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Summary 208 

The U.S. Environmental Protection Agency (EPA or the Agency) gathered and evaluated physical and 209 

chemical property data and information according to the process described in the Draft Protocol for 210 

Systematic Review in TSCA Risk Evaluations (U.S. EPA, 2021a). During the evaluation of di(2-211 

ethylhexyl) phthalate (DEHP), EPA considered both measured and estimated physical and chemical 212 

property data/information summarized in Table 2-1, as applicable. Draft Risk Evaluation for Di(2-213 

ethylhexyl) phthalate (DEHP) – Systematic Review Supplemental File: Data Quality Evaluation and 214 

Data Extraction Information for Physical and Chemical Properties (U.S. EPA, 2024a). 215 

 216 

DEHP is liquid with a mild aromatic odor used as a plasticizer in the production of plastics, adhesives, 217 

rubber, and resins (NLM, 2015a). DEHP is a medium-chained branched phthalate ester with the 218 

chemical equation C24H38O4 and a molar mass of 390.56 g/mol (NLM, 2015a). It is liquid at standard 219 

environmental temperatures and conditions and is insoluble in water with a water solubility of 0.003 220 

mg/L in water (Elsevier, 2021). DEHP has a melting point of −55 °C, boiling point of 384 °C, and 221 

Henry’s Law constant of 9.87×10–6 atm·m3/mol at 25 °C (Cousins and Mackay, 2000). 222 

 223 

  224 
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1 INTRODUCTION 225 

DEHP is a member of the phthalate class of chemicals and is mainly used as a plasticizer of polyvinyl 226 

chloride (PVC) and other polymers. DEHP is typically formed via the esterification of phthalic 227 

anhydride and 2-ethylhexanol. To be able to understand and predict the behaviors and effects of DEHP 228 

in the environment, its physical and chemical properties, and environmental fate and transport 229 

parameters are examined in the remainder of the technical support document. 230 

 231 

DEHP is produced by the esterification of phthalic anhydride with 2-ethylhexanol. Typical technical 232 

grade DEHP is at least 99.0 to 99.6 percent pure (by ester content), with 0.1 percent maximum moisture 233 

content and 0.007 to 0.01 percent acidity (as acetic acid or phthalic acid) (NTP, 2021). Purity of DEHP 234 

from commercial manufacture is greater than 99 percent, with the remaining fraction comprised of 235 

isophthalic acid, terephthalic acid, and maleic acid as impurities (CPSC, 2010). The following sections 236 

discuss the selection of the physical and chemical properties of DEHP. 237 

 238 

 239 

 240 

  241 
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2 PHYSICAL AND CHEMICAL PROPERTY ASSESSMENT OF 242 

DEHP 243 

2.1 Evidence Integration for Physical and Chemical Properties 244 

Due to the relative availability of data, only studies with an overall data quality ranking of high were 245 

selected for use in determining the representative physical and chemical properties of DEHP for the 246 

purposes of the risk evaluation. Compared to other phthalate esters undergoing risk evaluations under 247 

TSCA, DEHP is a relatively data rich chemical, and studies with an overall data quality ranking of high 248 

were chosen to represent the best available data. 249 

2.2 Final Selected Physical and Chemical Property Values for DEHP 250 

 251 

Table 2-1. Final Selected Physical and Chemical Property Values for DEHP 252 

Property Selected Value Reference 
Overall Quality 

Determination 

Molecular formula C24 H38 O4     

Molecular weight 390.56 g/mol     

Physical form Liquid Rumble (2018b) High 

Melting point −55 °C Rumble (2018b) High 

Boiling point 384 °C Rumble (2018b) High 

Density 0.981 g/cm3  Rumble (2018b) High 

Vapor pressure 1.42E-07 mmHg NLM (2015a) High 

Water solubility 0.003 mg/L EC/HC (2017)  

NTP (2000b) 

Elsevier (2021) 

High 

Octanol:water partition 

coefficient (log KOW) 
7.60 NLM (2015a) High 

Octanol:air partition 

coefficient (log KOA) 
10.76 (EPI Suite™) U.S. EPA (2017) High 

Henry’s Law constant 9.87E-06 atm·m3/mol at 
25 °C 

Cousins and Mackay (2000) High 

Flash point 206 °C O'Neil (2013a) High 

Autoflammability 390 °C NIOSH (1988) High 

Viscosity 57.94 cP Mylona et al. (2013) High 

2.3 Endpoint Assessments 253 

 Autoflammability 254 

The EPA extracted and evaluated four sources containing DEHP flammability information. The selected 255 

source was determined to be of high quality with a reported DEHP flammability of 390 °C (NIOSH, 256 

1988). Due to the limited number of high-quality data available, the EPA selected an autoflammability 257 

value of 390 °C as the representative value for the available flammability information (NIOSH, 1988). 258 

An autoflammability value was not selected in the Final Scope for the Risk Evaluation of DEHP (U.S. 259 
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EPA, 2021b). 260 

 Melting Point  261 

The EPA extracted and evaluated 24 sources containing DEHP melting point information. Fifteen of the 262 

sources were identified and evaluated as overall high-quality data sources. The overall high-quality 263 

sources reported DEHP melting points ranging from –58 to –46 °C (NIOSH, 2019; U.S. EPA, 2019; 264 

DOE, 2016; NLM, 2015a; ECHA, 2012; OEHHA, 2011; NIOSH, 2007; Mitsunobu and Takahashi, 265 

2006; EFSA, 2005; Park and Sheehan, 2000; NTP, 1992). U.S. EPA selected a melting point value of –266 

55 °C (Rumble, 2018b) as a representative value of the available information obtained from the overall 267 

high-quality data sources. In addition, the selected value is consistent with the value selected in the Final 268 

Scope for the Risk Evaluation of DEHP (U.S. EPA, 2021b). 269 

 Boiling Point  270 

The EPA extracted and evaluated 29 data sources containing DEHP boiling point information. Fifteen of 271 

the sources were identified and evaluated as overall high-quality data sources. The overall high-quality 272 

sources reported DEHP boiling points ranging from 230 to 384 °C (NIOSH, 2019; U.S. EPA, 2019; 273 

Rumble, 2018a; DOE, 2016; NLM, 2015a; ECHA, 2012; OEHHA, 2011; Rossol et al., 2009; NIOSH, 274 

2007; EFSA, 2005; Park and Sheehan, 2000; NTP, 1992). EPA selected a boiling point value of 384 °C 275 

(Rumble, 2018b) as a representative value under normal environmental conditions within the available 276 

information obtained from the overall high-quality data sources, as these studies were conducted in a 277 

manner which would accurately measure boiling point under normal environmental temperatures and 278 

pressures. In addition, the selected value is consistent with the value selected in the Final Scope for the 279 

Risk Evaluation of DEHP (U.S. EPA, 2021b). 280 

 Density  281 

The EPA extracted and evaluated 21 data sources containing DEHP density information. Ten of the 282 

sources were identified and evaluated as overall high-quality data sources. The overall high-quality 283 

sources reported DEHP density values ranging from 0.97 to 0.986 g/cm3 (NCBI, 2020b; ECHA, 2016; 284 

NLM, 2015b; O'Neil, 2013b; NTP, 2003; ExxonMobil, 2001; De Lorenzi et al., 1998). EPA selected a 285 

density of 0.981 g/cm3 (Rumble, 2018b) for the density of DEHP within the available information 286 

obtained from the overall high-quality data sources. In addition, the selected value is consistent with the 287 

value selected in the Final Scope for the Risk Evaluation of DEHP (U.S. EPA, 2021b). 288 

 Vapor Pressure  289 

The EPA extracted and evaluated 28 data sources containing DEHP vapor pressure information. 290 

Eighteen of the sources were identified and evaluated as overall high-quality data sources. The overall 291 

high-quality sources reported DEHP vapor density values ranging from 1.42×10–7 to less than 0.01 292 

mmHg (Elsevier, 2021; NIOSH, 2019; U.S. EPA, 2019; Rumble, 2018a; DOE, 2016; NLM, 2015a; 293 

O'Neil, 2013a; ECHA, 2012; OEHHA, 2011; Lu, 2009; NIOSH, 2007; Mitsunobu and Takahashi, 2006; 294 

Price, 2001; NTP, 2000a; NIOSH, 1988; Howard et al., 1985). EPA selected a vapor pressure value of 295 

1.42×10–7 mmHg (NLM, 2015a) as a representative value of the available information obtained from the 296 

overall high-quality data sources under normal environmental conditions. In addition, the selected value 297 

is consistent with the value selected in the Final Scope for the Risk Evaluation of DEHP (U.S. EPA, 298 

2021b). 299 

 Vapor Density  300 

The EPA extracted and evaluated two data sources containing DEHP vapor pressure information. Two 301 

of the sources were identified and evaluated as overall high-quality data sources. The overall high-302 
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quality sources reported DEHP vapor density value of 16 in two high-quality studies (NLM, 2015a; 303 

NIOSH, 1988). U.S. EPA selected a vapor density value of 16 (NLM, 2015a) as a representative value 304 

of the available information obtained from the overall high-quality data sources. In addition, the selected 305 

value is consistent with the value selected in the Final Scope for the Risk Evaluation of DEHP (U.S. 306 

EPA, 2021b). 307 

 Water Solubility 308 

The EPA extracted and evaluated 44 data sources containing DEHP water solubility information. 309 

Twenty-one of the sources were identified and evaluated as overall high-quality data sources. The 310 

overall high-quality data sources identified water solubility values for DEHP ranging from 0.00006 311 

mg/L at 12 °C to 0.4 mg/L at 25 °C (Mitsunobu and Takahashi, 2006; Boese, 1984). The large range of 312 

values available in the literature is likely due to the tendency of phthalate esters to form colloidal 313 

suspensions in water, leading to erroneously high measurements of DEHPs aqueous solubility via 314 

methods such as slow-stir, or shake flask water solubility tests. The EPA selected a representative non-315 

colloidal water solubility of 0.003 mg/L for DEHP (Elsevier, 2021) for use in the risk assessment. This 316 

value was chosen to represent the range of non-colloidal water solubilities extracted from numerous data 317 

sources and is also the most commonly cited representative value for the non-colloidal water solubility 318 

of DEHP in all of the extracted primary and secondary data sources. This water solubility was chosen to 319 

better represent the distribution of DEHP in the environment and aqueous media. 320 

 Log Octanol/Water Partitioning Coefficient  321 

The EPA extracted and evaluated 13 data sources containing DEHP octanol-water partitioning 322 

coefficient information from 30 studies. Eight of the sources were identified and evaluated as overall 323 

high-quality data sources. The overall high-quality sources reported DEHP log KOW ranging from 6.69 324 

to 8.66 (Elsevier, 2021; U.S. EPA, 2019; EC/HC, 2017; NLM, 2015a; ECHA, 2012; NTP, 2000b; 325 

Verbruggen et al., 1999; Mueller and Klein, 1992). EPA selected a measured log KOW value of 7.60 326 

(NLM, 2015a) for use in the risk evaluation, as it was the only measured value cited in the above 327 

studies. The selected value is consistent with the value selected in the Final Scope for the Risk 328 

Evaluation of DEHP (U.S. EPA, 2021b). 329 

 Log Octanol/Air Partitioning Coefficient 330 

No data are available in the current literature pertaining to the octanol-air partitioning coefficient of 331 

DEHP. With no available data, EPA estimated a representative octanol/air partitioning coefficient of 332 

10.76 via EPI SuiteTM for use as the representative log KOA value for DEHP (U.S. EPA, 2017). 333 

 Henry’s Law Constant  334 

The Henry’s Law constant (HLC) selected in the Final Scope for the Risk Evaluation of DEHP (U.S. 335 

EPA, 2021b) was a value calculated in EPI Suite™ from the vapor pressure and water solubility of 336 

DEHP and was 2.08×10–5 atm·m3/mole at 25 °C (U.S. EPA, 2012a). One overall high-quality data 337 

source was identified during the systematic review process. This measured value was chosen to best 338 

represent the HLC over the modeled values presented in the scoping document. The EPA selected a 339 

HLC value of 9.87×10–6 atm·m3/mol at 25 °C (Cousins and Mackay, 2000) for this risk evaluation. 340 

DEHP is considered a semi-volatile organic compound (SVOC). 341 

 Flashpoint  342 

The EPA extracted and evaluated five data sources containing DEHP flashpoint information. Three of 343 

the sources were identified and evaluated as overall high-quality data sources. The overall high-quality 344 

sources reported DEHP flash points ranging from 206 to 218 °C (Elsevier, 2021; O'Neil, 2013a; NIOSH, 345 

2007; Bonnevie and Wenning, 1995; NIOSH, 1988). EPA selected a flashpoint value of 206 °C (O'Neil, 346 
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2013a) as a representative value of the available information obtained from the overall high-quality data 347 

sources under normal environmental conditions. The selected value is consistent with the value selected 348 

in the Final Scope for the Risk Evaluation of DEHP (U.S. EPA, 2021b). 349 

 Viscosity 350 

The EPA extracted and evaluated two data sources containing DEHP viscosity information. The sources 351 

identified and evaluated received an overall high-quality data ranking. The selected value for the 352 

viscosity of DEHP is 57.94 cP at 25 °C (U.S. EPA, 2021b; Mylona et al., 2013). 353 

