference Pregﬁr;yenant
Octanol-water 13-98E07 7.60 (NLM, 2015a) Organic Carbon
(Kow)
8.71E04-5.25E05  |4.94-5.72 (NCBI, 2020a) Organic Carbon
Organic 2.57E05, 3.02E05, [5.41,5.48,5.95 (Williams et al., 1995)
carbon:water  [8.91E05
(Koc)
5.62E03-1.91E04 3.75-4.28 (He et al., 2019)

_ 5.69E10 10.755 (estimated)® [KOAWIN™ (U.S. EPA,  [Organic Carbon
Octanol:air 2017), (user input)®
(Koa)
Air:water 1.82E-03 2.74 (estimated) (Lu, 2009) \Water
(Kaw)
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1.58E-03 —2.80 (estimated)  |(Cousins and Mackay,
2000)

& Measured unless otherwise noted

b Information was estimated using EPI Suite™ (U.S. EPA, 2017)

¢ EPI Suite physical property inputs: MP = -55°C, BP = 384°C, VP = 1.42x10~" mm Hg, WS = 0.003 mg/L, Log
Kow = 7.60, HLC = 9.87E-06 atm-m?mole, SMILES:
O=C(OCC(CCCC)CC)c(c(cccl)C(=0)OCCc(Cccece)cl)el

5.1.1 Soil, Sediment, and Biosolids

Based on the partitioning values shown in Table 5-1, DEHP will favor organic carbon over water or air.
Because organic carbon is present in soil, biosolids, and sediment, they all are considered major
compartments for DEHP. This is consistent with monitoring data from the Mersey Estuary in the United
Kingdom, where high concentrations of DEHP were detected in sediment samples (1.220 pg/g and
1.199 ug/g at Speke and Runcorn, respectively) compared to water samples (0.125-0.693 ng/L and
279.78-637.96 ng/L in the dissolved and particulate phase, respectively) (Preston and Al-Omran, 1989).

5.1.2 Air

DEHP is a liquid at environmental temperatures with a melting point of -55 °C (NLM, 2015a) and a
vapor pressure of 1.42x10~" mm Hg at 25 °C (NLM, 2015a). The octanol-air coefficient (Koa) indicates
that DEHP will favor the organic carbon present in airborne particles. Based on its physical and
chemical properties and short half-life in the atmosphere (t.. = 5.85 hours (U.S. EPA, 2017)), DEHP is
assumed not to be persistent in the air. The AEROWIN™ module in EPI Suite™ estimates that a large
fraction of DEHP may be sorbed to airborne particulates and these particulates may be resistant to
atmospheric oxidation. DEHP has been detected in both in ambient and indoor air as well as in settled
house dust (NLM, 2024; Kubwabo et al., 2013; Wang et al., 2013; ECJRC, 2008).

5.1.3 Water

The air-water partitioning coefficient (Kaw) indicates that DEHP will favor water over air. With a water
solubility of 0.001 to 0.003 mg/L at 25 °C, DEHP is considered to be insoluble in water (Elsevier
2021). DEHP in water will partition to suspended organic material present in the water column based on
DEHP’s low water solubility and partition coefficients indicating its strong preference for organic
matter. In addition, total seawater concentrations of DEHP measured in False Creek, British Columbia
ranged from 170 to 444 ng/L; the dissolved fraction concentrations ranged from 77 to 200 ng/L and the
suspended sediment fraction concentration ranged from 7,350 to 136,000 ng/g dry weight (dw)
(Mackintosh et al., 2006). Although DEHP has low water solubility, surface water will be considered as
a major compartment for DEHP since DEHP was quantified in the ng/L range.

5.2 Tier Il Analysis

A Tier Il analysis involves reviewing environmental release information for DEHP to determine if a
specific media evaluation is needed. DEHP is used mainly as a plasticizer in polyvinyl chloride (PVC)
products (ECJRC, 2008). DEHP may be released to the environment during production, distribution,
processing in PVC and non-PVC polymers, use of products such as paints and sealants, disposal or
recycling, wastewater treatment, and disposal of solid and liquid waste. Environmental release data for
DEHP were not available from the Discharge Monitoring Reports (DMRs); however, the Toxics Release
Inventory (TRI) reported the total on-site releases for 2022 to be 7.2 thousand pounds with 6.9 thousand
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pounds released to air, 24 pounds released to water, and 263 pounds released to land. According to
production data from the Chemical Data Reporting (CDR) 2020 reporting period, between 10,000,000
and 50,000,000 pounds of DEHP were produced annually from 2016 to 2019 for use in commercial
products, chemical substances or mixtures sold to consumers, or at industrial sites. Because DEHP is not
chemically bound to the polymer matrix, it can migrate from the surface of polymer products (EC/HC
2015a; ECJRC, 2008). Therefore, DEHP can be released to the environment from polymer-based
products during their use and disposal. Additionally, DEHP may be released to the environment from
discharge of wastewater, and liquid and solid wastes. After undergoing wastewater treatment processes,
the discharge of wastewater or liquid wastes results in effluent discharge to water and land application of
biosolids.

Tier | analysis identified air as minor compartment where DEHP is not expected to result in
environmental exposure. The short lifetime of DEHP in the atmosphere reduces the potential for free
DEHP to undergo long range atmospheric transport. However, DEHP sorbed to particulates may be
resistant to atmospheric oxidation. In addition, DEHP bound to particulates in air and particle deposition
can be a significant pathway for DEHP to be transported to other environmental compartments. Particle-
bound DEHP is subject to wet and dry deposition and can subsequently enter soil and surface water
media.

The Level 11l Fugacity Model in EPI Suite™ (U.S. EPA, 2017) can be used to study and predict
DEHP’s behavior in and between different environmental compartments. The LEV3EPI™ module uses
inputs on an organic chemical’s physical and chemical characteristics and degradation rates to predict
partitioning and transport of chemicals between environmental compartments, as well as the persistence
of a chemical in a model environment (Figure 5-1). Four emission rates scenarios were used as inputs
into the Level 111 Fugacity Model: equal releases of DEHP to each compartment and 100 percent release
to each compartment, separately. Each iteration of the fugacity model was run assuming ready
biodegradability of DEHP. The fugacity results using half-lives consistent with ready biodegradability
(5, 10, and 45 days in water, soil, and sediment, respectively) are shown in Figure 5-1. A half-life in air
of 5.85 hours was used (U.S. EPA, 2017), as well as a user-entered Koc value of 262,000 (which
corresponds to a log Koc value of 5.418).
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Figure 5-1. EPI Suite™ Level 111 Fugacity Modeling Graphical Result for DEHP Assuming Ready
Biodegradability

The model predicts that DEHP will remain exclusively in soil when released primarily to soil. When
released primarily to air, the model predicted that approximately 85 percent of DEHP will partition to
soil, with the final 15 percent remaining in air or partitioning to the water and sediment compartments.
When primarily released to water, the model predicts that DEHP will remain in the water compartment
(54%) or partition into the sediment compartment. Under an equal release scenario, DEHP is expected to
predominantly partition into the soil compartment at approximately 57 to 60 percent, with the remaining
fractions partitioning to water (21%) or sediment (18%).
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6 MEDIA ASSESSMENTS

DEHP has been reported to be present in the atmosphere, aquatic environments, and terrestrial
environments. Once in the air, DEHP will primarily partition to organic matter present in airborne
particles (see Section 6.1) and is expected to have a short half-life in the atmosphere. Similarly, DEHP is
likely to partition to house dust and airborne particles in indoor air and is expected to have a longer half-
life as compared to ambient (outdoor) air. DEHP present in surface water is expected to partition readily
to aquatic sediments due its organic carbon-water partitioning coefficient, as measured in several EPA
standard sediment samples from large river basins in the central United States (Williams et al., 1995).
DEHP is expected to have an aerobic biodegradation half-life between 14 and 28 days. In terrestrial
environments, DEHP may be present in soils and groundwater but is likely to be immobile in both media
types. In soils, DEHP is expected to be deposited via air deposition and land application of biosolids,
and is expected to have a half-life on the order of days to weeks. In addition, evidence suggests that
DEHP is not bioaccumulative and has a low biomagnification potential in terrestrial organisms. In
groundwater, DEHP is expected to be released via wastewater effluent and landfill leachates and to have
a half-life of 14 to 56 days; therefore, it not likely to be persistent in most groundwater/subsurface
environments.