2.4 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty 354 

for the Physical and Chemical Property Assessment 355 

Due to the water solubility of DEHP and its tendency to form colloidal suspensions in water, certain 356 

physical and chemical properties may be difficult to measure experimentally (water solubility, 357 

octanol/water partitioning coefficient, organic carbon partitioning coefficients) with traditional guideline 358 

tests. The representative physical and chemical values were selected based on professional judgement 359 

and the overall data quality ranking of the associated references. In some instances where no data were 360 

available, or there was a wide range of data that generally, but did not consistently agree with one 361 

another, models such as EPI Suite™ were used to estimate the value for the endpoint (octanol-water 362 

partitioning coefficient and organic carbon-water partitioning coefficient) and cross checked with 363 

reported data from systematic review. 364 

 365 

  366 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5926381
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10228619
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=10228619
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5611337


PUBLIC RELEASE DRAFT 

December 2024 

Page 13 of 55 

3 APPROACH AND METHODOLOGY FOR FATE AND 367 

TRANSPORT ASSESSMENT 368 

 369 

 370 

Reasonably available environmental fate and transport data—including biotic and abiotic biodegradation 371 

rates, removal during wastewater treatment, volatilization from lakes and rivers, and organic carbon-372 

water partition coefficient (log KOC)—are the parameters used for the fate and transport assessment of 373 

the current draft risk evaluation. Information on the full extracted data set is available in the 374 

supplemental file Draft Risk Evaluation for Di-ethylhexyl Phthalate (1,2-Benzenedicarboxylic acid, 1,2-375 

bis(2-ethylhexyl) ester) (DEHP) – Systematic Review of Data Quality Evaluation and Data Extraction 376 

Information for Environmental Fate and Transport (U.S. EPA, 2024b). Supportive fate estimates were 377 

based on modeling results from EPI Suite™ (U.S. EPA, 2012a), a predictive tool for physical and 378 

chemical properties and environmental fate estimation. Information regarding the model inputs is 379 

available in Section 3.1.  380 

  381 

DEHP – Environmental Fate and Transport: 

Key Points 

 

EPA evaluated the reasonably available information to characterize the environmental fate and 

transport of DEHP, the key points are summarized below. 

 

Given the consistent results from numerous high-quality studies, there is robust evidence that DEHP: 

• is expected to have environmental biodegradation half-life in aquatic aerobic environments 

on the order of days to weeks (Section 0); 

• is not expected to appreciably hydrolyze under environmental conditions (Section 4.2); 

• is expected to degrade rapidly via direct and indirect photolysis (Section 4.3); 

• is not expected to be subject to long range transport; 

• is expected to show strong affinity and sorption potential for organic carbon in sediment and 

soil (Sections 6.2.2 and 6.3.1); 

• will be removed at rates greater than 85 percent in conventional wastewater treatment 

systems (Section 7.2); 

• will show strong affinity for adsorption to particulate matter and will not likely exist in 

gaseous phase when released to air (Sections 5.1 and 6.1); and 

• is likely to be found, and accumulate, in indoor dust (Section 6.1.1). 

 

As a result of limited studies identified, there is moderate confidence that DEHP: 

• is expected to be removed in conventional drinking water treatment systems both in the 

treatment process, and via reduction by chlorination and chlorination byproducts in post 

treatment storage and drinking water conveyance (Section 7.3); and 

• is not expected to be bioaccumulative in fish in the water column or benthic organisms 

exposed to sediment with elevated concentrations of DEHP (Section 8). 
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These were updated with additional information identified through the systematic review process after 382 

publication of the Final Scope for the Risk Evaluation for Di-ethylhexyl Phthalate (1,2-383 

Benzenedicarboxylic acid, 1,2-bis(2-ethylhexyl) ester) (DEHP) CASRN: 117-81-7 (U.S. EPA, 2021b). 384 

3.1 EPI Suite™ Model Inputs and Settings  385 

The approach described by Mackay (1996) using the Level III Fugacity model in EPI Suite™ 386 

(LEV3EPI™) was used for this Tier II analysis. LEV3EPI™ is described as a steady-state, non-387 

equilibrium model that uses a chemical’s physical and chemical properties and degradation rates to 388 

predict partitioning of the chemical between environmental compartments and its persistence in a model 389 

environment (U.S. EPA, 2012a). Environmental release information is useful for fugacity modeling 390 

because the emission rates will refine the fugacity model to more accurately predict a real-time percent 391 

mass distribution for each environmental medium. Environmental degradation half-lives were taken 392 

from high- and medium-quality studies that were identified through systematic review to reduce levels 393 

of uncertainties. The results of the Level III Fugacity modeling are presented and discussed in Section 394 

5.2.  395 

 396 

The following inputs parameters were used for the Level III Fugacity model in EPI Suite™: 397 

• Melting point = –55 °C 398 

• Vapor pressure = 1.42×10–7 mmHg 399 

• Water solubility = 0.003 mg/L 400 

• Log KOW = 7.60 401 

• SMILES: O=C(OCC(CCCC)CC)c(c(ccc1)C(=O)OCC(CCCC)CC)c1 402 
  403 
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  404 

4 TRANSFORMATION PROCESSES  405 

Biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to 406 

phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form 407 

carbon dioxide (CO2) and/or methane (CH4) {Huang, 2012, 1597688}. The monoester phthalates are 408 

also expected to undergo biodegradation more rapidly than the diester form. The transformation 409 

products and degradants will not be considered in this fate and transport assessment as they are not 410 

expected to be as persistent as DEHP in environmental media. Both biotic and abiotic routes of 411 

degradation for DEHP are described in the following sections below. 412 

4.1 Biodegradation  413 

DEHP can be considered readily biodegradable under most aquatic and terrestrial environmental 414 

conditions. To determine the biodegradation potential of DEHP, EPA evaluated 38 data sources with 415 

overall quality determinations of high or medium containing biodegradation information in water, soil, 416 

and sediments under aerobic and anaerobic conditions (Table 4-1). 417 

 418 

 Biodegradation in Water 419 

 420 

The aerobic primary biodegradation of DEHP in water has reported to be greater than 90 percent over 2 421 

to 5 days in activated sludge (EC/HC, 2015a), 68.1 to 73.5 percent over 7 days in river water 422 

(Hashizume et al., 2002), 70 to 78 percent over 28 days in activated sludge (Monsanto, 1976), and 423 

greater than 99 percent over 28 days in acclimated activated sludge (SRC, 1983). Reported half-lives 424 

range from less than 5 days in activated sludge to less than 7 days in river water (Fujita et al., 2005). An 425 

additional study found no biodegredation over 20 days when using a microbial inoculum from a 426 

petrochemical waste treatment plant (Union Carbide, 1974). It was also found that biodegradation of 427 

DEHP in water using an activated sludge inoculum required gradual acclimation, with the unacclimated 428 

inoculum degrading 0 percent and the fully acclimated inoculum degrading 93 to 95 percent over 28 429 

days (Tabak et al., 1981).  430 

 431 

EPA identified seven studies that evaluated the ready biodegradability of DEHP in water using OECD 432 

guideline methods. Five of those studies reported that it passed the 10-day ready biodegradability test 433 

with losses of 55 to 86.16 percent over 28 to 29 days (NCBI, 2020a; EC/HC, 2015a; Scholz et al., 1997). 434 

Two studies using OECD guideline methods found that it did not pass the 10-day ready biodegradability 435 

test, reporting loses of 4 to 5 percent (EC/HC, 2015a) and 58.7 percent (Stasinakis et al., 2008) over 28 436 

days. Additional non-OECD guideline die-away tests found that approximately 62 percent of DEHP was 437 

biodegraded over 5 weeks using river water (Saeger and Tucker, 1976) and calculated a half-life of 0.46 438 

days using an acclimated activated sludge inoculum (SRC, 1984). A non-OECD guideline study also 439 

found that filtration of river water prior to a die-away test decreased biodegredation from 11 to 78 440 

percent to 4 to 28 percent over 32 to 34 days (Wylie et al., 1982). The authors hypothesized that the 441 

presence of suspended solids in the unfiltered samples helped to facilitate biodegradation. 442 

 443 

The ultimate biodegradation rate of DEHP in aerobic water has been reported to be 85.5 percent over 28 444 

days using an inoculum of soil, activated sludge, and raw wastewater (SRC, 1983); 34.9 to 71.2 percent 445 

over 40 days using an inoculum of activated sludge (Subba-Rao et al., 1982); 66 percent over 96 hours 446 

using an activated sludge inoculum (Thomas et al., 1986); 54 percent over 33 days using an unreported 447 

inoculum (Union Carbide, 1974); and 73.81 to 86.16 percent over 27 days using an activated sludge 448 

inoculum (Saeger and Tucker, 1976). The ultimate biodegradation half-life of DEHP has been reported 449 
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to be greater than 14 days with loses of 30 to 70 percent over 14 days when using an activated sludge 450 

inoculum at a mixed liquor suspended solids concentration of approximately 100 mg/L and 15 to 35 451 

percent over 14 days when using a river water inoculum with a suspended solids concentration of 452 

approximately 25 mg/L (Fujita et al., 2005). 453 

 454 

While biodegradation rates will depend on environmental conditions, such pre-conditioning of 455 

microorganisms to the presence of DEHP (Tabak et al., 1981; Price et al., 1974; Union Carbide, 1974), 456 

the data suggest that the half-life of DEHP in aerobic waters will be on the order of days to weeks. 457 

 458 

 Biodegradation in Sediments 459 

 460 

In aerobic sediments, rates of biodegradation of DEHP have been reported to be 5.9 to 19.79 percent 461 

over 28 days in a microcosm study using sediment from a lake in Missouri (Johnson et al., 1984). Half-462 

lives in aerobic sediments have been reported to be 347 days in a microcosm study using sediment from 463 

a marine environment in Canada (Kickham et al., 2012), 7.3 to 27.5 days in a microcosm study using 464 

sediment from a river in Taiwan (Yuan et al., 2002), and approximately 14 days in a microcosm study 465 

using sediment from a river in Japan (Yuwatini et al., 2006). Reported biodegradation rates of DEHP in 466 

anaerobic sediments showed a high amount of variability, with rates of 0 percent over 365 days (Painter 467 

and Jones, 1990), 13 percent over 30 days (Kao et al., 2005), and up to 9.86 percent in 28 days (Johnson 468 

et al., 1984). Reported half-lives in anaerobic sediments show a similar level or variability with values 469 

ranging from 22.8 days (Yuan et al., 2002) to 279.5 days (Lertsirisopon et al., 2006). Overall, the data 470 

suggest that the half-life of DEHP in both aerobic and anaerobic sediments will be on the order of 471 

months to years. 472 

 473 

 Biodegradation in Soils 474 

 475 

In aerobic soils, the half-life of DEHP has been reported to be 8.7 days in soil from an agricultural field 476 

(Yuan et al., 2011), 54 to 170 days in a silty sand soil (Rüdel et al., 1993), 20 to 31 days in silty loam 477 

soil (Rüdel et al., 1993), and 73 days in soil from an agricultural field (Lindequist Madsen et al., 1999). 478 

Additionally, there have been reported degradation rates of 98.9 percent over 49 days (Carrara et al., 479 

2011), 10 percent over 10 days (Cartwright et al., 2000), 8.5 to 21.8 percent over 60 days (Gejlsbjerg et 480 

al., 2001), 55.5 to 90.47 percent over 112 days (He et al., 2018), 8.2 percent in 7 days (Schmitzer et al., 481 

1988), 7 to 43 percent over 35 days (Zhu et al., 2018), and 31 to 38 percent over 42 days (Zhu et al., 482 

2019). Temperature was shown to be an important factor, with reported half-lives of 223, 187, and 73 483 

days in experiments conducted at 5, 10, and 20 °C, respectively (Lindequist Madsen et al., 1999). 484 

 485 

Biodegredation rates in soils amended with biosolids were similar to those reported for unamended soils, 486 

with reported rates of 84.1 percent in a freshly amended soil over 146 days (Fairbanks, 1984), 89 percent 487 

in a preconditioned soil over 146 days (Fairbanks, 1984), 5.8 to 18.0 percent over 60 days in an 488 

amended soil (Gejlsbjerg et al., 2001), 95 to 96 percent in an amended soil in a 1-year field study 489 

(Petersen et al., 2003), approximately 40 percent over 84 days in an amended soil (Roslev et al., 1998). 490 

One study reported half-lives ranging from 5.8 to 9.9 days for a soil amended with biosolids at 491 

soil:biosolids ratios ranging from 0:1 to 1:1 (Yuan et al., 2011). The half-life for the unamended soil was 492 

8.7 days and the shortest half-life was 5.8 days at a soild:biosolids ratio of 1:0.2. An additional study 493 

reported a half-life of 64 days when sampling from the top 20 cm of an amended agricultural soil (Tran 494 

et al., 2015). 495 

 496 
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Under anaerobic conditions, biodegredation rates in soils have been reported to be 34 percent over 30 497 

days (Shanker et al., 1985) and 35 to 38 percent over 42 days (Zhu et al., 2019). Temperature was again 498 

shown to be an important factor impacting biodegradation, with rates of 25, 30, and 50 percent at 5, 10, 499 

and 20 °C, respectively, over 125 days in anaerobic soils amended with biosolids (Vavilin, 2007). 500 

 501 

Overall, the data suggest that the half-life of DEHP in both aerobic and anerobic soils will be on the 502 

order of weeks to months. 503 

 504 

Table 4-1. Summary of DEHP’s Biodegradation Data 505 

Environmental 

Conditions 

Degradation 

Value 
Half-life (days) Reference 

Overall Quality 

Determination 

Aerobic primary 

biodegradation in 

water 

81.5%/24 hours, 

91%/48 hours, 

>91%/2–5 days 

N.D. EC/HC (2015a) Medium 

N.D. <5 days with 

activated sludge 

inoculum, <7 

days in river 

water with no 

inoculum  

Fujita et al. (2005) High 

68.1–73.5%/7 days N.D. Hashizume et al. (2002) Medium 

50%/24 hours 

(river die away 

method), 70–

78%/28 days 

(semi-continuous 

activate sludge 

method) 

N.D. Monsanto (1976) Medium 

N.D. 60–70 hours in 

groundwater 

impacted by 

DEHP; no 

biodegredation 

in waters not 

impacted by 

DEHP 

NCBI (2020a) Medium 

>99%/28 days N.D. SRC (1983) High 

70–78%/24 hours 

(semi-continuous 

activated sludge 

method) 

N.D. Saeger and Tucker (1976) High 

Aerobic ready 

biodegradation in 

water 

82%/29 days N.D. 