6.1 Air and Atmosphere

DEHP is a liquid at environmental temperatures with a melting point of -55 °C (Rumble, 2018b) and a
vapor pressure of 1.42x10~" mmHg at 25 °C (NLM, 2015a). Based on its physical and chemical
properties and short half-life in the atmosphere (tu2 = 5.85 hours (U.S. EPA, 2017)), DEHP was
assumed to not be persistent in the air. The AEROWIN™ module in EPI Suite™ estimates that a large
fraction of DEHP will be sorbed to airborne particles and these particulates may be resistant to
atmospheric oxidation. Studies have detected DEHP in settled house dust, indoor air samples, and
indoor particulate phase air samples in Canada and the United States (Preece et al., 2021; Kubwabo et
al., 2013).

6.1.1 Indoor Air and Dust

In general, phthalate esters are ubiquitous in the atmosphere and indoor air. Their worldwide presence in
air has been documented in the gas phase, suspended particles, and dust (Net et al., 2015). Most of the
studies reported DEHP to be the predominant phthalate ester in the environment. Limited studies have
reported the presence of particle-bound DEHP in indoor and outdoor settings (Gupta and Gadi, 2018;
Hasegawa, 2003; Helmig et al., 1990). When indoors, DEHP is expected to partition to organic carbon
present on indoor airborne particles. DEHP is expected to be more persistent in indoor air than in
ambient (outdoor) air due to the lack of natural chemical removal processes, such as solar photochemical
degradation.

The available information suggests that the concentration of DEHP in indoor dust is greater than in
outdoor dust. The concentration on dust particles is also correlated to the presence of phthalate-
containing articles in the environment, and the proximity to facilities producing phthalates. Kubwabo
(2013) monitored the presence of 17 phthalate compounds in vacuum dust samples collected in 126
urban single-family homes in Canada. This study reported that DEHP was detected in all the collected
dust samples, accounting for 88 percent of the median total concentration of phthalates in dust
(Kubwabo et al., 2013). Wang (2013) evaluated the presence of phthalates in dust samples collected
from indoor and outdoor settings in two major Chinese cities. This study reported the total phthalates
concentration of the collected indoor dust samples were 3.4 to 5.9 times higher than those collected
outdoors. The aggregate concentration of DEHP, DINP, and DIDP in indoor dust samples accounted for
91 to 94 percent of the total phthalate concentration. Additionally, Wang (2013) revealed that the
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aggregate concentration of phthalates was higher in the commercial and industrial areas with heavy
production of textiles, costumes, and toys. Abb (2009) evaluated the presence of phthalates in indoor
dust samples collected from 30 households in Germany with a 100 percent detection frequency. Dust
samples containing a high percentage of plastic (>50%) contained greater aggregate concentrations of
phthalates. The aggregate concentration of DEHP, DIDP, and DINP accounted for 87 percent of the total
phthalate concentration in dust (Abb et al., 2009).

Similarly, recent U.S. studies monitoring the presence of phthalates in dust from households have
revealed DEHP and DINP to be detected in 96 to 100 percent of the collected samples (Hammel et al.,
2019; Dodson et al., 2017). Hammel (2019) and Dodson (2017) reported the presence of phthalate esters
in indoor air and on dust samples collected in U.S. homes. Dodson (2017) evaluated the presence of
phthalate esters in air samples of U.S. homes before and after occupancy, reporting an increased
presence of DEHP after occupancy due to daily anthropogenic activities that might introduce phthalate-
containing products into indoor settings. Increasing trends could be expected for DEHP with its
increased uses in household construction materials or consumer products.

6.2 Aquatic Environments

6.2.1 Surface Water

DEHP is expected to enter surface waters via industrial and municipal wastewater treatment effluents,
surface water runoff, and, to a lesser degree, atmospheric deposition. A survey of phthalates conducted
in Washington in 2021 detected dissolved DEHP in lake and river surface waters in 10 out of 27
samples, with concentrations ranging from 0.558 to 3.38 pg/L and a median concentration of 0.948 pg/L
(WA DOE, 2022). Additionally, dissolved DEHP was detected in 2 out of 13 samples with detectable
concentrations ranging from 2.67 to 5.94 pg/L in raw drinking water samples from California surface
waters (Loraine and Pettigrov, 2006). In U.S. marine waters, monitoring studies have detected dissolved
DEHP at concentrations up to approximately 1,000 ng/L in the Puget Sound (Keil et al., 2011), 18,000
ng/L in Lake Pontchartrain in Louisiana (Liu et al., 2013), and 316 ng/L in the Mississippi River Delta
and Gulf of Mexico (Giam et al., 1978).

The principal properties governing the fate and transport of DEHP in surface water are water solubility,
organic carbon-water partitioning coefficient, and volatility. Due to its Henry’s Law constant (9.87x10°°
atm-m3/mol at 25 °C), volatilization is not expected to be a significant source of loss of DEHP from
surface water. The Tier Il partitioning analysis (see Section 5.2) estimates that 46 percent will partition
to suspended and benthic sediments when released to surface water bodies.

DEHP has a water solubility of 0.003 mg/L but is likely to form a colloidal suspension and may be
detected in surface water at higher concentrations (Elsevier, 2021). DEHP in water will partition to
suspended organic material present in the water column based on its water solubility and partitioning
coefficients to organic matter.

Biodegradation of DEHP in surface water is generally rapid and multiple studies have shown that it
passes a 10-day ready biodegradability test when using OECD guideline test methods (NCBI, 2020a;
EC/HC, 2015a; Scholz et al., 1997). Based the results of multiple OECD guideline studies showing the
ready biodegradability of DEHP and the additional data discussed in Section 0, the biodegradation half-
life of DEHP in surface water is expected to be on the order of days to weeks.

6.2.2 Sediments

Based on its water solubility (0.003 mg/L) and tendency to sorb readily to organic matter (log Koc =
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5.41-5.95), DEHP will partition to the organic matter present in sediment and suspended solids when
released into the aquatic environment. The Level I11 Fugacity Model in EPI Suite™ (U.S. EPA, 2017)
predicts that 46 percent of the DEHP present in water will partition to and remain in sediments when
assuming that DEHP is readily biodegradable (see Section 5.2). The available information suggests that
in sediments DEHP will have a half-life on the order of months to years depending on the specific
environmental conditions (see Section 0).

Concentrations of DEHP in urban Californian tidal marsh sediments were reported to range from 235 to
32,000 ng/g. DEHP was also found in sediments from the San Francisco Estuary at concentrations
ranging from 124 to 332 mg/kg (IARC, 2013). Concentrations of DEHP in sediments from the
Mississippi River Delta and Gulf of Mexico were reported as ranging from less than 0.1 to 248 ng/g,
with lower concentrations in the river delta (mean of 69 ng/g) than on the coast (mean of 6.6 ng/g) or in
the open gulf (mean of 2.0 ng/g) (Giam et al., 1978).

6.3 Terrestrial Environments

6.3.1 Soil

DEHP is expected to be deposited to soil via two primary routes: (1) application of biosolids and sewage
sludge in agricultural applications or sludge drying applications; and (2) atmospheric deposition. No TRI
data have been reported showing the application of DEHP-containing biosolids or otherwise applied to
agricultural lands.

With a Henry’s Law constant value of 9.87x107% atm-m*/mol at 25 °C, DEHP is not likely to volatilize
from soils. DEHP shows an affinity for sorption to soil and its organic constituents (log Kow = 7.60, log
Koc = 5.41-5.95). Given that these properties indicate the likelihood of strong sorption to organic
carbon present in soil, DEHP is expected to have low mobility in soil. For that reason, DEHP is unlikely
to leach from the uppermost layer of soil and reach groundwater due to its low water solubility (0.003
mg/L).