EC/HC (2015b) Medium 
63%/28 days N.D. 
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Environmental 

Conditions 

Degradation 

Value 
Half-life (days) Reference 

Overall Quality 

Determination 

60–70%/28 days N.D. 

4–5%/28 days N.D. 

69%/28 days N.D. NCBI (2020a) High 

58.7%/28 days 6.9 days Stasinakis et al. (2008) High 

81-84%/29 days N.D. Scholz et al. (1997) High 

Aerobic ultimate 

biodegradation in 

water 

85.5%/28 days N.D. SRC (1983) High 

30–70%/14 days 

with activated 

sludge inoculum, 

14–35%/days in 

river and pond 

water 

N.D. Fujita et al. (2005) High 

73.81–86.16%/27 

days based on CO2 

evolution 

N.D. Saeger and Tucker (1976) High 

Aerobic 

biodegradation in 

sediment 

5.9%/28 days, 

9.98–19.79%/28 

days (primary 

degradation) 

N.D. Johnson et al. (1984) High 

13.79%/28 days 

(ultimate) 

N.D. Johnson et al. (1984) High 

N.D. 347 days (ready) Kickham et al. (2012) High 

N.D. 7.3–27.5 days Yuan et al. (2002) High 

N.D. Approximately 

14 days 

Yuwatini et al. (2006) Medium 

Anaerobic 

biodegradation in 

sediment 

N.D. 27.5 days Chang et al. (2005a) High 

9.86%/28 days 

(ultimate) 

N.D. Johnson et al. (1984) High 

13%/30 days N.D. Kao et al. (2005) High 

N.D. 207.5–279.5 

days 

Lertsirisopon et al. (2006) High 

0%/365 days in N.D. Painter and Jones (1990) Medium 
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Environmental 

Conditions 

Degradation 

Value 
Half-life (days) Reference 

Overall Quality 

Determination 

freshwater 

sediment, 18%/365 

days in salt marsh 

sediment 

N.D. 22.8–39.1 days Yuan et al. (2002) High 

Aerobic 

biodegradation in 

soil 

 

98.8%/49 days N.D. Carrara et al. (2011) High 

10%/10 days N.D. Cartwright et al. (2000) High 

8.5–21.8%/60 days  N.D. Gejlsbjerg et al. (2001) High 

55.5–90.47%/112 

days 

N.D. He et al. (2018) High 

8.2%/7 days N.D. Schmitzer et al. (1988) Medium 

7–43%/35 days N.D. Zhu et al. (2018) High 

31–38%/42 days N.D. Zhu et al. (2019) High 

Anaerobic 

biodegradation in 

soil 

N.D. 8.7 days Yuan et al. (2011) High 

N.D. 54–170 days in a 

silty sand, 20–31 

days in a silty 

loam 

Rüdel et al. (1993) High 

N.D. 73 days Lindequist Madsen et al. 

(1999) 

High 

4.2 Hydrolysis 506 

The HYDROWIN™ module in EPI Suite™ was used to estimate the hydrolysis half-lives of DEHP. 507 

The estimated half-lives of DEHP were 195 days at pH 8 and 25 °C, and 5.36 years at pH 7 and 25 °C 508 

(U.S. EPA, 2017), indicating that hydrolysis is a possible degradation pathway of DEHP under more 509 

caustic conditions. 510 

 511 

When compared to other degradation pathways, hydrolysis is not expected to be a significant 512 

degradation pathway under standard environmental conditions. However, higher temperatures, 513 

variations from standard environmental pH, and chemical catalysts present in the deeper anoxic zones of 514 

landfills may favor the degradation of DEHP via hydrolysis (Huang et al., 2013). This is discussed 515 

further in Section 6.3.3. 516 

4.3 Photolysis 517 

DEHP contains chromophores that absorb light at greater than 290 nm wavelength (NCBI, 2020b), and 518 

will undergo direct photodegradation in air. Gaseous CO2 is the main product and 2-ethyl-1-hexene, 2-519 

ethylhexanol, and phthalic acid are the major byproducts. Modeled indirect photodegradation half-lives 520 

indicated a slightly more rapid degradation rate, calculating a half-life of 5.58 hours using an estimated 521 
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rate constant of 2.39×10−11 cm3/molecule-second at 25 °C, assuming a 12-hour day with 21.96×10–12 522 

·OH/cm3 (U.S. EPA, 2017). Both of these rates indicate that DEHP degrades rapidly when released to 523 

the atmosphere and is likely not subject to long range transport in the atmosphere. In addition, Yu 524 

(2019) concluded that DEHP was readily photodegraded via direct exposure to direct sunlight in a 525 

simulated natural water and had a median half-life of approximately 4 hours when starting with an 526 

aqueous concentration of 50 µg/mL DEHP. This study also concluded that the presence of other 527 

natural reactive species (Fe3+, NO3
-, Cl-) increased the indirect photodegradation rates of DEHP under 528 

simulated sunlight (Yu et al., 2019). 529 

  530 
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5 PARTITIONING 531 

 532 

5.1 Tier I Analysis 533 

DEHP is a member of the phthalate class of chemicals and is mainly used as a plasticizer of PVC and 534 

other polymers. To be able to understand and predict the behaviors and effects of DEHP in the 535 

environment, a Tier I analysis will determine whether an environmental compartment (e.g., air, water, 536 

etc.) will accumulate DEHP at concentrations that may lead to environmental exposure (i.e., major 537 

compartment) or are unlikely to result in risk (i.e., minor compartment). The first step in identifying the 538 

major and minor compartments for DEHP is to consider partitioning values (Table 5-1) which indicate 539 

the potential for a substance to favor one compartment over another. DEHP does not naturally occur in 540 

the environment; however, DEHP has been detected in water, soil, and sediment in environmental 541 

monitoring studies indicating its ability to exist in those media (NLM, 2015a; ECJRC, 2008). 542 

  543 

Table 5-1. Partitioning Values for DEHP 544 

Parameter Value(s) Log Value(s)a Reference 
Predominant 

Phase  

Octanol:water 

(KOW)  

3.98E07 7.60  (NLM, 2015a)  Organic Carbon  

Organic 

carbon:water 

(KOC)  

8.71E04–5.25E05  4.94–5.72  (NCBI, 2020a) Organic Carbon  

2.57E05, 3.02E05, 

8.91E05  

5.41, 5.48, 5.95  (Williams et al., 1995) 

5.62E03–1.91E04  3.75–4.28  (He et al., 2019) 

Octanol:air 

(KOA) 

5.69E10  10.755 (estimated)b KOAWIN™ (U.S. EPA, 

2017), (user input)c 

Organic Carbon  

Air:water 

(KAW)  

1.82E–03  –2.74 (estimated)  (Lu, 2009) Water  

DEHP – Partitioning Analysis: 

Key Points  
 

EPA considered all reasonably available information identified by the systematic review process 

under TSCA to characterize the chemistry and fate and transport of DEHP. The following bullets 

summarize the key points of this partitioning analysis: 

• When primarily released to water, approximately 46 to 62 percent of DEHP will partition to 

sediment, with the remaining fraction remaining in the water compartment. 

• When released to air, approximately 85 percent of DEHP will partition to soil, with the 

remaining 15 percent distributed to the air, water, and sediment compartments.  

• When primarily released to soil, DEHP will remain in soil completely.  

• When released equally to air, water, and soil, DEHP will predominantly partition to the soil 

compartment (57–60%), with the remaining fractions partitioning to water (16–21%) or 

sediment (18–26%). 
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1.58E–03  –2.80 (estimated)  (Cousins and Mackay, 

2000) 

a Measured unless otherwise noted 
b Information was estimated using EPI Suite™ (U.S. EPA, 2017) 
c EPI Suite physical property inputs: MP = –55ºC, BP = 384ºC, VP = 1.42×10–7 mm Hg, WS = 0.003 mg/L, Log 

KOW = 7.60, HLC = 9.87E-06 atm·m3/mole, SMILES: 

O=C(OCC(CCCC)CC)c(c(ccc1)C(=O)OCC(CCCC)CC)c1  

  545 

 Soil, Sediment, and Biosolids  546 

Based on the partitioning values shown in Table 5-1, DEHP will favor organic carbon over water or air. 547 

Because organic carbon is present in soil, biosolids, and sediment, they all are considered major 548 

compartments for DEHP. This is consistent with monitoring data from the Mersey Estuary in the United 549 

Kingdom, where high concentrations of DEHP were detected in sediment samples (1.220 µg/g and 550 

1.199 µg/g at Speke and Runcorn, respectively) compared to water samples (0.125–0.693 ng/L and 551 

279.78–637.96 ng/L in the dissolved and particulate phase, respectively) (Preston and Al-Omran, 1989).  552 

  553 

 Air  554 

DEHP is a liquid at environmental temperatures with a melting point of –55 °C (NLM, 2015a) and a 555 

vapor pressure of 1.42×10–7 mm Hg at 25 °C (NLM, 2015a). The octanol-air coefficient (KOA) indicates 556 

that DEHP will favor the organic carbon present in airborne particles. Based on its physical and 557 

chemical properties and short half-life in the atmosphere (t1/2 = 5.85 hours (U.S. EPA, 2017)), DEHP is 558 

assumed not to be persistent in the air. The AEROWIN™ module in EPI Suite™ estimates that a large 559 

fraction of DEHP may be sorbed to airborne particulates and these particulates may be resistant to 560 

atmospheric oxidation. DEHP has been detected in both in ambient and indoor air as well as in settled 561 

house dust (NLM, 2024; Kubwabo et al., 2013; Wang et al., 2013; ECJRC, 2008). 562 

  563 

  Water  564 

The air-water partitioning coefficient (KAW) indicates that DEHP will favor water over air. With a water 565 

solubility of 0.001 to 0.003 mg/L at 25 °C, DEHP is considered to be insoluble in water (Elsevier, 566 

2021). DEHP in water will partition to suspended organic material present in the water column based on 567 

DEHP’s low water solubility and partition coefficients indicating its strong preference for organic 568 

matter. In addition, total seawater concentrations of DEHP measured in False Creek, British Columbia 569 

ranged from 170 to 444 ng/L; the dissolved fraction concentrations ranged from 77 to 200 ng/L and the 570 

suspended sediment fraction concentration ranged from 7,350 to 136,000 ng/g dry weight (dw) 571 

(Mackintosh et al., 2006). Although DEHP has low water solubility, surface water will be considered as 572 

a major compartment for DEHP since DEHP was quantified in the ng/L range.  573 

5.2 Tier II Analysis 574 

 A Tier II analysis involves reviewing environmental release information for DEHP to determine if a 575 

specific media evaluation is needed. DEHP is used mainly as a plasticizer in polyvinyl chloride (PVC) 576 

products (ECJRC, 2008). DEHP may be released to the environment during production, distribution, 577 

processing in PVC and non-PVC polymers, use of products such as paints and sealants, disposal or 578 

recycling, wastewater treatment, and disposal of solid and liquid waste. Environmental release data for 579 

DEHP were not available from the Discharge Monitoring Reports (DMRs); however, the Toxics Release 580 

Inventory (TRI) reported the total on-site releases for 2022 to be 7.2 thousand pounds with 6.9 thousand 581 
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pounds released to air, 24 pounds released to water, and 263 pounds released to land. According to 582 

production data from the Chemical Data Reporting (CDR) 2020 reporting period, between 10,000,000 583 

and 50,000,000 pounds of DEHP were produced annually from 2016 to 2019 for use in commercial 584 

products, chemical substances or mixtures sold to consumers, or at industrial sites. Because DEHP is not 585 

chemically bound to the polymer matrix, it can migrate from the surface of polymer products (EC/HC, 586 

2015a; ECJRC, 2008). Therefore, DEHP can be released to the environment from polymer-based 587 

products during their use and disposal. Additionally, DEHP may be released to the environment from 588 

discharge of wastewater, and liquid and solid wastes. After undergoing wastewater treatment processes, 589 

the discharge of wastewater or liquid wastes results in effluent discharge to water and land application of 590 

biosolids.  591 
 592 
Tier I analysis identified air as minor compartment where DEHP is not expected to result in 593 

environmental exposure. The short lifetime of DEHP in the atmosphere reduces the potential for free 594 

DEHP to undergo long range atmospheric transport. However, DEHP sorbed to particulates may be 595 

resistant to atmospheric oxidation. In addition, DEHP bound to particulates in air and particle deposition 596 

can be a significant pathway for DEHP to be transported to other environmental compartments. Particle-597 

bound DEHP is subject to wet and dry deposition and can subsequently enter soil and surface water 598 

media. 599 
 600 
The Level III Fugacity Model in EPI Suite™ (U.S. EPA, 2017) can be used to study and predict 601 

DEHP’s behavior in and between different environmental compartments. The LEV3EPI™ module uses 602 

inputs on an organic chemical’s physical and chemical characteristics and degradation rates to predict 603 

partitioning and transport of chemicals between environmental compartments, as well as the persistence 604 

of a chemical in a model environment (Figure 5-1). Four emission rates scenarios were used as inputs 605 

into the Level III Fugacity Model: equal releases of DEHP to each compartment and 100 percent release 606 

to each compartment, separately. Each iteration of the fugacity model was run assuming ready 607 

biodegradability of DEHP. The fugacity results using half-lives consistent with ready biodegradability 608 

(5, 10, and 45 days in water, soil, and sediment, respectively) are shown in Figure 5-1. A half-life in air 609 

of 5.85 hours was used (U.S. EPA, 2017), as well as a user-entered KOC value of 262,000 (which 610 

corresponds to a log KOC value of 5.418). 611 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3688160
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=3688160
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1614673
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11181058
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=11181058


PUBLIC RELEASE DRAFT 

December 2024 

Page 24 of 55 

 612 

Figure 5-1. EPI Suite™ Level III Fugacity Modeling Graphical Result for DEHP Assuming Ready 613 

Biodegradability 614 

 615 

The model predicts that DEHP will remain exclusively in soil when released primarily to soil. When 616 

released primarily to air, the model predicted that approximately 85 percent of DEHP will partition to 617 

soil, with the final 15 percent remaining in air or partitioning to the water and sediment compartments. 618 

When primarily released to water, the model predicts that DEHP will remain in the water compartment 619 

(54%) or partition into the sediment compartment. Under an equal release scenario, DEHP is expected to 620 

predominantly partition into the soil compartment at approximately 57 to 60 percent, with the remaining 621 

fractions partitioning to water (21%) or sediment (18%). 622 
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6 MEDIA ASSESSMENTS 624 

DEHP has been reported to be present in the atmosphere, aquatic environments, and terrestrial 625 

environments. Once in the air, DEHP will primarily partition to organic matter present in airborne 626 

particles (see Section 6.1) and is expected to have a short half-life in the atmosphere. Similarly, DEHP is 627 

likely to partition to house dust and airborne particles in indoor air and is expected to have a longer half-628 

life as compared to ambient (outdoor) air. DEHP present in surface water is expected to partition readily 629 

to aquatic sediments due its organic carbon-water partitioning coefficient, as measured in several EPA 630 

standard sediment samples from large river basins in the central United States (Williams et al., 1995). 631 

DEHP is expected to have an aerobic biodegradation half-life between 14 and 28 days. In terrestrial 632 

environments, DEHP may be present in soils and groundwater but is likely to be immobile in both media 633 

types. In soils, DEHP is expected to be deposited via air deposition and land application of biosolids, 634 

and is expected to have a half-life on the order of days to weeks. In addition, evidence suggests that 635 

DEHP is not bioaccumulative and has a low biomagnification potential in terrestrial organisms. In 636 

groundwater, DEHP is expected to be released via wastewater effluent and landfill leachates and to have 637 

a half-life of 14 to 56 days; therefore, it not likely to be persistent in most groundwater/subsurface 638 

environments. 639 

6.1 Air and Atmosphere  640 

DEHP is a liquid at environmental temperatures with a melting point of –55 °C (Rumble, 2018b) and a 641 

vapor pressure of 1.42×10–7 mmHg at 25 °C (NLM, 2015a). Based on its physical and chemical 642 

properties and short half-life in the atmosphere (t1/2 = 5.85 hours (U.S. EPA, 2017)), DEHP was 643 

assumed to not be persistent in the air. The AEROWIN™ module in EPI Suite™ estimates that a large 644 

fraction of DEHP will be sorbed to airborne particles and these particulates may be resistant to 645 

atmospheric oxidation. Studies have detected DEHP in settled house dust, indoor air samples, and 646 

indoor particulate phase air samples in Canada and the United States (Preece et al., 2021; Kubwabo et 647 

al., 2013). 648 

 Indoor Air and Dust  649 

In general, phthalate esters are ubiquitous in the atmosphere and indoor air. Their worldwide presence in 650 

air has been documented in the gas phase, suspended particles, and dust (Net et al., 2015). Most of the 651 

studies reported DEHP to be the predominant phthalate ester in the environment. Limited studies have 652 

reported the presence of particle-bound DEHP in indoor and outdoor settings (Gupta and Gadi, 2018; 653 

Hasegawa, 2003; Helmig et al., 1990). When indoors, DEHP is expected to partition to organic carbon 654 

present on indoor airborne particles. DEHP is expected to be more persistent in indoor air than in 655 

ambient (outdoor) air due to the lack of natural chemical removal processes, such as solar photochemical 656 

degradation.  657 

 658 

The available information suggests that the concentration of DEHP in indoor dust is greater than in 659 

outdoor dust. The concentration on dust particles is also correlated to the presence of phthalate-660 

containing articles in the environment, and the proximity to facilities producing phthalates. Kubwabo 661 

(2013) monitored the presence of 17 phthalate compounds in vacuum dust samples collected in 126 662 

urban single-family homes in Canada. This study reported that DEHP was detected in all the collected 663 

dust samples, accounting for 88 percent of the median total concentration of phthalates in dust 664 

(Kubwabo et al., 2013). Wang (2013) evaluated the presence of phthalates in dust samples collected 665 

from indoor and outdoor settings in two major Chinese cities. This study reported the total phthalates 666 

concentration of the collected indoor dust samples were 3.4 to 5.9 times higher than those collected 667 

outdoors. The aggregate concentration of DEHP, DINP, and DIDP in indoor dust samples accounted for 668 

91 to 94 percent of the total phthalate concentration. Additionally, Wang (2013) revealed that the 669 
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aggregate concentration of phthalates was higher in the commercial and industrial areas with heavy 670 

production of textiles, costumes, and toys. Abb (2009) evaluated the presence of phthalates in indoor 671 

dust samples collected from 30 households in Germany with a 100 percent detection frequency. Dust 672 

samples containing a high percentage of plastic (>50%) contained greater aggregate concentrations of 673 

phthalates. The aggregate concentration of DEHP, DIDP, and DINP accounted for 87 percent of the total 674 

phthalate concentration in dust (Abb et al., 2009). 675 

 676 

Similarly, recent U.S. studies monitoring the presence of phthalates in dust from households have 677 

revealed DEHP and DINP to be detected in 96 to 100 percent of the collected samples (Hammel et al., 678 

2019; Dodson et al., 2017). Hammel (2019) and Dodson (2017) reported the presence of phthalate esters 679 

in indoor air and on dust samples collected in U.S. homes. Dodson (2017) evaluated the presence of 680 

phthalate esters in air samples of U.S. homes before and after occupancy, reporting an increased 681 

presence of DEHP after occupancy due to daily anthropogenic activities that might introduce phthalate-682 

containing products into indoor settings. Increasing trends could be expected for DEHP with its 683 

increased uses in household construction materials or consumer products. 684 

6.2 Aquatic Environments 685 

 Surface Water 686 

DEHP is expected to enter surface waters via industrial and municipal wastewater treatment effluents, 687 

surface water runoff, and, to a lesser degree, atmospheric deposition. A survey of phthalates conducted 688 

in Washington in 2021 detected dissolved DEHP in lake and river surface waters in 10 out of 27 689 

samples, with concentrations ranging from 0.558 to 3.38 µg/L and a median concentration of 0.948 µg/L 690 

(WA DOE, 2022). Additionally, dissolved DEHP was detected in 2 out of 13 samples with detectable 691 

concentrations ranging from 2.67 to 5.94 µg/L in raw drinking water samples from California surface 692 

waters (Loraine and Pettigrov, 2006). In U.S. marine waters, monitoring studies have detected dissolved 693 

DEHP at concentrations up to approximately 1,000 ng/L in the Puget Sound (Keil et al., 2011), 18,000 694 

ng/L in Lake Pontchartrain in Louisiana (Liu et al., 2013), and 316 ng/L in the Mississippi River Delta 695 

and Gulf of Mexico (Giam et al., 1978). 696 

 697 

The principal properties governing the fate and transport of DEHP in surface water are water solubility, 698 

organic carbon-water partitioning coefficient, and volatility. Due to its Henry’s Law constant (9.87×10–6 699 

atm·m3/mol at 25 °C), volatilization is not expected to be a significant source of loss of DEHP from 700 

surface water. The Tier II partitioning analysis (see Section 5.2) estimates that 46 percent will partition 701 

to suspended and benthic sediments when released to surface water bodies. 702 

 703 

DEHP has a water solubility of 0.003 mg/L but is likely to form a colloidal suspension and may be 704 

detected in surface water at higher concentrations (Elsevier, 2021). DEHP in water will partition to 705 

suspended organic material present in the water column based on its water solubility and partitioning 706 

coefficients to organic matter. 707 

 708 

Biodegradation of DEHP in surface water is generally rapid and multiple studies have shown that it 709 

passes a 10-day ready biodegradability test when using OECD guideline test methods (NCBI, 2020a; 710 

EC/HC, 2015a; Scholz et al., 1997). Based the results of multiple OECD guideline studies showing the 711 

ready biodegradability of DEHP and the additional data discussed in Section 0, the biodegradation half-712 

life of DEHP in surface water is expected to be on the order of days to weeks. 713 

 Sediments  714 

Based on its water solubility (0.003 mg/L) and tendency to sorb readily to organic matter (log KOC = 715 
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5.41–5.95), DEHP will partition to the organic matter present in sediment and suspended solids when 716 

released into the aquatic environment. The Level III Fugacity Model in EPI Suite™ (U.S. EPA, 2017) 717 

predicts that 46 percent of the DEHP present in water will partition to and remain in sediments when 718 

assuming that DEHP is readily biodegradable (see Section 5.2). The available information suggests that 719 

in sediments DEHP will have a half-life on the order of months to years depending on the specific 720 

environmental conditions (see Section 0). 721 

 722 

Concentrations of DEHP in urban Californian tidal marsh sediments were reported to range from 235 to 723 

32,000 ng/g. DEHP was also found in sediments from the San Francisco Estuary at concentrations 724 

ranging from 124 to 332 mg/kg (IARC, 2013). Concentrations of DEHP in sediments from the 725 

Mississippi River Delta and Gulf of Mexico were reported as ranging from less than 0.1 to 248 ng/g, 726 

with lower concentrations in the river delta (mean of 69 ng/g) than on the coast (mean of 6.6 ng/g) or in 727 

the open gulf (mean of 2.0 ng/g) (Giam et al., 1978). 728 

6.3 Terrestrial Environments 729 

 Soil  730 

DEHP is expected to be deposited to soil via two primary routes: (1) application of biosolids and sewage 731 

sludge in agricultural applications or sludge drying applications; and (2) atmospheric deposition. No TRI 732 

data have been reported showing the application of DEHP-containing biosolids or otherwise applied to 733 

agricultural lands.  734 

 735 

With a Henry’s Law constant value of 9.87×10–6 atm·m3/mol at 25 °C, DEHP is not likely to volatilize 736 

from soils. DEHP shows an affinity for sorption to soil and its organic constituents (log KOW = 7.60, log 737 

KOC = 5.41–5.95). Given that these properties indicate the likelihood of strong sorption to organic 738 

carbon present in soil, DEHP is expected to have low mobility in soil. For that reason, DEHP is unlikely 739 

to leach from the uppermost layer of soil and reach groundwater due to its low water solubility (0.003 740 

mg/L).  741 

 742 

No studies reporting the concentration of DEHP in field surveys of agricultural land have been 743 

identified. However, several experimental studies have demonstrated the ability of DEHP to degrade in 744 

aerobic and anaerobic soils. DEHP does appear to have potential for biodegradation under aerobic 745 

conditions, such that would exist in shallow soils. The half-life of DEHP in aerobic soils varies widely 746 

depending on the soil characteristics and biological activity. Highly active, wet, aerated soils have 747 

reported a half-life as short as 8 days, while dry, inactive, non-optimal soils have an environmental half-748 

life as long as 468 days, in-line with abiotic degradation pathways of DEHP (Zhu et al., 2019; He et al., 749 