No studies reporting the concentration of DEHP in field surveys of agricultural land have been
identified. However, several experimental studies have demonstrated the ability of DEHP to degrade in
aerobic and anaerobic soils. DEHP does appear to have potential for biodegradation under aerobic
conditions, such that would exist in shallow soils. The half-life of DEHP in aerobic soils varies widely
depending on the soil characteristics and biological activity. Highly active, wet, aerated soils have
reported a half-life as short as 8 days, while dry, inactive, non-optimal soils have an environmental half-
life as long as 468 days, in-line with abiotic degradation pathways of DEHP (Zhu et al., 2019; He et al.,
2018; Zhu et al., 2018; Carrara et al., 2011; Gejlsbjerg et al., 2001; Cartwright et al., 2000; Schmitzer et
al., 1988).

Anaerobic biodegradation of DEHP is also possible with half-lives ranging based on the soil
characteristics and biological activity. The half-life of DEHP in highly organic, moist anaerobic soils
have been reported as long as 9 days, while less optimal anaerobic soils extend to 170 days (Yuan et al.
2011; Lindequist Madsen et al., 1999; Rudel et al., 1993). There is limited information available related
to the uptake and bioavailability of DEHP in land applied soils. DEHP’s solubility and sorption
coefficients suggest that bioaccumulation and biomagnification will not be of significant concern for
exposed organisms. Bioaccumulation and biomagnification are discussed further in Section 8.

Hydrolysis is not expected to be a significant source of DEHP degradation in moist soils due to its long
half-life (see Section 4.2). Direct photolysis of DEHP may be a significant pathway for abiotic
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degradation in the uppermost layer of soil which may be exposed to sunlight with a rapid half-life of less
than 6 hours (see Section 4.3). However, photolysis would not be a significant degradation pathway for
DEHP in deeper layers of soil extending beyond the penetrating power of the sunlight.

6.3.2 Biosolids

Sludge is defined as the solid, semi-solid, or liquid residue generated by wastewater treatment processes.
The term “biosolids” refers to treated sludge that meet the EPA pollutant and pathogen requirements for
land application and surface disposal and can be beneficially recycled (40 CFR part 503) (U.S. EPA
1993). DEHP is expected to sorb largely to biosolids in wastewater treatment because of its high
potential for sorption to particulate and organic media (log Kow = 7.6, log Koc = 5.41-5.95) and limited
water solubility (0.003 mg/L). Like other phthalates, DEHP is expected to partition to biosolids during
wastewater treatment and subsequently removed by physical separation processes (e.g., sedimentation,
filtration, dewatering, sludge thickening). At least one study has reported significant partitioning to
sediment and particulate phases of sludge in wastewater treatment (Painter and Jones, 1990).

No wastewater treatment plant (WWTP) surveys monitoring DEHP in wastewater sludge or final
biosolids have been identified. Several laboratory studies have demonstrated the capacity of wastewater
treatment facilities to remove DEHP from sludge via aerobic and anaerobic biodegradation with half-
lives of approximately 5 to 6 days (aerobic) and 7 days (anaerobic) (Kotowska et al., 2018; Chang et al.,
2005b; Fujita et al., 2005). DEHP has been shown to be degraded to below the limits of detection in as
short as 10 days (Fujita et al., 2005). Aerobic degradation of DEHP in sludge may be hastened with the
use of select microbial strains with an aerobic half-life as short as 2 days in an inoculated sludge
(Kotowska et al., 2018). However, there were mixed reports of DEHP removal during anaerobic
digestion has. A study showed no detectable anaerobic biodegradation of DEHP during solids treatment
but instead demonstrated significant removal via particulate sorption (Painter and Jones, 1990).

Aerobic biodegradation of DEHP in sludge is a two-step process. The first step consists of DEHP
conversion to 2-ethylhexanol and a monoester phthalate followed by an additional degradation of
monoester phthalate to phthalic acid and 2-ethylhexanol (Kotowska et al., 2018). The degradation
products of aerobic and anaerobic degradation of DEHP were not further evaluated in this assessment.

No facilities reported off-site land application of land disposal of DEHP containing biosolids between
2017 to 2022. However, several facilities reported the disposal of DEHP-containing biosolids in
landfills, discussed further in Section 6.3.3.

When applied to land as biosolids, DEHP is expected to have low mobility due to its high affinity to
organic matter and particulates, and limited water solubility. Similarly, DEHP is not expected to be
readily bioavailable when present in biosolids or soils. Once incorporated, DEHP has the potential to
degrade under aerobic conditions, such that would exist in shallow soils. As discussed in Section 6.3.1,
the half-life of DEHP in aerobic soils varies widely depending on the soil characteristics and biological
activity. Highly active, wet, aerated soils have reported a half-life as short as 8 days while dry, inactive,
non-optimal soils have an environmental half-life as long as 468 days, in-line with abiotic degradation
pathways of DEHP (Zhu et al., 2019; He et al., 2018; Zhu et al., 2018; Carrara et al., 2011; Gejlsbjerg et
al., 2001; Cartwright et al., 2000; Schmitzer et al., 1988).

Anaerobic biodegradation of DEHP is also possible with half-lives ranging based on the soil
characteristics and biological activity. The half-life of DEHP in highly organic, moist anaerobic soils
have been reported as rapid as 9 days while less optimal anaerobic soils extend to 170 days (Yuan et al.
2011; Lindequist Madsen et al., 1999; Rudel et al., 1993).There is limited information available related
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to the uptake and bioavailability of DEHP in land applied soils; DEHPs solubility and sorption
coefficients suggest that bioaccumulation and biomagnification will not be of significant concern for
exposed organisms. Bioaccumulation and biomagnification are discussed further in Section 8.

6.3.3 Landfills

For the purpose of this assessment, landfills will be considered to be divided into two zones: (1) an
“upper-landfill” zone, with normal environmental temperatures and pressures, where biotic processes
are the predominant route of degradation for DEHP; (2) and a “lower-landfill” zone where elevated
temperatures and pressures exist, and abiotic degradation is the predominant route of degradation are the
predominant route of degradation for DEHP. In the upper-landfill zone where oxygen may still be
present in the subsurface, conditions may still be favorable for aerobic biodegradation, however,
photolysis and hydrolysis are not considered to be significant sources of degradation in this zone. In the
lower-landfill zone, conditions are assumed to be anoxic, and temperatures present in this zone are likely
to inhibit anaerobic biodegradation of DEHP. Temperatures in lower landfills may be as high as 70 °C;
At temperatures at and above 60 °C, biotic processes are significantly inhibited, and are likely to be
completely irrelevant at 70 °C (Huang et al., 2013).

DEHP is deposited into landfills from consumer products containing DEHP and as biosolids containing
DEHP from wastewater treatment. According to TRI data, ten WWTPs have reported the disposal of
DEHP containing sludge from 2017 to 2022 with a total of 160 kg of DEHP disposed of in landfills
(26.6 kgl/year on average). Ten TRI facilities have reported disposal of DEHP-containing waste to
RCRA landfills at a rate of 6,705 kg from 2017 to 2022 (1,117 kg/year on average) and 403,776 pounds
of waste to other landfills over the same time frame (67,296 kg/year on average). No studies were
identified reporting the concentration or degradation of DEHP in landfills, landfill leachate, or in the
regions surrounding such landfills.

DEHP’s water solubility (0.003 mg/L) and high tendency to sorb to particulate and organic media (log
Kow = 7.60, log Koc = 5.41-5.95) suggest that DEHP is unlikely to be present in landfill leachate. In the
event that DEHP does leach from the landfill, it is likely that DEHP will sorb strongly to the
surrounding soil and any clay liners, preventing percolation to deeper groundwater. Hydrolysis will
likely not be a major degradation pathway for degradation of DEHP in leachate with an estimated
hydrolysis half-life of 5.36 years at a pH of 7 and at 25 °C (U.S. EPA, 2017). Photolysis may be a
significant abiotic degradation for the portion of waste that is directly exposed to sunlight with a half-life
less than 6 hours. Photolysis would only be relevant in the shallow, uppermost layer of waste and would
not impact degradation beyond the penetrating power of the sunlight. Photolysis would also not occur
following the application of the daily cover, which, like deeper waste, would be shielded from sunlight.