2018; Zhu et al., 2018; Carrara et al., 2011; Gejlsbjerg et al., 2001; Cartwright et al., 2000; Schmitzer et 750 

al., 1988).  751 

 752 

Anaerobic biodegradation of DEHP is also possible with half-lives ranging based on the soil 753 

characteristics and biological activity. The half-life of DEHP in highly organic, moist anaerobic soils 754 

have been reported as long as 9 days, while less optimal anaerobic soils extend to 170 days (Yuan et al., 755 

2011; Lindequist Madsen et al., 1999; Rüdel et al., 1993). There is limited information available related 756 

to the uptake and bioavailability of DEHP in land applied soils. DEHP’s solubility and sorption 757 

coefficients suggest that bioaccumulation and biomagnification will not be of significant concern for 758 

exposed organisms. Bioaccumulation and biomagnification are discussed further in Section 8. 759 

 760 

Hydrolysis is not expected to be a significant source of DEHP degradation in moist soils due to its long 761 

half-life (see Section 4.2). Direct photolysis of DEHP may be a significant pathway for abiotic 762 
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degradation in the uppermost layer of soil which may be exposed to sunlight with a rapid half-life of less 763 

than 6 hours (see Section 4.3). However, photolysis would not be a significant degradation pathway for 764 

DEHP in deeper layers of soil extending beyond the penetrating power of the sunlight. 765 

 Biosolids  766 

Sludge is defined as the solid, semi-solid, or liquid residue generated by wastewater treatment processes. 767 

The term “biosolids” refers to treated sludge that meet the EPA pollutant and pathogen requirements for 768 

land application and surface disposal and can be beneficially recycled (40 CFR part 503) (U.S. EPA, 769 

1993). DEHP is expected to sorb largely to biosolids in wastewater treatment because of its high 770 

potential for sorption to particulate and organic media (log KOW = 7.6, log KOC = 5.41–5.95) and limited 771 

water solubility (0.003 mg/L). Like other phthalates, DEHP is expected to partition to biosolids during 772 

wastewater treatment and subsequently removed by physical separation processes (e.g., sedimentation, 773 

filtration, dewatering, sludge thickening). At least one study has reported significant partitioning to 774 

sediment and particulate phases of sludge in wastewater treatment (Painter and Jones, 1990).  775 

 776 

No wastewater treatment plant (WWTP) surveys monitoring DEHP in wastewater sludge or final 777 

biosolids have been identified. Several laboratory studies have demonstrated the capacity of wastewater 778 

treatment facilities to remove DEHP from sludge via aerobic and anaerobic biodegradation with half-779 

lives of approximately 5 to 6 days (aerobic) and 7 days (anaerobic) (Kotowska et al., 2018; Chang et al., 780 

2005b; Fujita et al., 2005). DEHP has been shown to be degraded to below the limits of detection in as 781 

short as 10 days (Fujita et al., 2005). Aerobic degradation of DEHP in sludge may be hastened with the 782 

use of select microbial strains with an aerobic half-life as short as 2 days in an inoculated sludge 783 

(Kotowska et al., 2018). However, there were mixed reports of DEHP removal during anaerobic 784 

digestion has. A study showed no detectable anaerobic biodegradation of DEHP during solids treatment 785 

but instead demonstrated significant removal via particulate sorption (Painter and Jones, 1990). 786 

 787 

Aerobic biodegradation of DEHP in sludge is a two-step process. The first step consists of DEHP 788 

conversion to 2-ethylhexanol and a monoester phthalate followed by an additional degradation of 789 

monoester phthalate to phthalic acid and 2-ethylhexanol (Kotowska et al., 2018). The degradation 790 

products of aerobic and anaerobic degradation of DEHP were not further evaluated in this assessment.  791 

 792 

No facilities reported off-site land application of land disposal of DEHP containing biosolids between 793 

2017 to 2022. However, several facilities reported the disposal of DEHP-containing biosolids in 794 

landfills, discussed further in Section 6.3.3.  795 

 796 

When applied to land as biosolids, DEHP is expected to have low mobility due to its high affinity to 797 

organic matter and particulates, and limited water solubility. Similarly, DEHP is not expected to be 798 

readily bioavailable when present in biosolids or soils. Once incorporated, DEHP has the potential to 799 

degrade under aerobic conditions, such that would exist in shallow soils. As discussed in Section 6.3.1, 800 

the half-life of DEHP in aerobic soils varies widely depending on the soil characteristics and biological 801 

activity. Highly active, wet, aerated soils have reported a half-life as short as 8 days while dry, inactive, 802 

non-optimal soils have an environmental half-life as long as 468 days, in-line with abiotic degradation 803 

pathways of DEHP (Zhu et al., 2019; He et al., 2018; Zhu et al., 2018; Carrara et al., 2011; Gejlsbjerg et 804 

al., 2001; Cartwright et al., 2000; Schmitzer et al., 1988). 805 

  806 

Anaerobic biodegradation of DEHP is also possible with half-lives ranging based on the soil 807 

characteristics and biological activity. The half-life of DEHP in highly organic, moist anaerobic soils 808 

have been reported as rapid as 9 days while less optimal anaerobic soils extend to 170 days (Yuan et al., 809 

2011; Lindequist Madsen et al., 1999; Rüdel et al., 1993).There is limited information available related 810 
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to the uptake and bioavailability of DEHP in land applied soils; DEHPs solubility and sorption 811 

coefficients suggest that bioaccumulation and biomagnification will not be of significant concern for 812 

exposed organisms. Bioaccumulation and biomagnification are discussed further in Section 8. 813 

 Landfills  814 

For the purpose of this assessment, landfills will be considered to be divided into two zones: (1) an 815 

“upper-landfill” zone, with normal environmental temperatures and pressures, where biotic processes 816 

are the predominant route of degradation for DEHP; (2) and a “lower-landfill” zone where elevated 817 

temperatures and pressures exist, and abiotic degradation is the predominant route of degradation are the 818 

predominant route of degradation for DEHP. In the upper-landfill zone where oxygen may still be 819 

present in the subsurface, conditions may still be favorable for aerobic biodegradation, however, 820 

photolysis and hydrolysis are not considered to be significant sources of degradation in this zone. In the 821 

lower-landfill zone, conditions are assumed to be anoxic, and temperatures present in this zone are likely 822 

to inhibit anaerobic biodegradation of DEHP. Temperatures in lower landfills may be as high as 70 °C; 823 

At temperatures at and above 60 °C, biotic processes are significantly inhibited, and are likely to be 824 

completely irrelevant at 70 °C (Huang et al., 2013). 825 

 826 

DEHP is deposited into landfills from consumer products containing DEHP and as biosolids containing 827 

DEHP from wastewater treatment. According to TRI data, ten WWTPs have reported the disposal of 828 

DEHP containing sludge from 2017 to 2022 with a total of 160 kg of DEHP disposed of in landfills 829 

(26.6 kg/year on average). Ten TRI facilities have reported disposal of DEHP-containing waste to 830 

RCRA landfills at a rate of 6,705 kg from 2017 to 2022 (1,117 kg/year on average) and 403,776 pounds 831 

of waste to other landfills over the same time frame (67,296 kg/year on average). No studies were 832 

identified reporting the concentration or degradation of DEHP in landfills, landfill leachate, or in the 833 

regions surrounding such landfills. 834 

 835 

DEHP’s water solubility (0.003 mg/L) and high tendency to sorb to particulate and organic media (log 836 

KOW = 7.60, log KOC = 5.41–5.95) suggest that DEHP is unlikely to be present in landfill leachate. In the 837 

event that DEHP does leach from the landfill, it is likely that DEHP will sorb strongly to the 838 

surrounding soil and any clay liners, preventing percolation to deeper groundwater. Hydrolysis will 839 

likely not be a major degradation pathway for degradation of DEHP in leachate with an estimated 840 

hydrolysis half-life of 5.36 years at a pH of 7 and at 25 °C (U.S. EPA, 2017). Photolysis may be a 841 

significant abiotic degradation for the portion of waste that is directly exposed to sunlight with a half-life 842 

less than 6 hours. Photolysis would only be relevant in the shallow, uppermost layer of waste and would 843 

not impact degradation beyond the penetrating power of the sunlight. Photolysis would also not occur 844 

following the application of the daily cover, which, like deeper waste, would be shielded from sunlight. 845 

 846 

DEHP may degrade biologically via aerobic degradation in the upper landfill where aerobic conditions 847 

dominate. While literature is limited, some studies suggest DEHP is capable of being aerobically 848 

degraded with an aerobic half-life ranging from 8 days in oxygenated, moist, active environments to as 849 

long as 468 days in sub-optimal aerobic conditions (Zhu et al., 2019; He et al., 2018; Zhu et al., 2018; 850 

Carrara et al., 2011; Gejlsbjerg et al., 2001; Cartwright et al., 2000; Schmitzer et al., 1988). DEHP may 851 

degrade at a similar rate in the anoxic lower landfill with a reported half-life of 9 days in warm, moist 852 

environments but may be as long as 170 days in less optimal conditions (Yuan et al., 2011; Lindequist 853 

Madsen et al., 1999; Rüdel et al., 1993). However, as previously noted above, biological degradation 854 

would be limited by high temperatures exceeding the habitable zone of bacteria (Huang et al., 2013). In 855 

the case of high-temperature biodegradation (<60 °C), DEHP would likely be persistent with very 856 

limited abiotic degradation and no biological degradation. 857 
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 Groundwater  858 

There are several likely sources of DEHP in groundwater, including wastewater effluents and landfill 859 

leachates, which are discussed in Sections 6.3.3 and 7.2. In environments where DEHP is found in 860 

surface water, it may enter groundwater through surface water/groundwater interactions, especially in 861 

aquifer-supplied bodies of water. Diffuse sources include stormwater runoff and runoff from biosolids 862 

applied to agricultural land. 863 

 864 

Given the strong affinity of DEHP to adsorb to organic matter present in soils and sediments (log KOC = 865 

5.41) (Williams et al., 1995), DEHP is expected to have low mobility in soil and groundwater 866 

environments. Furthermore, due to the insoluble nature of DEHP (0.003 mg/L), high concentrations of 867 

DEHP in groundwater are unlikely. In instances where DEHP could reasonably be expected to be 868 

present in groundwater environments (e.g., proximal to landfills or agricultural land with a history of 869 

land-applied biosolids), limited persistence is expected based on rates of biodegradation of DEHP in 870 

aerobic environments; therefore, DEHP is not likely to be persistent in groundwater/subsurface 871 

environments unless anoxic conditions exist. 872 

  873 
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7 PERSISTENCE POTENTIAL OF DEHP 874 

DEHP is not expected to be persistent in the environment, as it is expected to degrade rapidly under 875 

most environmental conditions, with delayed biodegradation in low-oxygen media. In the atmosphere, 876 

DEHP is unlikely to remain for long periods of time as its expected to undergo photolytic degradation 877 

through reaction with atmospheric hydroxyl radicals, with an estimated half-life of 5.5 hours. DEHP is 878 

predicted to hydrolyze slowly at ambient temperatures, but it is not expected to persist in aquatic media 879 

as it undergoes rapid aerobic biodegradation (see Section 6.2.1). DEHP has the potential to remain for 880 

longer periods of time in soil and sediments, but due to the inherent hydrophobicity (log KOW = 7.60) 881 

and sorption potential (log KOC = 5.51) DEHP is not expected to be bioavailable for uptake. Using the 882 

Level III Fugacity model in EPI Suite™ (LEV3EPI™) (see Section 5), DEHP’s overall environmental 883 

half-life was estimated to be on the order of days to weeks (U.S. EPA, 2017). Therefore, DEHP is not 884 

expected to be persistent in the atmosphere, aquatic or terrestrial environments. 885 

7.1 Destruction and Removal Efficiency  886 

Destruction and Removal Efficiency (DRE) is a percentage that represents the mass of a pollutant 887 

removed or destroyed in a thermal incinerator relative to the mass that entered the system. EPA requires 888 

that hazardous waste incineration systems destroy and remove at least 99.99 percent of each harmful 889 

chemical in the waste, including treated hazardous waste (46 FR 7684) (Federal Register, 1981). 890 

 891 

Currently there is limited available information on the DRE of DEHP. However, the DEHP annual 892 

releases from a Danish waste incineration facility were estimated to be 9 percent to air and 91 percent to 893 

a municipal landfill (ECJRC, 2008). These results suggest that DEHP present during incineration 894 

processes will very likely be released to landfills and the remaining small fraction released to air. 895 

Berardi (2019) reported greater than 99 percent removal of phthalate esters during incineration of solids 896 

from the primary and secondary settling basins of a WWTP in Italy. Based on its inherent 897 

hydrophobicity and high sorption potential, DEHP released to landfills is expected to partition to organic 898 

matter present in the landfills. Similarly, DEHP released to air is expected to partition mostly to soil, 899 

with the final fraction remaining in air or partitioning to the water and sediments as described in Section 900 

5. In addition, DEHP in sediments and soils is expected to be rapidly sorbed to organic matter in these 901 

compartments limiting DEHP uptake into biota (Kickham et al., 2012). Lastly, DEHP released to air is 902 

expected to react rapidly via indirect photochemical processes within hours (U.S. EPA, 2017). 903 