DEHP may degrade biologically via aerobic degradation in the upper landfill where aerobic conditions
dominate. While literature is limited, some studies suggest DEHP is capable of being aerobically
degraded with an aerobic half-life ranging from 8 days in oxygenated, moist, active environments to as
long as 468 days in sub-optimal aerobic conditions (Zhu et al., 2019; He et al., 2018; Zhu et al., 2018;
Carrara et al., 2011; Gejlsbjerg et al., 2001; Cartwright et al., 2000; Schmitzer et al., 1988). DEHP may
degrade at a similar rate in the anoxic lower landfill with a reported half-life of 9 days in warm, moist
environments but may be as long as 170 days in less optimal conditions (Yuan et al., 2011; Lindequist
Madsen et al., 1999; Rudel et al., 1993). However, as previously noted above, biological degradation
would be limited by high temperatures exceeding the habitable zone of bacteria (Huang et al., 2013). In
the case of high-temperature biodegradation (<60 °C), DEHP would likely be persistent with very
limited abiotic degradation and no biological degradation.
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6.3.4 Groundwater

There are several likely sources of DEHP in groundwater, including wastewater effluents and landfill
leachates, which are discussed in Sections 6.3.3 and 7.2. In environments where DEHP is found in
surface water, it may enter groundwater through surface water/groundwater interactions, especially in
aquifer-supplied bodies of water. Diffuse sources include stormwater runoff and runoff from biosolids
applied to agricultural land.

Given the strong affinity of DEHP to adsorb to organic matter present in soils and sediments (log Koc =
5.41) (Williams et al., 1995), DEHP is expected to have low mobility in soil and groundwater
environments. Furthermore, due to the insoluble nature of DEHP (0.003 mg/L), high concentrations of
DEHP in groundwater are unlikely. In instances where DEHP could reasonably be expected to be
present in groundwater environments (e.g., proximal to landfills or agricultural land with a history of
land-applied biosolids), limited persistence is expected based on rates of biodegradation of DEHP in
aerobic environments; therefore, DEHP is not likely to be persistent in groundwater/subsurface
environments unless anoxic conditions exist.

Page 30 of 55


https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5348335

874

875
876
877
878
879
880
881
882
883
884
885

886

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

904

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

PUBLIC RELEASE DRAFT
December 2024

7/ PERSISTENCE POTENTIAL OF DEHP

DEHP is not expected to be persistent in the environment, as it is expected to degrade rapidly under
most environmental conditions, with delayed biodegradation in low-oxygen media. In the atmosphere,
DEHP is unlikely to remain for long periods of time as its expected to undergo photolytic degradation
through reaction with atmospheric hydroxyl radicals, with an estimated half-life of 5.5 hours. DEHP is
predicted to hydrolyze slowly at ambient temperatures, but it is not expected to persist in aquatic media
as it undergoes rapid aerobic biodegradation (see Section 6.2.1). DEHP has the potential to remain for
longer periods of time in soil and sediments, but due to the inherent hydrophobicity (log Kow = 7.60)
and sorption potential (log Koc = 5.51) DEHP is not expected to be bioavailable for uptake. Using the
Level Il Fugacity model in EPI Suite™ (LEV3EPI™) (see Section 5), DEHP’s overall environmental
half-life was estimated to be on the order of days to weeks (U.S. EPA, 2017). Therefore, DEHP is not
expected to be persistent in the atmosphere, aquatic or terrestrial environments.

7.1 Destruction and Removal Efficiency

Destruction and Removal Efficiency (DRE) is a percentage that represents the mass of a pollutant
removed or destroyed in a thermal incinerator relative to the mass that entered the system. EPA requires
that hazardous waste incineration systems destroy and remove at least 99.99 percent of each harmful
chemical in the waste, including treated hazardous waste (46 FR 7684) (Federal Register, 1981).

Currently there is limited available information on the DRE of DEHP. However, the DEHP annual
releases from a Danish waste incineration facility were estimated to be 9 percent to air and 91 percent to
a municipal landfill (ECJRC, 2008). These results suggest that DEHP present during incineration
processes will very likely be released to landfills and the remaining small fraction released to air.
Berardi (2019) reported greater than 99 percent removal of phthalate esters during incineration of solids
from the primary and secondary settling basins of a WWTP in Italy. Based on its inherent
hydrophobicity and high sorption potential, DEHP released to landfills is expected to partition to organic
matter present in the landfills. Similarly, DEHP released to air is expected to partition mostly to soil,
with the final fraction remaining in air or partitioning to the water and sediments as described in Section
5. In addition, DEHP in sediments and soils is expected to be rapidly sorbed to organic matter in these
compartments limiting DEHP uptake into biota (Kickham et al., 2012). Lastly, DEHP released to air is
expected to react rapidly via indirect photochemical processes within hours (U.S. EPA, 2017).

7.2 Removal in Wastewater Treatment

Wastewater treatment is performed to remove contaminants from wastewater using physical, biological,
and chemical processes. Municipal wastewater treatment facilities either treat the influent from
combined sewers (sanitary sewage and stormwater runoff) or separate sanitary sewers (sewage treatment
plant). Generally, municipal wastewater treatment facilities apply primary and secondary treatments.
During the primary treatment, screens, grit chambers, and settling tanks are used to remove solids from
wastewater. Secondary treatment processes can remove up to 90 percent of the organic matter in
wastewater using biological treatment processes such as trickling filters or activated sludge. Sometimes
an additional stage of treatment such as tertiary treatment is used to further clean water for additional
protection using advanced treatment techniques (e.g., 0zonation, chlorination, disinfection).

Several high-quality studies were identified in the systematic review process related to the fate and
transport of DEHP in wastewater treatment systems. EPA selected 15 high-quality sources reporting the
removal of DEHP in wastewater treatment systems employing aerobic and anaerobic biological
treatment processes (Table 7-1). DEHP has been reported to have an estimated half-life of 23 days in
WWTPs, based on available DEHP half-lives in surface water (NCBI, 2020a). Multiple studies reported
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WWTPs to been capable of achieving 94 to 97.3 percent removal of DEHP present in municipal
wastewater (Berardi et al., 2019; Tran et al., 2014; Shao and Ma, 2009; Fauser et al., 2003; Marttinen et
al., 2003). Berardi (2019) reported DEHP to strongly be sorbed to solids, negligible biodegradation, 8
percent removal during ozonation, and 96.7 percent overall removal of DEHP in a WWTP in lItaly.
However, additional studies with similar removal efficiencies of DEHP have reported biodegradation to
partially remove DEHP from wastewater. Marttinen (2003) identified the main removal mechanism of
DEHP from wastewater to be sorption to sludge and partial removal by biodegradation processes. The
study reported an overall 97 percent removal efficiency of DEHP from wastewater and 14 percent
removal due to biodegradation. Similarly, Tran (2014) reported 94 percent removal efficiency of DEHP
by biodegradation (19.5%) and sorption to sludge (74.6%) in a WWTP in France. Shao (2009) reported
96.1 percent removal efficiency of DEHP by biological treatment processes (59%) and sorption to
sludge (41%) in a WWTP in China. Fauser (2003) reported 97.3 percent overall removal of DEHP in
WWTP based on measured influent and effluent concentrations of DEHP in Denmark. The model
results of this study reported that biodegradation accounted for 70.1 percent of the overall DEHP
removal. Salaudeen (2018) explored the occurrence of DEHP in three WWTPs in Nigeria. The study
reported 67 to 83 percent removal of DEHP in two WWTPs employing screening, grit removal,
sedimentation, activated sludge, secondary clarification, and chlorination. The same study reported 35
percent DEHP removal in a WWTP with a similar treatment train, though excluding the secondary
clarification step. The study attributes most of the removal to adsorption to settling particles and sludge,
apparent from the greater DEHP removal efficiency in the two WWTPs that employed secondary
clarification. Additionally, the authors attribute partial removal to biodegradation (Salaudeen et al.,
2018). Gao (2014) reported less than 40 percent DEHP removal in three full-scale WWTPs with
hydraulic retention times of 6 to 9.5 hours. Similar to other phthalate esters, DEHP has been reported to
be more persistent in anaerobic WWTP processes when compared to aerobic treatment processes
(Armstrong et al., 2018; Balabanic et al., 2012). EPA investigated the removal efficiencies of priority
pollutants within 50 wastewater treatment facilities in the U.S. The study reported a median DEHP
removal of 64 percent in WWTPs employing activated sludge systems (U.S. EPA, 1982). DEHP
removals of 61.7, 75, and 93 percent have been reported in WWTPs employing activated sludge systems
in Canada, Hong Kong, and Denmark, respectively (Wu et al., 2017; Osachoff et al., 2014; Roslev et al.,
2007). Roslev (2007) reported an estimated 81 percent biodegradation of DEHP in an activated sludge
treatment process with a hydraulic retention time of one day. Like in conventional WWTPs, sorption to
sludge has been reported as the main removal mechanism of DEHP removal from wastewater (68%
sorbed to sludge) (Marttinen et al., 2003), to be partially removed by biodegradation (14-70%) (Tran et
al., 2014; Fauser et al., 2003; Marttinen et al., 2003), and to be more persistent under anaerobic
conditions (21.7-46.7% removal) (Benabdallah El-Had] et al., 2006).

Overall, DEHP has a high log Kow, remains in suspended solids, and is efficiently removed from
wastewater via accumulation in sewage sludge (Tran et al., 2014). DEHP is expected to be partially
removed during aerobic solids digestion processes (Armstrong et al., 2018) and biodegradation (Roslev
et al., 2007), and ineffectively removed under anaerobic solids digestion conditions (Armstrong et al.,
2018). Air stripping is not expected to be significant wastewater removal processes. Based on the
reported median removal of DEHP in U.S. POTWs, greater than 64 percent of the DEHP present in
wastewater is expected to be accumulated in sewage sludge and released with biosolids disposal or
application, with the remaining fraction sorbed to suspended solids in the wastewater treatment effluent
and discharged with surface water (U.S. EPA, 1982).
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966 Table 7-1. Summary of DEHP’s WWTP Removal Data

Inlet total (ug/L): 35.4 + 10.6; outlet total (ug/L):
0.96 + 0.94; modelled value based on measured
concentrations in Denmark. DEHP removal =
70.1% (degradation) + 27.2% (sorption) = 97.3%

Endpoint Value Additional Information Reference
Half-life tio = 23 days Half-life: 23 days in wastewater treatment plants NCBI (2020a)
based on reported DEHP half-life in water.
96.1% removal | Average removal in STP in China. Treatment Shao and Ma
processes included: grit removal, primary clarifier, | (2009)
AJO activated sludge, and secondary clarifier.
94% removal 94% removal efficiency by degradation and Tran et al. (2014)
decantation based on GC-MS analysis in Fontenay-
les-Briis (Essonne-France) WWTP
97% removal DEHP removal in STP in Finland. Overall removal | Marttinen et al.
efficiency in primary and secondary treatment was | (2003)
97%; volatilization was negligible; 14% was
biodegraded; 68% was sorbed to sludge; 3% was
discharged with effluent; 29% was removed via
activated sludge process, and 32% removed via
anaerobic digestion (assuming volatilization and
abiotic transformation were negligible).
96.7% removal | Overall average DEHP removal efficiency in Berardi et al. (2019)
WWTP in Italy, including ozonation: 96.7%;
overall average PAE removal efficiency with
ozonation: 97.3%; average PAE removal efficiency
without ozonation: 89.3%; average % DEHP in
Removal in influent: 80%; average % DEHP in effluent: 87%
;’;’:;tt;vgzier 97.3% removal | Influent/effluent removal % (8-day mean): 97.3%. | Fauser et al. (2003)

80% removal
(aerobic),
70% removal
(anaerobic)

Pilot scale: 70% anaerobic, 80% aerobic, 95%
ultrafiltration, 100% reverse osmosis, 95%
membrane bioreactor (approx.)

Balabanic et al.

(2012)

20-39%
removal

Approximate removal of DEHP in three full scale
WWTP in China with hydraulic retention times of
6 (WWTP1), 8 (WWTP2), and 9.5 h (WWTP3).
Removal efficiency WWTP1 ca. 30%; WWTP2 ca.
20%; WWTP3 ca. 39%; less than 40% of DEHP
removed from the aqueous phase by three different
treatment processes

Gao et al. (2014)

67-83% and
35% removal

Removal efficiency: 67.99% (Adelaide), 83.94%
(Alice), and 35.98% (Seymour); Adelaide and
Alice treatment processes include: screening, grit
removal, sedimentation, activated sludge,
secondary clarifier, and chlorination. Seymour

Salaudeen et al.

(2018)
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Endpoint

Value

Additional Information

Reference

plant had similar treatment processes except for a
secondary clarifier. Majority of the removal
attributed to adsorption to settling particles and
sludge than biodegradation. Treatment plant in
Nigeria.

Aerobic sludge
digestion: 35—
77.6%

Anaerobic
sludge
digestion: NS to
80.7% increase
in concentration

DEHP was monitored in the influent, effluent and
final solids of six WWTPs in Maryland and
Washington D.C. WWTPs #1-4 use anaerobic
digestion for sludge treatment; WWTPs #5-6 use
aerobic processes. The treatment processes varied,
and results varied, with some DEHP
concentrations increasing, decreasing, or having no
significant change.

The percent change in concentration at each stage
of treatment was calculated from the previous
treatment step: WWTP #1: NS (anaerobic
digestion effluent), +130% (final solids); WWTP
#2: NS (anaerobic digestion effluent), NS (final
solids); WWTP #3: NS (thermal hydrolysis
effluent), +80.7% (anaerobic digestion), NS (final
solids); WWTP #4: +107% (anaerobic digestion
Effluent), NS (final solids); WWTP #5: —35%
(aerobic digestion Effluent), NS (final solids);
WWTP #6: —77.6% (aerobic digestion Effluent),
NS (final solids)

NS = change in concentration not significant and,
thus, not calculated. Ultra-high performance liquid
chromatograph (UHPLC) analysis

Armstrong et al.
(2018)

Removal in
activated
sludge

64% removal
secondary with
activated sludge

U.S. Median % removal: primary (P): O; activated
sludge (AS): 62; trickling filter (TF): 24; oxygen
activated sludge (OAS): 64; rotating biological
contactor (RBC): 86; aerated lagoon (AL): 23;
activated sludge and trickling filter (AS/TF):
87/72; tertiary (T): 65; 10-90% removal of DEHP
within the 50 POTWs, 54% of POTWs reported
>50% DEHP removal.

U.S. EPA (1982)

61.7% removal

Removal efficiency: 61.7%, measured initial
concentration: 40,609 ng/L, measured effluent
concentration: 15,565 ng/L; experimental lab scale
conventional activated sludge reactors in Canada.

Osachoff et al.
(2014)

93% removal

Activated sludge wastewater treatment plant in
Denmark: 93% DEHP removal from effluent, 81%
estimated overall microbial degradation of DEHP
of 81%.

Roslev et al. (2007)
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Endpoint Value Additional Information Reference
75% DEHP was monitored in the influent and effluent Wu et al. (2017)

of four sewage treatment plants in Hong Kong.
Removal efficiency: Primary sedimentation ca. —
10%; chemical enhanced primary treatment: ca.
65%; activated sludge: ca. 75%; sand filtration: ca.
—50%; chlorination disinfection: ca. —25%; UV
disinfection: ca. —15%; reverse osmosis: ca. -99%

Removal 31.7-46.7% Anaerobic sludge digestion in Spain. Removal Benabdallah EI-
(WWTP removal at 55 efficiency: 31.7-46.7% under thermophilic Hadj et al. (2006)
Anaerobic °C, 21.7-37.8% | conditions (55 °C). Removal efficiency: 21.7—
Sewage) removal at 35 37.8% under mesophilic conditions (35 °C)

°C

7.3 Removal in Drinking Water Treatment

Drinking water in the United States typically comes from surface water (i.e., lakes, rivers, reservoirs)
and groundwater. Source water is pumped to drinking water treatment plants where it undergoes a series
of water treatment steps before being distributed to homes and communities. In the United States, public
water systems often use conventional treatment processes that include coagulation, flocculation,
sedimentation, filtration, and disinfection, as required by law.