7.2 Removal in Wastewater Treatment  904 

Wastewater treatment is performed to remove contaminants from wastewater using physical, biological, 905 

and chemical processes. Municipal wastewater treatment facilities either treat the influent from 906 

combined sewers (sanitary sewage and stormwater runoff) or separate sanitary sewers (sewage treatment 907 

plant). Generally, municipal wastewater treatment facilities apply primary and secondary treatments. 908 

During the primary treatment, screens, grit chambers, and settling tanks are used to remove solids from 909 

wastewater. Secondary treatment processes can remove up to 90 percent of the organic matter in 910 

wastewater using biological treatment processes such as trickling filters or activated sludge. Sometimes 911 

an additional stage of treatment such as tertiary treatment is used to further clean water for additional 912 

protection using advanced treatment techniques (e.g., ozonation, chlorination, disinfection).  913 

 914 

Several high-quality studies were identified in the systematic review process related to the fate and 915 

transport of DEHP in wastewater treatment systems. EPA selected 15 high-quality sources reporting the 916 

removal of DEHP in wastewater treatment systems employing aerobic and anaerobic biological 917 

treatment processes (Table 7-1). DEHP has been reported to have an estimated half-life of 23 days in 918 

WWTPs, based on available DEHP half-lives in surface water (NCBI, 2020a). Multiple studies reported 919 
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WWTPs to been capable of achieving 94 to 97.3 percent removal of DEHP present in municipal 920 

wastewater (Berardi et al., 2019; Tran et al., 2014; Shao and Ma, 2009; Fauser et al., 2003; Marttinen et 921 

al., 2003). Berardi (2019) reported DEHP to strongly be sorbed to solids, negligible biodegradation, 8 922 

percent removal during ozonation, and 96.7 percent overall removal of DEHP in a WWTP in Italy. 923 

However, additional studies with similar removal efficiencies of DEHP have reported biodegradation to 924 

partially remove DEHP from wastewater. Marttinen (2003) identified the main removal mechanism of 925 

DEHP from wastewater to be sorption to sludge and partial removal by biodegradation processes. The 926 

study reported an overall 97 percent removal efficiency of DEHP from wastewater and 14 percent 927 

removal due to biodegradation. Similarly, Tran (2014) reported 94 percent removal efficiency of DEHP 928 

by biodegradation (19.5%) and sorption to sludge (74.6%) in a WWTP in France. Shao (2009) reported 929 

96.1 percent removal efficiency of DEHP by biological treatment processes (59%) and sorption to 930 

sludge (41%) in a WWTP in China. Fauser (2003) reported 97.3 percent overall removal of DEHP in 931 

WWTP based on measured influent and effluent concentrations of DEHP in Denmark. The model 932 

results of this study reported that biodegradation accounted for 70.1 percent of the overall DEHP 933 

removal. Salaudeen (2018) explored the occurrence of DEHP in three WWTPs in Nigeria. The study 934 

reported 67 to 83 percent removal of DEHP in two WWTPs employing screening, grit removal, 935 

sedimentation, activated sludge, secondary clarification, and chlorination. The same study reported 35 936 

percent DEHP removal in a WWTP with a similar treatment train, though excluding the secondary 937 

clarification step. The study attributes most of the removal to adsorption to settling particles and sludge, 938 

apparent from the greater DEHP removal efficiency in the two WWTPs that employed secondary 939 

clarification. Additionally, the authors attribute partial removal to biodegradation (Salaudeen et al., 940 

2018). Gao (2014) reported less than 40 percent DEHP removal in three full-scale WWTPs with 941 

hydraulic retention times of 6 to 9.5 hours. Similar to other phthalate esters, DEHP has been reported to 942 

be more persistent in anaerobic WWTP processes when compared to aerobic treatment processes 943 

(Armstrong et al., 2018; Balabanic et al., 2012). EPA investigated the removal efficiencies of priority 944 

pollutants within 50 wastewater treatment facilities in the U.S. The study reported a median DEHP 945 

removal of 64 percent in WWTPs employing activated sludge systems (U.S. EPA, 1982). DEHP 946 

removals of 61.7, 75, and 93 percent have been reported in WWTPs employing activated sludge systems 947 

in Canada, Hong Kong, and Denmark, respectively (Wu et al., 2017; Osachoff et al., 2014; Roslev et al., 948 

2007). Roslev (2007) reported an estimated 81 percent biodegradation of DEHP in an activated sludge 949 

treatment process with a hydraulic retention time of one day. Like in conventional WWTPs, sorption to 950 

sludge has been reported as the main removal mechanism of DEHP removal from wastewater (68% 951 

sorbed to sludge) (Marttinen et al., 2003), to be partially removed by biodegradation (14–70%) (Tran et 952 

al., 2014; Fauser et al., 2003; Marttinen et al., 2003), and to be more persistent under anaerobic 953 

conditions (21.7–46.7% removal) (Benabdallah El-Hadj et al., 2006). 954 

 955 

Overall, DEHP has a high log KOW, remains in suspended solids, and is efficiently removed from 956 

wastewater via accumulation in sewage sludge (Tran et al., 2014). DEHP is expected to be partially 957 

removed during aerobic solids digestion processes (Armstrong et al., 2018) and biodegradation (Roslev 958 

et al., 2007), and ineffectively removed under anaerobic solids digestion conditions (Armstrong et al., 959 

2018). Air stripping is not expected to be significant wastewater removal processes. Based on the 960 

reported median removal of DEHP in U.S. POTWs, greater than 64 percent of the DEHP present in 961 

wastewater is expected to be accumulated in sewage sludge and released with biosolids disposal or 962 

application, with the remaining fraction sorbed to suspended solids in the wastewater treatment effluent 963 

and discharged with surface water (U.S. EPA, 1982). 964 

 965 
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Table 7-1. Summary of DEHP’s WWTP Removal Data 966 

Endpoint Value Additional Information Reference 

Half-life  
t1/2

 = 23 days Half-life: 23 days in wastewater treatment plants 

based on reported DEHP half-life in water. 

NCBI (2020a) 

Removal in 

wastewater 

treatment  

96.1% removal Average removal in STP in China. Treatment 

processes included: grit removal, primary clarifier, 

A/O activated sludge, and secondary clarifier. 

Shao and Ma 

(2009) 

94% removal 94% removal efficiency by degradation and 

decantation based on GC-MS analysis in Fontenay-

les-Briis (Essonne-France) WWTP 

Tran et al. (2014) 

97% removal DEHP removal in STP in Finland. Overall removal 

efficiency in primary and secondary treatment was 

97%; volatilization was negligible; 14% was 

biodegraded; 68% was sorbed to sludge; 3% was 

discharged with effluent; 29% was removed via 

activated sludge process, and 32% removed via 

anaerobic digestion (assuming volatilization and 

abiotic transformation were negligible). 

Marttinen et al. 

(2003) 

96.7% removal Overall average DEHP removal efficiency in 

WWTP in Italy, including ozonation: 96.7%; 

overall average PAE removal efficiency with 

ozonation: 97.3%; average PAE removal efficiency 

without ozonation: 89.3%; average % DEHP in 

influent: 80%; average % DEHP in effluent: 87% 

Berardi et al. (2019) 

97.3% removal Influent/effluent removal % (8-day mean): 97.3%. 

Inlet total (µg/L): 35.4 ± 10.6; outlet total (µg/L): 

0.96 ± 0.94; modelled value based on measured 

concentrations in Denmark. DEHP removal = 

70.1% (degradation) + 27.2% (sorption) = 97.3% 

Fauser et al. (2003) 

80% removal 

(aerobic), 

70% removal 

(anaerobic) 

Pilot scale: 70% anaerobic, 80% aerobic, 95% 

ultrafiltration, 100% reverse osmosis, 95% 

membrane bioreactor (approx.) 

Balabanic et al. 

(2012) 

20–39% 

removal 

Approximate removal of DEHP in three full scale 

WWTP in China with hydraulic retention times of 

6 (WWTP1), 8 (WWTP2), and 9.5 h (WWTP3). 

Removal efficiency WWTP1 ca. 30%; WWTP2 ca. 

20%; WWTP3 ca. 39%; less than 40% of DEHP 

removed from the aqueous phase by three different 

treatment processes 

Gao et al. (2014) 

67–83% and 

35% removal 

Removal efficiency: 67.99% (Adelaide), 83.94% 

(Alice), and 35.98% (Seymour); Adelaide and 

Alice treatment processes include: screening, grit 

removal, sedimentation, activated sludge, 

secondary clarifier, and chlorination. Seymour 

Salaudeen et al. 

(2018) 
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Endpoint Value Additional Information Reference 

plant had similar treatment processes except for a 

secondary clarifier. Majority of the removal 

attributed to adsorption to settling particles and 

sludge than biodegradation. Treatment plant in 

Nigeria. 

Aerobic sludge 

digestion: 35–

77.6%  

 

Anaerobic 

sludge 

digestion: NS to 

80.7% increase 

in concentration 

DEHP was monitored in the influent, effluent and 

final solids of six WWTPs in Maryland and 

Washington D.C. WWTPs #1-4 use anaerobic 

digestion for sludge treatment; WWTPs #5-6 use 

aerobic processes. The treatment processes varied, 

and results varied, with some DEHP 

concentrations increasing, decreasing, or having no 

significant change. 

 

The percent change in concentration at each stage 

of treatment was calculated from the previous 

treatment step: WWTP #1: NS (anaerobic 

digestion effluent), +130% (final solids); WWTP 

#2: NS (anaerobic digestion effluent), NS (final 

solids); WWTP #3: NS (thermal hydrolysis 

effluent), +80.7% (anaerobic digestion), NS (final 

solids); WWTP #4: +107% (anaerobic digestion 

Effluent), NS (final solids); WWTP #5: –35% 

(aerobic digestion Effluent), NS (final solids); 

WWTP #6: –77.6% (aerobic digestion Effluent), 

NS (final solids) 

 

NS = change in concentration not significant and, 

thus, not calculated. Ultra-high performance liquid 

chromatograph (UHPLC) analysis 

Armstrong et al. 

(2018) 

Removal in 

activated 

sludge 

64% removal 

secondary with 

activated sludge 

U.S. Median % removal: primary (P): 0; activated 

sludge (AS): 62; trickling filter (TF): 24; oxygen 

activated sludge (OAS): 64; rotating biological 

contactor (RBC): 86; aerated lagoon (AL): 23; 

activated sludge and trickling filter (AS/TF): 

87/72; tertiary (T): 65; 10–90% removal of DEHP 

within the 50 POTWs, 54% of POTWs reported 

≥50% DEHP removal.  

U.S. EPA (1982) 

61.7% removal Removal efficiency: 61.7%, measured initial 

concentration: 40,609 ng/L, measured effluent 

concentration: 15,565 ng/L; experimental lab scale 

conventional activated sludge reactors in Canada. 

Osachoff et al. 

(2014) 

93% removal Activated sludge wastewater treatment plant in 

Denmark: 93% DEHP removal from effluent, 81% 

estimated overall microbial degradation of DEHP 

of 81%.  

Roslev et al. (2007) 
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Endpoint Value Additional Information Reference 

75% DEHP was monitored in the influent and effluent 

of four sewage treatment plants in Hong Kong. 

Removal efficiency: Primary sedimentation ca. –

10%; chemical enhanced primary treatment: ca. 

65%; activated sludge: ca. 75%; sand filtration: ca. 