Limited information is available on the removal of DEHP in drinking water treatment plants. Based on
its water solubility and log Kow, DEHP in water it is expected to partition mainly to suspended solids
present in 45 percent of DEHP released to water partitioning to sediments (U.S. EPA, 2012a). Based on
the available information on the DEHP removal efficiency of flocculants and filtering media, DEHP is
likely to be removed during drinking water treatment by sorption to suspended organic matter. Data
sources reported 58.7 percent reduction in drinking water DEHP concentration from a conventional
drinking water treatment effluent in China using chlorine for disinfection prior to distribution (Kong et
al., 2017; Yang et al., 2014). These findings suggest that conventional drinking water treatment systems
may have the potential to partially remove DEHP present in drinking water sources via sorption to
suspended organic matter and filtering media and the use of disinfection technologies.
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8 BIOACCUMULATION POTENTIAL OF DEHP

The presence of DEHP in several marine aquatic species in North America suggest that the substance is
bioavailable in aquatic environments (Mackintosh et al., 2004). However, DEHP’s water solubility of
0.003 mg/L and log Koc of 5.41 to 5.95 suggest that DEHP has limited bioavailability, and therefore
low bioaccumulation and biomagnification potential. EPA selected 25 overall high-quality data sources
and one overall medium-quality data source reporting the aquatic bioconcentration, aquatic
bioaccumulation, aquatic trophic magnification, terrestrial biota-sediment accumulation, and terrestrial
bioconcentration of DEHP (Table 8-1). The available data sources discussed below, suggest that DEHP
has low bioaccumulation potential in aquatic and terrestrial organisms (Adeogun et al., 2015b; Adeogun
et al., 2015a; ECJRC, 2003b; Wofford et al., 1981), and no apparent biomagnification across trophic
levels in aquatic food webs (Burkhard et al., 2012; Mackintosh et al., 2004).

Several studies have investigated the aquatic bioconcentration of DEHP in several aquatic species. The
available data suggest that DEHP is expected to have a low bioaccumulation potential in aquatic species.
Adeogun (2015a) evaluated the presence of phthalate esters in two lakes in Nigeria. The study reported
DEHP fish bioconcentration (BCF) values of 0.60 to 15.18, 0.09 to 3.47, 0.66 to 9.25, 0.07 to 0.60, and
0.05 to 0.89 for tilapia, catfish, rume, snakehead, and odoe, respectively. In a similar study, Adeogun
(2015Db) explored the presence of phthalate esters in two lagoons in Nigeria, reporting DEHP BCFs
values of 0.17 to 0.94, 0.17 to 4.31, and 0.14 to 1.61 in tilapia, catfish, and shrimp, respectively. Hayton
(1990) reported DEHP BCF values of 1.6 to 51.5 in rainbow trout samples obtained from the Spokane
Hatchery in Washington. The authors reported DEHP accumulation potential to decrease with an
increase in trout size (BCF = 1.6 (441 £ 58 g trout), 8.9 (61 £ 5.7 g trout), and 51.5 (2.9 + 0.6 g trout))
that could be associated with the physiological and anatomical changes during trout development (size
increase). Barrows (1980) evaluated the bioconcentration and elimination of water pollutants in bluegill
sunfish populations from Connecticut and Nebraska. The study reported a DEHP BCF value of 114 and
a tissue half-life of 3 days. Karara (1984) developed a DEHP pharmacokinetic model for sheepshead
minnow, reporting a DEHP BCF value of 637 and a depuration half-life of 38 days at 20 °C, after a 96-
hour exposure period. In a separate study, the authors reported an apparent increase in DEHP
accumulation as the temperature increased. The BCF values were 45, 131, and 637 at 10, 16, and 23 °C,
respectively (Karara and Hayton, 1989). Wofford (1981) reported BCF values of 10.7 and 13.5 in
Sheepshead Minnow after a two-hour exposure period at initial DEHP concentrations of 100 and 500
parts per billion (ppb). The same study reported BCF values of 6.9 to 11.2 and 10.2 to 16.6 for oysters
and shrimp, respectively. Streufert (1980) reported BCF values of 292 and 408 in midge larvae after a
DEHP exposure of 2 and 7 days, respectively. The same study reported 70 percent decrease in larval
DEHP concentration after a five-day depuration period. Brown (1982) reported BCF values of 166, 140,
261, and 268 in Daphnia magna exposed to 3.2, 10, 32 and 100 pg/L of DEHP, respectively.

The available data sources suggest that DEHP is expected to have low bioaccumulation and food web
magnification potential in marine species. Lee (2019) reported DEHP bioaccumulation factors (BAF) of
63.1, 316.2, and 1,258.93 L/kg dw for bluegill, bass, and carp/skygager, respectively. The same study
reported biota-sediment accumulation factors (BSAFs) of 7.94x107* to 1.58x10-% kg/kg dw for bluegill,
bass, and carp/skygager. Hobson (1984) explored the toxicity of DEHP in shrimp during a 14-day
dietary exposure resulting in DEHP whole-body residues of 0.249 to 18.25 parts per million (ppm).
From the study, an average BAF of 0.00283 was calculated as DEHP whole-body residue per DEHP
concentration in diet. Teil (2012) reported BSAF values of 1.3 £ 0.7 (49 g perch), 1.0 £ 2.7 (153 g
roach), and 0.5 £ 0.7 (299 g chub) in fish samples collected from the Orge River in France. Adeogun
(2015a) reported BSAF values of 0.02 to 0.8 in fish samples (tilapia, catfish, rume, snakehead, and
odoe) collected from two lakes in Nigeria containing DEHP sediment concentrations of 0.95 to 1.2
mg/kg. Huang (2008) reported BSAF values of 13.8 to 40.9 (mullet), 2.4 to 28.5 (tilapia), 0.1
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(seabream), and 0.9 (chub) in fish samples collected from Taiwanese rivers containing a mean sediment
concentration of DEHP in of 4.1 mg/kg. Overall, the findings suggest low bioaccumulation potential in
aquatic environments, but higher accumulation are expected to be seen in smaller organisms and those
exposed to higher DEHP concentration in sediments. Additionally, the reported trophic magnification
factors (TMF) of 0.34 and 0.4 indicate trophic dilution of DEHP from lower to higher trophic levels
within the food-web (Burkhard et al., 2012; Mackintosh et al., 2004).

There is limited information on the bioconcentration and bioaccumulation of DEHP in terrestrial
environments. Based on DEHP’s log Koc range of 5.41 to 5.95 (Williams et al., 1995) and water
solubility (0.003 mg/L) (EC/HC, 2017), DEHP is expected to have low bioavailability in soils. This is
supported by the reported low BCF value of 0.2 in earthworms (Eisenia foetida) (ECJRC, 2003b) and
low BAF values of 0.073 to 0.244 and 0.97 to 1.1 in earthworms and moorfrog eggs (Hu et al., 2005;
Larson and Thuren, 1987). Therefore, DEHP is expected to have low bioaccumulation and
biomagnification potential in terrestrial organisms.

Sablayrolles (2013) evaluated the uptake of DEHP by tomato plants from soils amended with biosolids.
The study reported BCF values of 0.006 to 0.07, 0 to 1.67, and 0 to 0.28 in tomato plant roots, leaves,
and fruits, respectively. Cai (2008) evaluated the uptake of phthalic acid esters in radishes cultivated on
a soil system with sewage sludge application. The study reported BCF values of 0.08 and 0.40 in the
radish root and shoot, respectively. Li (2018) evaluated the uptake of phthalate esters on crops irrigated
with treated sewage effluent in China. The study reported BCF values of 1.18 to 1.63 for wheat and 1.16
to 2.21 for maize, and a DEHP soil concentration of 0.64 to 1.06 mg/kg. Ma (2012) evaluated the use of
alfalfa for the removal of phthatic esters from contaminated soils. The study reported BCF values of 65
to 100 in alfalfa crops growing in soil that had DEHP concentrations ranging from 0.15 to 0.25 mg/kg.
The available information suggests that terrestrial plants have the potential to uptake DEHP from soil,
but that DEHP is not likely to bioaccumulate (BCF <1,000) (U.S. EPA, 2012Db).