–50%; chlorination disinfection: ca. –25%; UV 

disinfection: ca. –15%; reverse osmosis: ca. –99% 

Wu et al. (2017) 

Removal 

(WWTP 

Anaerobic 

Sewage) 

31.7–46.7% 

removal at 55 

°C, 21.7–37.8% 

removal at 35 

°C 

Anaerobic sludge digestion in Spain. Removal 

efficiency: 31.7–46.7% under thermophilic 

conditions (55 °C). Removal efficiency: 21.7–

37.8% under mesophilic conditions (35 °C) 

Benabdallah El-

Hadj et al. (2006) 

7.3 Removal in Drinking Water Treatment  967 

Drinking water in the United States typically comes from surface water (i.e., lakes, rivers, reservoirs) 968 

and groundwater. Source water is pumped to drinking water treatment plants where it undergoes a series 969 

of water treatment steps before being distributed to homes and communities. In the United States, public 970 

water systems often use conventional treatment processes that include coagulation, flocculation, 971 

sedimentation, filtration, and disinfection, as required by law. 972 

 973 

Limited information is available on the removal of DEHP in drinking water treatment plants. Based on 974 

its water solubility and log KOW, DEHP in water it is expected to partition mainly to suspended solids 975 

present in 45 percent of DEHP released to water partitioning to sediments (U.S. EPA, 2012a). Based on 976 

the available information on the DEHP removal efficiency of flocculants and filtering media, DEHP is 977 

likely to be removed during drinking water treatment by sorption to suspended organic matter. Data 978 

sources reported 58.7 percent reduction in drinking water DEHP concentration from a conventional 979 

drinking water treatment effluent in China using chlorine for disinfection prior to distribution (Kong et 980 

al., 2017; Yang et al., 2014). These findings suggest that conventional drinking water treatment systems 981 

may have the potential to partially remove DEHP present in drinking water sources via sorption to 982 

suspended organic matter and filtering media and the use of disinfection technologies.  983 

  984 
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8 BIOACCUMULATION POTENTIAL OF DEHP  985 

The presence of DEHP in several marine aquatic species in North America suggest that the substance is 986 

bioavailable in aquatic environments (Mackintosh et al., 2004). However, DEHP’s water solubility of 987 

0.003 mg/L and log KOC of 5.41 to 5.95 suggest that DEHP has limited bioavailability, and therefore 988 

low bioaccumulation and biomagnification potential. EPA selected 25 overall high-quality data sources 989 

and one overall medium-quality data source reporting the aquatic bioconcentration, aquatic 990 

bioaccumulation, aquatic trophic magnification, terrestrial biota-sediment accumulation, and terrestrial 991 

bioconcentration of DEHP (Table 8-1). The available data sources discussed below, suggest that DEHP 992 

has low bioaccumulation potential in aquatic and terrestrial organisms (Adeogun et al., 2015b; Adeogun 993 

et al., 2015a; ECJRC, 2003b; Wofford et al., 1981), and no apparent biomagnification across trophic 994 

levels in aquatic food webs (Burkhard et al., 2012; Mackintosh et al., 2004).  995 

 996 

Several studies have investigated the aquatic bioconcentration of DEHP in several aquatic species. The 997 

available data suggest that DEHP is expected to have a low bioaccumulation potential in aquatic species. 998 

Adeogun (2015a) evaluated the presence of phthalate esters in two lakes in Nigeria. The study reported 999 

DEHP fish bioconcentration (BCF) values of 0.60 to 15.18, 0.09 to 3.47, 0.66 to 9.25, 0.07 to 0.60, and 1000 

0.05 to 0.89 for tilapia, catfish, rume, snakehead, and odoe, respectively. In a similar study, Adeogun 1001 

(2015b) explored the presence of phthalate esters in two lagoons in Nigeria, reporting DEHP BCFs 1002 

values of 0.17 to 0.94, 0.17 to 4.31, and 0.14 to 1.61 in tilapia, catfish, and shrimp, respectively. Hayton 1003 

(1990) reported DEHP BCF values of 1.6 to 51.5 in rainbow trout samples obtained from the Spokane 1004 

Hatchery in Washington. The authors reported DEHP accumulation potential to decrease with an 1005 

increase in trout size (BCF = 1.6 (441 ± 58 g trout), 8.9 (61 ± 5.7 g trout), and 51.5 (2.9 ± 0.6 g trout)) 1006 

that could be associated with the physiological and anatomical changes during trout development (size 1007 

increase). Barrows (1980) evaluated the bioconcentration and elimination of water pollutants in bluegill 1008 

sunfish populations from Connecticut and Nebraska. The study reported a DEHP BCF value of 114 and 1009 

a tissue half-life of 3 days. Karara (1984) developed a DEHP pharmacokinetic model for sheepshead 1010 

minnow, reporting a DEHP BCF value of 637 and a depuration half-life of 38 days at 20 °C, after a 96-1011 

hour exposure period. In a separate study, the authors reported an apparent increase in DEHP 1012 

accumulation as the temperature increased. The BCF values were 45, 131, and 637 at 10, 16, and 23 °C, 1013 

respectively (Karara and Hayton, 1989). Wofford (1981) reported BCF values of 10.7 and 13.5 in 1014 

Sheepshead Minnow after a two-hour exposure period at initial DEHP concentrations of 100 and 500 1015 

parts per billion (ppb). The same study reported BCF values of 6.9 to 11.2 and 10.2 to 16.6 for oysters 1016 

and shrimp, respectively. Streufert (1980) reported BCF values of 292 and 408 in midge larvae after a 1017 

DEHP exposure of 2 and 7 days, respectively. The same study reported 70 percent decrease in larval 1018 

DEHP concentration after a five-day depuration period. Brown (1982) reported BCF values of 166, 140, 1019 

261, and 268 in Daphnia magna exposed to 3.2, 10, 32 and 100 µg/L of DEHP, respectively. 1020 

 1021 

The available data sources suggest that DEHP is expected to have low bioaccumulation and food web 1022 

magnification potential in marine species. Lee (2019) reported DEHP bioaccumulation factors (BAF) of 1023 

63.1, 316.2, and 1,258.93 L/kg dw for bluegill, bass, and carp/skygager, respectively. The same study 1024 

reported biota-sediment accumulation factors (BSAFs) of 7.94×10–4 to 1.58×10–3 kg/kg dw for bluegill, 1025 

bass, and carp/skygager. Hobson (1984) explored the toxicity of DEHP in shrimp during a 14-day 1026 

dietary exposure resulting in DEHP whole-body residues of 0.249 to 18.25 parts per million (ppm). 1027 

From the study, an average BAF of 0.00283 was calculated as DEHP whole-body residue per DEHP 1028 

concentration in diet. Teil (2012) reported BSAF values of 1.3 ± 0.7 (49 g perch), 1.0 ± 2.7 (153 g 1029 

roach), and 0.5 ± 0.7 (299 g chub) in fish samples collected from the Orge River in France. Adeogun 1030 

(2015a) reported BSAF values of 0.02 to 0.8 in fish samples (tilapia, catfish, rume, snakehead, and 1031 

odoe) collected from two lakes in Nigeria containing DEHP sediment concentrations of 0.95 to 1.2 1032 

mg/kg. Huang (2008) reported BSAF values of 13.8 to 40.9 (mullet), 2.4 to 28.5 (tilapia), 0.1 1033 
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(seabream), and 0.9 (chub) in fish samples collected from Taiwanese rivers containing a mean sediment 1034 

concentration of DEHP in of 4.1 mg/kg. Overall, the findings suggest low bioaccumulation potential in 1035 

aquatic environments, but higher accumulation are expected to be seen in smaller organisms and those 1036 

exposed to higher DEHP concentration in sediments. Additionally, the reported trophic magnification 1037 

factors (TMF) of 0.34 and 0.4 indicate trophic dilution of DEHP from lower to higher trophic levels 1038 

within the food-web (Burkhard et al., 2012; Mackintosh et al., 2004). 1039 

 1040 

There is limited information on the bioconcentration and bioaccumulation of DEHP in terrestrial 1041 

environments. Based on DEHP’s log KOC range of 5.41 to 5.95 (Williams et al., 1995) and water 1042 

solubility (0.003 mg/L) (EC/HC, 2017), DEHP is expected to have low bioavailability in soils. This is 1043 

supported by the reported low BCF value of 0.2 in earthworms (Eisenia foetida) (ECJRC, 2003b) and 1044 

low BAF values of 0.073 to 0.244 and 0.97 to 1.1 in earthworms and moorfrog eggs (Hu et al., 2005; 1045 

Larson and Thuren, 1987). Therefore, DEHP is expected to have low bioaccumulation and 1046 

biomagnification potential in terrestrial organisms. 1047 

 1048 

Sablayrolles (2013) evaluated the uptake of DEHP by tomato plants from soils amended with biosolids. 1049 

The study reported BCF values of 0.006 to 0.07, 0 to 1.67, and 0 to 0.28 in tomato plant roots, leaves, 1050 

and fruits, respectively. Cai (2008) evaluated the uptake of phthalic acid esters in radishes cultivated on 1051 

a soil system with sewage sludge application. The study reported BCF values of 0.08 and 0.40 in the 1052 

radish root and shoot, respectively. Li (2018) evaluated the uptake of phthalate esters on crops irrigated 1053 

with treated sewage effluent in China. The study reported BCF values of 1.18 to 1.63 for wheat and 1.16 1054 

to 2.21 for maize, and a DEHP soil concentration of 0.64 to 1.06 mg/kg. Ma (2012) evaluated the use of 1055 

alfalfa for the removal of phthatic esters from contaminated soils. The study reported BCF values of 65 1056 

to 100 in alfalfa crops growing in soil that had DEHP concentrations ranging from 0.15 to 0.25 mg/kg. 1057 

The available information suggests that terrestrial plants have the potential to uptake DEHP from soil, 1058 

but that DEHP is not likely to bioaccumulate (BCF <1,000) (U.S. EPA, 2012b). 1059 

 1060 

Table 8-1. Summary of DEHP’s Bioaccumulation Information 1061 

Endpoint Value Details Reference 

Aquatic 

Bioconcentration 

factor (BCF) 

Tilapia: 0.60–15.18 

Catfish: 0.09–3.47 

Rume: 0.66–9.25 

Snakehead: 0.07–0.60 

Odoe: 0.05–0.89 

 

 

Fish from Asejire Lake: muscle = 0.45 

(C. nigrodigitatus), 0.66 (M. rume), 0.60 

(T. zilli); gill = 0.57 (C. nigrodigitatus), 

1.25 (M. rume), 6.66 (T. zilli); liver = 

3.47 (C. nigrodigitatus), 1.05 (M. rume), 

15.18 (T. zilli); kidney = 0.09 (C. 

nigrodigitatus), 9.25 (M. rume), 1.22 (T. 

zilli) 

 

Fish from Eleyele Lake: muscle = 0.05 

(H. odoe), 0.60 (P. obscura), 0.48 (T. 

zilli); gill = 0.32 (H. odoe), 0.07 (P. 

obscura), 0.10 (T. zilli); liver = 0.48 (H. 

odoe), 0.20 (P. obscura), 0.24 (T. zilli); 

kidney = 0.89 (H. odoe), 0.50 (P. 

obscura), 1.62 (T. zilli) 

Adeogun et al. 

(2015a) 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1443804
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=789501
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5348335
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5353181
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679933
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=481534
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5508563
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2215509
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=698314
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5041214
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5522239
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2991008
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2940328
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Tilapia: 0.17–0.94 

Catfish: 0.17–4.31 

Shrimp: 0.14 –1.61 

 

Tilapia (T. guineensis) BCF: muscle = 

0.46 (L) and 0.41 (E); gill = 0.21 (L) and 

0.52 (E); liver =0.50 (L) and 0.17 (E); 

kidney = 0.94 (L) and 0.17 (E) 

 

Catfish (C. nigrodigitatus) BCF: 

muscle = 0.41 (L) and 1.06 (E); gill = 

0.27 (L) and 0.66 (E); liver = 0.73 (L) 

and 0.17 (E); kidney = 4.31 (L) and 0.32 

(E); shrimp (M. vollenhovenii); BCF = 

whole body = 1.61 (L) and 0.14 (E) 

 

L = Lagos and E = Epe 

Adeogun et al. 

(2015b) 

Midge larvae: 292–

408 

Midge larvae (Chironomus plumosus) 

BCF after 2 days (wet weight): 292, 

BCF after 7 days (wet weight): 408 

 

Elimination: 30% decrease after 1 day, 

50% decrease after 3.4 days, 70% 

decrease after 5 days 

Streufert et al. 

(1980) 

Bluegill sunfish (L. 

macrochirus): 114  

t1/2 = 3 days; following the apparent 

equilibrium or 28-day exposure period 

fish were transferred to pollutant free 

aquarium; sample days 1, 2, 4, and 7 

Barrows et al. 

(1980) 

Daphnia magna: 140–
268 

BCF = 166, 140, 261, and 268 at test 

substance concentration of 3.2, 10, 32 

and 100 µg/L, respectively 

Brown and 

Thompson 

(1982) 

Rainbow trout (S. 

gairdneri): 1.6, 8.9, 

and 51.5 

 

Use of fry or minnows to predict 

bioconcentration may not accurately 

reflect accumulation in larger fish. 

 

BCF = 1.6 (441±58 g trout), 8.9 (61±5.7 

g trout), and 51.5 (2.9±0.6 g trout) 

Hayton et al. 

(1990) 

Sheepshead minnow: 

45–637 

Model-predicted BCF of 45, 131, and 

637 at 10, 16, and 23 °C, respectively, 

for sheepshead minnow (Cyprinodon 

variegatus) 

Karara and 

Hayton (1989) 

Karara and 

Hayton (1984) 

Oyster: 6.9–11.2 

Shrimp: 10.2– 16.6 

Sheepshead 

minnow:10.7–13.5  

 

American oyster: BCF = 11.2 ± 3.3 (100 

ppb) and 6.9 ± 2.2 (500 ppb); brown 

shrimp: BCF = 10.2 ± 0.5 (100 ppb) and 

16.6 ± 12.9 (500 ppb); sheepshead 

minnow: BCF = 10.7 (100 ppb) and 13.5 

(500 ppb) 

 

Wofford et al. 

(1981) 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2915546
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=813673
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=18050
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1334281
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5611431
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1334457
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1334048
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=789995
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Biodegradability index (ratio of 

metabolites to unmetabolized diester, 

average of exposures): 0.29 (oyster), 

0.86 (shrimp), 13.67 (fish) 

Bioaccumulation 

factor  

(BAF) 

Shrimp (P. vannamei): 

0.00283 (Mean) 

 

Bioaccumulation factor calculated as 

whole-body residue/analytical test 

substance concentration in diet. 

 

BAF = 0.00566, 0.00209, 0.00742, 

0.000934, 0.000487, and 0.000363; 

mean BAF = 0.00283 

Hobson et al. 

(1984) 

Bluegill: 63.1  

Bass: 316.2  

Carp: 1259  

Skygager: 1259  

Bluegill: 63.1 L/kg dw; bass: 316.2 L/kg 

dw; crucian carp and skygager: 1258.93 

L/kg dw 

Lee et al. (2019) 

Biota-Sediment 

accumulation factor  

(BSAF) 

Bluegill: 1.26E–03 

Bass: 7.94E–04  

Carp: 1.58E–03  

Skygager: 1.58E–03 

Bass: 7.94E–04 kg/kg dw; bluegill: 

1.26E–03 kg/kg dw; crucian carp and 

skygager: 1.58E–03 kg/kg dw 

Lee et al. (2019) 

Tilapia: 0.03–0.8 

Catfish: 0.02–0.20 

Rume: 0.06–0.53 

Snakehead: 0.02–0.22 

Odoe: 0.02–0.34 

Fish From Asejire Lake: muscle = 0.02 

(C. nigrodigitatus), 0.03 (M. rume), 0.03 

(T. zilli); gill = 0.03 (C. nigrodigitatus), 

0.07 (M. rume), 0.38 (T. zilli); Liver = 

0.20 (C. nigrodigitatus), 0.06 (M. rume), 

0.88 (T. zilli); kidney = 0.05 (C. 

nigrodigitatus), 0.53 (M. rume), 0.07 (T. 

zilli); DEHP concentration in sediment = 

1.2 mg/kg 

 

Fish From Eleyele Lake:  

Muscle = 0.02 (H. odoe), 0.22 (P. 

obscura), 0.18 (T. zilli); gill = 0.12 (H. 

odoe), 0.02 (P. obscura), 0.04 (T. zilli); 

liver = 0.18 (H. odoe), 0.07 (P. obscura), 

0.09 (T. zilli); kidney = 0.34 (H. odoe), 

0.19 (P. obscura), 0.62 (T. zilli); 

concentration of DEHP in sediment = 

0.95 mg/kg 

Adeogun et al. 

(2015a) 

Chironomus riparius 

larvae: 1.46 (mean) 

 

BSAF based on the concentration in 

animal tissue dry weight 

(mg/kg)/concentration in sediment dry 

weight (mg/kg): 

Treatment 1: 160/100 = 1.6 

Treatment 2: 1,400/1,000 = 1.4 

Treatment 2: 14,000/10,000 = 1.4 

Brown et al. 

(1996) 

 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679685
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5043593
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5043593
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2940328
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1334624
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Mean BSAF = 1.46 ≈ 1.5 

Greenback mullet (L. 

subviridis): 13.8–40.9 

Tilapia: 2.4–28.5 

Seabream: 0.1  

Chub: 0.9 

Greenback mullet (L. subviridis): 13.8–

40.9; Tilapia (O. niloticus): 2.4–28.5; 

Black seabream (A. schlegeli): 0.1; Pale 

chub (Z. platypus): 0.9; mean 

concentration of DEHP in sediment = 

4.1 mg/kg 

Huang et al. 

(2008) 

Fish: 0.5–1.3  Roach: 1.0 ± 2.7, Chub: 0.5 ± 0.7, and 

Perch: 1.3 ± 0.7 

Teil et al. (2012) 

Trophic 

magnification 

factor  

(TMF) 

 

0.4 Moderate biotransformation rate with a 

reported half-life of 2.8 days. TMF 

determined from measured 

biomonitoring data in 171 reports. 

Reported TMF (<1.0) indicates trophic 

dilution, substantial biotransformation. 

Burkhard et al. 

(2012) 

0.34 18 marine species, lower-upper 95% 

interval (0.18–0.64). Reported TMF 

(food-web magnification factor < 1.0) 

indicates trophic dilution, 66% loss of 

DEHP moving up one trophic level. 

Mackintosh et al. 

(2004) 

Terrestrial 

Bioconcentration 

factor (BCF) 

Wheat: 1.18–1.63 

Maize: 1.16–2.21 

Winter wheat (Triticum aestivum L.): 

1.42 and 1.55 (reclaimed water), 1.43 

and 1.63 (mixed water), 1.18 and 1.30 

(groundwater); DEHP Soil concentration 

of 1.01–2.39 mg/kg 

 

Summer maize (Zea mays L.): 1.16 

(reclaimed water), 1.90 (mixed water), 

2.21 (ground water); DEHP Soil 

concentration of 0.64-1.06 mg/kg 

Li et al. (2018) 

Earthworm: 0.2 Earthworm (Eisenia foetida): 0.2 (dw), 

0.034 (wet weight, converted from 0.15 

conversion factor). Assuming a typical 

dry to wet weight conversion factor of 

0.15 for earthworms and of 0.88 for 

soil, a BCF of 0.034 based on wet 

weights can be derived. 

ECJRC (2003b) 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=675207
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1249662
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1443804
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=789501
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5041214
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679933
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Radish: 0.08–0.40 Radish (Raphanus sativus): 0.40 (shoot), 

0.08 (root); Control (100% soil), 

application rates of 10, 20, and 40 g/kg 

soil of sewage sludge (4.4 mg/kg 

DEHP), and application rate of 10 g/kg 

soil sludge compost (16 mg/kg DEHP) 

Cai et al. (2008) 

Pondweed: 67.4–

157.6 L/kg (plant 

concentration factor) 

Pondweed Plant– uptake: 0.762/d, plant 

release: 0.572/d, microbial degradation 

in water: 0.082/d, plant degradation: 

0.012/d 

Chi and Gao 

(2015) 

Alfalfa: 65–100 BCF - approximation from bar graph 

(treatment condition) = 100 (A), 90 (AS-

S), 100 (AS-A), 90 (AE-E), 100 (AE-A), 

50 (AES-S), 65 (AES-E), 95 (AES-A) 

 

Phytoremediation of phthalates with 

alfalfa monoculture (A); alfalfa and E. 

splendors intercropping (AE); alfalfa 

and S. plumbizincicola intercropping 

(AS); and alfalfa, E. splendors, and S. 

plumbizincicola intercropping (AES); 

approximated DEHP soil concentration 

of 0.15–0.25 mg/kg. 

Ma et al. (2012) 

Tomato plant: 

0.006–0.07 (root) 

0–1.67 (leaves) 

0–0.28 (fruit) 

Tomato plant (Lycopersicon esculentum 

cv): BCF data - Aquiculture - pure 

substances experiment BCF = root: 0.02, 

leaves: 0, fruits: 0; sludge filtrate 

experiment BCF = root: 0.006, leaves: 

0.0007, fruits: 0.0003; soil culture - 

Biosolids A experiment BCF = root: 

0.002, leaves: 0.03, fruits: 0.05; 

Biosolids B experiment BCF = root: 

0.07, leaves: 1.67, fruits: 0.28; Biosolids 

C experiment BCF = root: 0.003, leaves: 

0.16, fruits: 0.04 

Sablayrolles et 

al. (2013) 

Lettuce:1.31–1.75  

Strawberry:1.38–1.95  

Carrot: 2.42–2.74  

Lettuce leaf 1.31 ± 0.41; strawberry leaf 

1.38 ± 0.19; carrot leaf 2.42 ± 0.46; 

lettuce root 1.75 ± 0.45; strawberry root 

1.95 ± 0.41; carrot root 2.74 ± 0.19; 28-

day exposure to DEHP nominal 

concentration of 500 µg/kg dry weight.  

Sun et al. (2015) 

Terrestrial biota-

soil accumulation 

factor  

(BSAF) 

Earthworms: 0.073–

0.244 

Earthworms (E. fetida) BSAF = 0.244 

(soil 1); 0.073 (soil 2); organic matter: 

Soil 1 = 1.35%, Soil 2 = 4.53%; pH: Soil 

1 = 7.58; Soil 2 = 8.28 

Hu et al. (2005) 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=698314
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2510797
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5522239
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2215509
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5555815
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=481534
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Moorfrog: 0.97–1.1 Moorfrog (Rana arvalis) eggs:  

0.97 (partitioning coefficient between 

sediment and tadpoles), 1.1 (partitioning 

coefficient based on uptake from water) 

Larson and 

Thuren (1987) 

 1062 

  1063 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5508563
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9 OVERALL FATE AND TRANSPORT OF DEHP 1064 

The inherent physical and chemical properties of DEHP govern its environmental fate and transport. 1065 

Based on DEHP’s aqueous solubility, slight tendency to volatilize, and strong affinity for organic 1066 

carbon, this chemical substance will preferentially partition to sediments, soils, and suspended solids in 1067 

wastewater treatment processes. Soil, sediment, and sludge/biosolids are predicted to be the major 1068 

compartments for DEHP as indicated by its physical and chemical and fate properties, and partitioning 1069 

analysis. The designation of these major compartments is supported by monitoring studies that confirm 1070 

the presence of DEHP. Surface water is expected to be a minor compartment despite it being the main 1071 

receiving media for phthalates remaining in effluent discharged from wastewater treatment plants. In 1072 

addition, phthalates in surface water will sorb strongly to suspended and benthic sediments. In areas 1073 

where continuous releases of phthalates occur, higher levels of phthalates in surface water can be 1074 

expected, trending downward distally from the point of releases. This concentration gradient also occurs 1075 

for suspended and benthic sediments. Furthermore, biodegradation of DEHP is inhibited in anoxic 1076 

environments (i.e., sediments and landfills), and like other phthalates, it is expected to hydrolyze slowly 1077 

and be very persistent in anaerobic environments. 1078 

 1079 

If DEHP is released directly to the atmosphere, it is expected to adsorb to particulate matter. DEHP is 1080 

not expected to undergo long-range transport facilitated by particulate matter due to the relatively rapid 1081 

rates of both direct and indirect photolysis. Atmospheric concentrations of DEHP may be elevated 1082 

proximal to sites of releases. However, off-gassing from landfills and volatilization from wastewater 1083 

treatment processes are expected to be negligible sources of atmospheric DEHP due to its low vapor 1084 

pressure and rapid photodegradation rates. Thus, DEHP is not expected to be a candidate chemical for 1085 

long-range transport. 1086 

 1087 

In indoor environments, DEHP released to air is expected to partition to airborne particles at 1088 

concentrations three times higher than in vapor phase (ECJRC, 2003a) and is expected to have longer 1089 

lifetime than in the atmosphere. The available information suggests that DEHP’s indoor dust 1090 

concentrations are correlated with the presence of phthalate-containing articles and the proximity to the 1091 

facilities producing them (Kubwabo et al., 2013; Wang et al., 2013; Abb et al., 2009) as well as daily 1092 

anthropogenic activities that might introduce DEHP-containing products indoors (Dodson et al., 2017). 1093 

 1094 

In situations where aerobic conditions persist, DEHP is expected to degrade rapidly. In environments 1095 

where anoxic conditions persist, such as sediments, landfills, and some soils, DEHP may be persistent 1096 

since it is resistant to anaerobic biodegradation. In anaerobic environments, such as deep landfill zones, 1097 

DEHP may be degraded by catalyzed hydrolysis.  1098 

  1099 

https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1588746
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=1588869
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=2000934
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=679857
https://hero.epa.gov/hero/index.cfm?action=search.view&reference_id=5755270
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10 WEIGHT OF THE SCIENTIFIC EVIDENCE CONCLUSIONS FOR 1100 

FATE AND TRANSPORT 1101 

10.1 Strengths, Limitations, Assumptions, and Key Sources of Uncertainty 1102 

for the Fate and Transport Assessment 1103 

Given the consistent results from numerous high-quality studies, there is a robust confidence that DEHP: 1104 

• is expected to undergo significant direct photolysis (Section 4.3); 1105 

• will partition to organic carbon and particulate matter in air (Sections 5 and 6.1); 1106 

• will biodegrade in aerobic surface water, soil, and wastewater treatment processes (Sections 0, 1107 

6.2.1, 6.3.2, and 7.2); 1108 

• does not biodegrade in anaerobic environments (Sections 0, 6.2, and 6.3); 1109 

• will be removed after undergoing wastewater treatment primarily via sorption to sludge at high 1110 

fractions, with a small fraction being present in effluent (Section 7.2); 1111 

• is not bioaccumulative (Section 8); 1112 

• is not expected to biodegrade under anoxic conditions and may have high persistence in 1113 

anaerobic soils and sediments (Sections 0, 6.2.2, and 6.3.2); and 1114 

• may show persistence in surface water and sediment proximal to continuous points of release 1115 

(Sections 0, 6.2.2, and 6.3.2). 1116 

 1117 

As a result of limited studies identified, there is a moderate confidence that DEHP: 1118 

• showed no significant degradation via hydrolysis under standard environmental conditions, but 1119 

hydrolysis rate was seen to increase with increasing pH and temperature in deep-landfill 1120 

environments (Section 6.3.3); and 1121 

• is expected to be removed in conventional drinking water treatment systems by standard 1122 

treatment process, and via reduction by chlorination and chlorination byproducts in post-1123 

treatment storage and drinking water conveyance (Section 7.3). 1124 

 1125 

The findings that were found to have a robust weight of evidence supporting them had one or more high-1126 

quality studies that were largely in agreement with each other. The findings that were said to have a 1127 

moderate weight of evidence were based on a mix of high- and medium-quality studies that were largely 1128 

in agreement, but varied in sample size and consistency of findings. 1129 

  1130 
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