Table 8-1. Summary of DEHP’s Bioaccumulation Information

Endpoint Value Details Reference
Agquatic
Tilapia: 0.60-15.18 Fish from Asejire Lake: muscle = 0.45 Adeogun et al.
Catfish: 0.09-3.47 (C. nigrodigitatus), 0.66 (M. rume), 0.60 | (2015a)
Rume: 0.66-9.25 (T lell), gl“ =0.57 (C nlgr0d|g|tatUS),

. 1.25 (M. rume), 6.66 (T. zilli); liver =
Snakehead: 0.07-0.60 | 45 (C. nigrodigitatus), 1.05 (M. rume),
Odoe: 0.05-0.89 15.18 (T. zilli); kidney = 0.09 (C.
nigrodigitatus), 9.25 (M. rume), 1.22 (T.
Bioconcentration zilli)

factor (BCF)
Fish from Eleyele Lake: muscle = 0.05
(H. odoe), 0.60 (P. obscura), 0.48 (T.
zilli); gill = 0.32 (H. odoe), 0.07 (P.
obscura), 0.10 (T. zilli); liver = 0.48 (H.
odoe), 0.20 (P. obscura), 0.24 (T. zilli);
kidney = 0.89 (H. odoe), 0.50 (P.
obscura), 1.62 (T. zilli)
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Tilapia: 0.17-0.94
Catfish: 0.17-4.31
Shrimp: 0.14 -1.61

Tilapia (T. guineensis) BCF: muscle =
0.46 (L) and 0.41 (E); gill = 0.21 (L) and
0.52 (E); liver =0.50 (L) and 0.17 (E);
kidney =0.94 (L) and 0.17 (E)

Catfish (C. nigrodigitatus) BCF:

muscle = 0.41 (L) and 1.06 (E); gill =
0.27 (L) and 0.66 (E); liver =0.73 (L)
and 0.17 (E); kidney = 4.31 (L) and 0.32
(E); shrimp (M. vollenhovenii); BCF =
whole body = 1.61 (L) and 0.14 (E)

L = Lagos and E = Epe

Adeogun et al.
(2015b)

Midge larvae: 292—
408

Midge larvae (Chironomus plumosus)
BCF after 2 days (wet weight): 292,
BCF after 7 days (wet weight): 408

Elimination: 30% decrease after 1 day,
50% decrease after 3.4 days, 70%
decrease after 5 days

Streufert et al.

(1980)

Bluegill sunfish (L.

t12 = 3 days; following the apparent

Barrows et al.

macrochirus): 114 equilibrium or 28-day exposure period (1980)
fish were transferred to pollutant free
aquarium; sample days 1, 2, 4, and 7
Daphnia magna: 140— | BCF = 166, 140, 261, and 268 at test Brown and
268 substance concentration of 3.2, 10, 32 Thompson
and 100 pg/L, respectively (1982)
Rainbow trout (S. Use of fry or minnows to predict Hayton et al.
gairdneri): 1.6, 8.9, bioconcentration may not accurately (1990)
and 51.5 reflect accumulation in larger fish.
BCF = 1.6 (441£58 g trout), 8.9 (61+5.7
g trout), and 51.5 (2.9+0.6 g trout)
Sheepshead minnow: Model-predicted BCF of 45, 131, and Karara and
45-637 637 at 10, 16, and 23 °C, respectively, Hayton (1989)
for sheepshead minnow (Cyprinodon Karara and
variegatus) Hayton (1984)
Oyster: 6.9-11.2 American oyster: BCF=11.2 £ 3.3 (100 | Wofford et al.
Shrimp: 10.2—- 16.6 ppb) and 6.9 £ 2.2 (500 ppb); brown (1981)

Sheepshead
minnow:10.7-13.5

shrimp: BCF = 10.2 + 0.5 (100 ppb) and
16.6 + 12.9 (500 ppb); sheepshead
minnow: BCF = 10.7 (100 ppb) and 13.5
(500 ppb)
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Biodegradability index (ratio of
metabolites to unmetabolized diester,
average of exposures): 0.29 (oyster),
0.86 (shrimp), 13.67 (fish)

Bioaccumulation
factor

(BAF)

Shrimp (P. vannamei):

0.00283 (Mean)

Bioaccumulation factor calculated as
whole-body residue/analytical test
substance concentration in diet.

BAF = 0.00566, 0.00209, 0.00742,
0.000934, 0.000487, and 0.000363;
mean BAF = 0.00283

Hobson et al.

(1984)

Bluegill: 63.1
Bass: 316.2
Carp: 1259
Skygager: 1259

Bluegill: 63.1 L/kg dw; bass: 316.2 L/kg
dw; crucian carp and skygager: 1258.93
L/kg dw

Lee et al. (2019)

Biota-Sediment
accumulation factor

(BSAF)

Bluegill: 1.26E-03
Bass: 7.94E-04
Carp: 1.58E-03
Skygager: 1.58E-03

Bass: 7.94E-04 kg/kg dw; bluegill:
1.26E-03 kg/kg dw; crucian carp and
skygager: 1.58E-03 kg/kg dw

Lee et al. (2019)

Tilapia: 0.03-0.8
Catfish: 0.02-0.20
Rume: 0.06-0.53
Snakehead: 0.02-0.22
Odoe: 0.02-0.34

Fish From Asejire Lake: muscle = 0.02
(C. nigrodigitatus), 0.03 (M. rume), 0.03
(T. zilli); gill =0.03 (C. nigrodigitatus),
0.07 (M. rume), 0.38 (T. zilli); Liver =
0.20 (C. nigrodigitatus), 0.06 (M. rume),
0.88 (T. zilli); kidney = 0.05 (C.
nigrodigitatus), 0.53 (M. rume), 0.07 (T.
zilli); DEHP concentration in sediment =
1.2 mg/kg

Fish From Eleyele Lake:

Muscle = 0.02 (H. odoe), 0.22 (P.
obscura), 0.18 (T. zilli); gill =0.12 (H.
odoe), 0.02 (P. obscura), 0.04 (T. zilli);
liver =0.18 (H. odoe), 0.07 (P. obscura),
0.09 (T. zilli); kidney = 0.34 (H. odoe),
0.19 (P. obscura), 0.62 (T. zilli);
concentration of DEHP in sediment =
0.95 mg/kg

Adeogun et al.
(2015a)

Chironomus riparius
larvae: 1.46 (mean)

BSAF based on the concentration in
animal tissue dry weight
(mg/kg)/concentration in sediment dry
weight (mg/kg):

Treatment 1: 160/100 = 1.6
Treatment 2: 1,400/1,000 = 1.4
Treatment 2: 14,000/10,000 = 1.4

Brown et al.

(1996)
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Mean BSAF =146~ 1.5
Greenback mullet (L. | Greenback mullet (L. subviridis): 13.8— | Huang et al.
subviridis): 13.8-40.9 | 40.9; Tilapia (O. niloticus): 2.4-28.5; (2008)
Tilapia: 2.4-28.5 Black seabream (A. schlegeli): 0.1; Pale
Seabream: 0.1 chub (Z. platypus): 0.9; mean
Chub: 0.9 concentration of DEHP in sediment =
T 4.1 mg/kg
Fish: 0.5-1.3 Roach: 1.0 = 2.7, Chub: 0.5 + 0.7, and Teil et al. (2012)
Perch: 1.3+ 0.7
0.4 Moderate biotransformation rate with a Burkhard et al.
reported half-life of 2.8 days. TMF (2012)
determined from measured
Trophic biomonitoring data in 171 reports.
magnification Reported TMF (<1.0) indicates trophic
factor dilution, substantial biotransformation.
(TMF) 0.34 18 marine species, lower-upper 95% Mackintosh et al.

interval (0.18-0.64). Reported TMF
(food-web magnification factor < 1.0)
indicates trophic dilution, 66% loss of
DEHP moving up one trophic level.

(2004)

Terrestrial

Bioconcentration
factor (BCF)

Wheat: 1.18-1.63
Maize: 1.16-2.21

Winter wheat (Triticum aestivum L.):
1.42 and 1.55 (reclaimed water), 1.43
and 1.63 (mixed water), 1.18 and 1.30
(groundwater); DEHP Soil concentration
of 1.01-2.39 mg/kg

Summer maize (Zea mays L.): 1.16
(reclaimed water), 1.90 (mixed water),
2.21 (ground water); DEHP Soil
concentration of 0.64-1.06 mg/kg

Li et al. (2018)

Earthworm: 0.2

Earthworm (Eisenia foetida): 0.2 (dw),
0.034 (wet weight, converted from 0.15
conversion factor). Assuming a typical
dry to wet weight conversion factor of
0.15 for earthworms and of 0.88 for

soil, a BCF of 0.034 based on wet
weights can be derived.

ECJRC (2003b)
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Radish: 0.08-0.40 Radish (Raphanus sativus): 0.40 (shoot), | Cai et al. (2008

0.08 (root); Control (100% soil),

application rates of 10, 20, and 40 g/kg

soil of sewage sludge (4.4 mg/kg

DEHP), and application rate of 10 g/kg

soil sludge compost (16 mg/kg DEHP)
Pondweed: 67.4— Pondweed Plant— uptake: 0.762/d, plant | Chi and Gao
157.6 L/kg (plant release: 0.572/d, microbial degradation (2015)

concentration factor)

in water: 0.082/d, plant degradation:
0.012/d

Alfalfa; 65-100

BCF - approximation from bar graph
(treatment condition) = 100 (A), 90 (AS-
S), 100 (AS-A), 90 (AE-E), 100 (AE-A),
50 (AES-S), 65 (AES-E), 95 (AES-A)

Phytoremediation of phthalates with
alfalfa monoculture (A); alfalfa and E.
splendors intercropping (AE); alfalfa
and S. plumbizincicola intercropping
(AS); and alfalfa, E. splendors, and S.
plumbizincicola intercropping (AES);
approximated DEHP soil concentration
of 0.15-0.25 mg/kg.

Ma et al. (2012

Tomato plant:
0.006-0.07 (root)
0-1.67 (leaves)
0-0.28 (fruit)

Tomato plant (Lycopersicon esculentum
cv): BCF data - Aquiculture - pure
substances experiment BCF = root: 0.02,
leaves: 0, fruits: 0; sludge filtrate
experiment BCF = root: 0.006, leaves:
0.0007, fruits: 0.0003; soil culture -
Biosolids A experiment BCF = root:
0.002, leaves: 0.03, fruits: 0.05;
Biosolids B experiment BCF = root:
0.07, leaves: 1.67, fruits: 0.28; Biosolids
C experiment BCF = root: 0.003, leaves:
0.16, fruits: 0.04

Sablayrolles et
al. (2013

Lettuce:1.31-1.75
Strawberry:1.38-1.95
Carrot: 2.42-2.74

Lettuce leaf 1.31 + 0.41; strawberry leaf
1.38 £ 0.19; carrot leaf 2.42 + 0.46;
lettuce root 1.75 + 0.45; strawberry root
1.95 £ 0.41; carrot root 2.74 + 0.19; 28-
day exposure to DEHP nominal
concentration of 500 pg/kg dry weight.

Sun et al. (2015)

Terrestrial biota-
soil accumulation
factor

(BSAF)

Earthworms: 0.073—
0.244

Earthworms (E. fetida) BSAF = 0.244
(soil 1); 0.073 (soil 2); organic matter:
Soil 1 =1.35%, Soil 2 = 4.53%; pH: Soil
1=17.58; Soil 2=28.28

Hu et al. (2005
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Moorfrog: 0.97-1.1

Moorfrog (Rana arvalis) eggs:
0.97 (partitioning coefficient between
sediment and tadpoles), 1.1 (partitioning

coefficient based on uptake from water)

Larson and

Thuren (1987)
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9 OVERALL FATE AND TRANSPORT OF DEHP

The inherent physical and chemical properties of DEHP govern its environmental fate and transport.
Based on DEHP’s aqueous solubility, slight tendency to volatilize, and strong affinity for organic
carbon, this chemical substance will preferentially partition to sediments, soils, and suspended solids in
wastewater treatment processes. Soil, sediment, and sludge/biosolids are predicted to be the major
compartments for DEHP as indicated by its physical and chemical and fate properties, and partitioning
analysis. The designation of these major compartments is supported by monitoring studies that confirm
the presence of DEHP. Surface water is expected to be a minor compartment despite it being the main
receiving media for phthalates remaining in effluent discharged from wastewater treatment plants. In
addition, phthalates in surface water will sorb strongly to suspended and benthic sediments. In areas
where continuous releases of phthalates occur, higher levels of phthalates in surface water can be
expected, trending downward distally from the point of releases. This concentration gradient also occurs
for suspended and benthic sediments. Furthermore, biodegradation of DEHP is inhibited in anoxic
environments (i.e., sediments and landfills), and like other phthalates, it is expected to hydrolyze slowly
and be very persistent in anaerobic environments.

If DEHP is released directly to the atmosphere, it is expected to adsorb to particulate matter. DEHP is
not expected to undergo long-range transport facilitated by particulate matter due to the relatively rapid
rates of both direct and indirect photolysis. Atmospheric concentrations of DEHP may be elevated
proximal to sites of releases. However, off-gassing from landfills and volatilization from wastewater
treatment processes are expected to be negligible sources of atmospheric DEHP due to its low vapor
pressure and rapid photodegradation rates. Thus, DEHP is not expected to be a candidate chemical for
long-range transport.

In indoor environments, DEHP released to air is expected to partition to airborne particles at
concentrations three times higher than in vapor phase (ECJRC, 2003a) and is expected to have longer
lifetime than in the atmosphere. The available information suggests that DEHP’s indoor dust
concentrations are correlated with the presence of phthalate-containing articles and the proximity to the
facilities producing them (Kubwabo et al., 2013; Wang et al., 2013; Abb et al., 2009) as well as daily
anthropogenic activities that might introduce DEHP-containing products indoors (Dodson et al., 2017).

In situations where aerobic conditions persist, DEHP is expected to degrade rapidly. In environments
where anoxic conditions persist, such as sediments, landfills, and some soils, DEHP may be persistent
since it is resistant to anaerobic biodegradation. In anaerobic environments, such as deep landfill zones,
DEHP may be degraded by catalyzed hydrolysis.
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10 WEIGHT OF THE SCIENTIFIC EVIDENCE CONCLUSIONS FOR
FATE AND TRANSPORT

10.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty

for the Fate and Transport Assessment

Given the consistent results from numerous high-quality studies, there is a robust confidence that DEHP:

is expected to undergo significant direct photolysis (Section 4.3);
will partition to organic carbon and particulate matter in air (Sections 5 and 6.1);

will biodegrade in aerobic surface water, soil, and wastewater treatment processes (Sections 0,
6.2.1,6.3.2, and 7.2);

does not biodegrade in anaerobic environments (Sections 0, 6.2, and 6.3);

will be removed after undergoing wastewater treatment primarily via sorption to sludge at high
fractions, with a small fraction being present in effluent (Section 7.2);

is not bioaccumulative (Section 8);

is not expected to biodegrade under anoxic conditions and may have high persistence in
anaerobic soils and sediments (Sections 0, 6.2.2, and 6.3.2); and

may show persistence in surface water and sediment proximal to continuous points of release
(Sections 0, 6.2.2, and 6.3.2).

As a result of limited studies identified, there is a moderate confidence that DEHP:

showed no significant degradation via hydrolysis under standard environmental conditions, but
hydrolysis rate was seen to increase with increasing pH and temperature in deep-landfill
environments (Section 6.3.3); and

IS expected to be removed in conventional drinking water treatment systems by standard
treatment process, and via reduction by chlorination and chlorination byproducts in post-
treatment storage and drinking water conveyance (Section 7.3).

The findings that were found to have a robust weight of evidence supporting them had one or more high-
quality studies that were largely in agreement with each other. The findings that were said to have a
moderate weight of evidence were based on a mix of high- and medium-quality studies that were largely
in agreement, but varied in sample size and consistency of findings.
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